趙艷梅吳 環(huán)楊季冬,2*
(1.重慶三峽學(xué)院環(huán)境與化學(xué)工程學(xué)院,重慶萬州 404100)(2.長(zhǎng)江師范學(xué)院化學(xué)與化工學(xué)院,重慶涪陵 408100)
環(huán)境分析中的手性識(shí)別方法展望
趙艷梅1吳 環(huán)1楊季冬1,2*
(1.重慶三峽學(xué)院環(huán)境與化學(xué)工程學(xué)院,重慶萬州 404100)(2.長(zhǎng)江師范學(xué)院化學(xué)與化工學(xué)院,重慶涪陵 408100)
環(huán)境中廣泛存在著眾多的天然和人工合成的手性對(duì)映體,手性對(duì)映體主導(dǎo)著自然界的奇妙和生命的奧秘.在環(huán)境分析中需要探索手性對(duì)映體污染物的作用和變遷,自然環(huán)境中的手性環(huán)境能自然開啟手性識(shí)別和激活手性,而人為介入的手性識(shí)別需要高靈敏度和高選擇性相結(jié)合的分析手段.許多高靈敏度且簡(jiǎn)便易行的光譜分析方法,借助有機(jī)染料、納米粒子或量子點(diǎn)等手性選擇性試劑,或合成設(shè)計(jì)某些光散射探針試劑可形成高效的選擇性手段.篩查手性選擇性試劑或手性光散射探針試劑與熒光、散射相結(jié)合的手性識(shí)別則是一項(xiàng)創(chuàng)新工作.發(fā)展不經(jīng)分離而同時(shí)測(cè)定手性污染物的新分析方法是一項(xiàng)有意義的探索.
環(huán)境分析;手性識(shí)別;分離分析;同時(shí)測(cè)定
手性(chirality)源于希臘語,意指一個(gè)物體與其鏡像不重合,就如同我們左右手呈鏡像對(duì)稱卻不重合,形成手性對(duì)映體(enantiomer).在人類環(huán)境中存在眾多的天然和人工合成的手性對(duì)映.其中,共存的手性對(duì)映體污染物質(zhì),對(duì)我們的生態(tài)環(huán)境和人體健康都有不同程度的影響.手性污染物的不同對(duì)映體的生物毒害作用不一樣,對(duì)應(yīng)的環(huán)境行為及降解和生物代謝過程也有所不同.因此,分離分析和測(cè)定環(huán)境中的手性污染物,弄清楚手性污染物不同對(duì)映體在環(huán)境中的行為和生物效應(yīng),表征和探索手性對(duì)映體的作用和變遷是必要的.但環(huán)境中存在的手性污染物的分析研究是困難的,因?yàn)樗鼈兊牟町愔挥性谏M織中或在手性環(huán)境中能夠被手性識(shí)別,而人為的測(cè)量和表征是極為困難的,因?yàn)槭中詫?duì)映體是極其相似而難以分離的.目前的手性分析研究多是先分離后分析,而在特殊需求下,不經(jīng)分離而同時(shí)測(cè)定手性對(duì)映體的工作是具有挑戰(zhàn)性的.而環(huán)境分析中對(duì)手性污染物的研究還鮮見報(bào)道,所以在環(huán)境分析中的手性識(shí)別研究是具有前瞻性的課題[1-2].
手性污染物主要源于天然產(chǎn)物中的手性物釋放,合成手性物的排放,手性藥物或手性農(nóng)藥的使用及擴(kuò)散.手性污染物可以分布在土壤、水、大氣環(huán)境中,以添加劑形式分布在食品、化妝品和保健品中.手性污染物主要分類為:含雜環(huán)的多苯芳烴類手性污染物,手性農(nóng)藥等.這里主要介紹三類易見的手性污染物.
2.1 多氯聯(lián)苯(Polychlorinated biphenyls,PCBs)
多氯聯(lián)苯是以聯(lián)苯為原料在金屬催化作用下,經(jīng)高溫氯化生成的氯代芳烴,其分子通式為C12H(10-n)Cln,是一類典型的持久性有機(jī)污染物[3].由于PCBs化學(xué)性質(zhì)穩(wěn)定,具有許多優(yōu)越的物化性能,因而被廣泛用作電力設(shè)備的絕緣液、化工油漆、塑料及其它工業(yè)、農(nóng)業(yè)和生活資料中的添加劑等.由于廣泛使用和擴(kuò)散,因其具有持久毒性和生物累積性而給人類環(huán)境帶來了嚴(yán)重的危害.PCBs具有親脂憎水性,易通過生物富集過程在生物體內(nèi)聚集.
據(jù)報(bào)道在人乳和藍(lán)鯨組織中檢出高濃度的PCB132和PCB149,并發(fā)現(xiàn)存在顯著的手性選擇性.在PCBs結(jié)構(gòu)中,因氯原子取代數(shù)量和取代位置的不同,理論上共有209種PCBs同系物,其中有78種因分子存在手性軸而具有手性,但大多數(shù)同系物由于其消旋反應(yīng)能在室溫下迅速進(jìn)行異構(gòu)轉(zhuǎn)化.只有存在異構(gòu)現(xiàn)象的19種在室溫環(huán)境下穩(wěn)定存在.這些異構(gòu)體在各向同性的環(huán)境中表現(xiàn)出相同的物理和化學(xué)性能,而在各向異性的環(huán)境中的生化過程和毒性則表現(xiàn)出明顯的對(duì)映體選擇性[4].
2.2 雜環(huán)的多苯芳烴(Polycyclic Aromatic Hydrocarbons with heterocycle,PAHH)
芳香烴在高溫下聚合反應(yīng)生成復(fù)雜構(gòu)型的多苯芳烴,由于沒有對(duì)稱中心和對(duì)稱面而具有手性,當(dāng)再與手性雜環(huán)聚合后,更易生成復(fù)雜多樣的手性高聚物.現(xiàn)代生活中燒烤蛋白類、肉類組織等食物的熱聚焦化反應(yīng)會(huì)產(chǎn)生有毒有害物質(zhì)多苯芳烴是確定無疑的,而在多種雜環(huán)化合物存在下,進(jìn)而聚合反應(yīng)生成含雜環(huán)的多苯芳烴.以前都把這些高聚物當(dāng)作多苯芳烴的同系物來處理,其實(shí)這里面的手性對(duì)映體也是大量存在的,在各向異性的環(huán)境中它們會(huì)表現(xiàn)出若干不同的差異,其中不乏更具毒性的環(huán)境行為和生態(tài)效應(yīng),只是現(xiàn)在還缺乏實(shí)驗(yàn)數(shù)據(jù).
熱聚焦化反應(yīng)產(chǎn)生的多苯芳烴是多種多樣的,形成眾多異構(gòu)的芳烴同系物.同樣在環(huán)境中大量存在的手性雜環(huán)以多種形式加入熱聚反應(yīng)中,就會(huì)形成許多手性對(duì)映異構(gòu)體,這些對(duì)映體在水環(huán)境和土壤環(huán)境中可能會(huì)被吸收轉(zhuǎn)化,而在大氣環(huán)境中它們會(huì)長(zhǎng)時(shí)間的飄浮存在,在遭遇到合適的載體時(shí),它們便會(huì)發(fā)揮出明顯的對(duì)映體選擇性環(huán)境行為.
2.3 手性農(nóng)藥(Chiral Pesticides,CP )
農(nóng)藥殘留是最顯著的環(huán)境污染物來源.作為殺蟲劑、除草劑和衛(wèi)生除害的農(nóng)藥使用歷史較長(zhǎng)、用量大、品種多.其中殺蟲劑具有高速率和高效率[5],是最優(yōu)先選擇的污染物.首先,多年來殺蟲劑的使用反導(dǎo)致了作物的大幅減產(chǎn),這是由于昆蟲、雜草和植物疾病形成農(nóng)產(chǎn)品的生態(tài)需求,因而這些殺蟲劑的毒理學(xué)性質(zhì)對(duì)人類環(huán)境造成了一定風(fēng)險(xiǎn)[6].其次,殺蟲劑具有持久性,移動(dòng)性,能夠在食物鏈中發(fā)生高度生物積累,能通過生殖毒性,致癌性,致突變性或內(nèi)分泌干擾效應(yīng)等對(duì)人類造成傷害[7].除此之外,殺蟲劑及其代謝物可通過地表徑流進(jìn)入海洋和淡水水域.從而造成嚴(yán)重的水生環(huán)境危害,嚴(yán)重影響飲用水的質(zhì)量[8].
隨著人們對(duì)殺蟲劑的不斷研究,手性殺蟲劑的研究也漸漸進(jìn)入人們研究的范疇.具有手性的殺蟲劑據(jù)市場(chǎng)報(bào)道已占25%左右[9].諸如2,4’一滴滴涕(o,p’-DDT),滴滴滴(o,p’-DDD),六六六(α-HCH),氯丹(CHL),三氯殺蝸醇(o,p’-Dieofol),七氯(heptaehlor)和毒殺芬(toxaPhene),擬除蟲菊酯(Synthetic pyrethroids,SPs)等均存在手性對(duì)映體.這些殺蟲劑有些是因?yàn)槠浞肿又写嬖谑中灾行亩哂惺中裕行┦且驗(yàn)榉肿又写嬖谑中云矫娑哂惺中?,而它們大都以外消旋體的形式出現(xiàn),但目前都把它們作為單一物種來處理.在環(huán)境監(jiān)測(cè)中發(fā)現(xiàn)其 ER值(對(duì)映體濃度比值)的變化,則可進(jìn)一步跟蹤分析其對(duì)映體選擇性行為[10].
手性對(duì)映體由于它們的分子立體結(jié)構(gòu)在生物體內(nèi)及在各向異性的環(huán)境中引起不同的“分子效應(yīng)”形成的現(xiàn)象稱為“手性識(shí)別”.手性對(duì)映體具有很強(qiáng)的鏡像對(duì)稱規(guī)律,具有立體專一性,其在各向同性的環(huán)境中物理化學(xué)性質(zhì)相似,難以辨識(shí).而在各向異性的環(huán)境中卻有決定著對(duì)映體選擇性行為的不同差異.在自然環(huán)境中,只有對(duì)應(yīng)的手性環(huán)境即各向異性環(huán)境才是開啟手性識(shí)別和手性激活的關(guān)鍵鑰匙.隨著對(duì)環(huán)境意識(shí)的加強(qiáng),環(huán)境分析也漸漸受到人們的重視,而對(duì)環(huán)境中手性物質(zhì)的分析逐漸成為一項(xiàng)富有挑戰(zhàn)性的課題.在各向異性的環(huán)境中的手性對(duì)映體,其選擇性的環(huán)境行為不盡相同,從而產(chǎn)生的環(huán)境效應(yīng)大為不同.例如,除草劑異丙甲草胺(Metolachlor)[11],四種異構(gòu)體中只有兩種有活性,且S-構(gòu)型對(duì)靶標(biāo)生物體的活性明顯的高于R-構(gòu)型;R-型的芳氧羧酸類除草劑吡氟禾草靈對(duì)1年生及多年生禾本科雜草具有殺傷力,其對(duì)映體則是無效的;殺菌劑多效唑(Paclobutrazol),RR型有高殺菌作用,對(duì)植物生長(zhǎng)控制作用低;而SS型則有低殺菌作用,對(duì)植物生長(zhǎng)控制作用高;殺蟲劑芐氯菊酯(Permethrin)[12],D構(gòu)型比L構(gòu)型毒性大的多.手性污染物的不同對(duì)映體不僅對(duì)生物體的作用不一樣,且它們?cè)诃h(huán)境中的降解過程和生物代謝中也有選擇性差異.如PCBs在不同的土壤類型中殘留量不一樣,土壤的pH會(huì)影響PCBs對(duì)映體的殘留比例[13];殺蟲劑甲霜靈R-型表現(xiàn)出生物活性,且在環(huán)境中的降解速率較快,所以很多國(guó)家采用精-甲霜靈(含 > 97%的R-型甲霜靈)代替甲霜靈,目的是為了減少農(nóng)藥對(duì)環(huán)境的殘留污染;除草劑異丙甲草胺在不同生物體內(nèi)的的代謝具有對(duì)映體選擇性.同時(shí),由于單一手性農(nóng)藥具有相對(duì)成本低、用藥量少、藥效高、三廢少、對(duì)作物和生態(tài)環(huán)境更安全以及極具市場(chǎng)競(jìng)爭(zhēng)力等優(yōu)點(diǎn),手性農(nóng)藥的開發(fā)已經(jīng)成為了21世紀(jì)新農(nóng)藥開發(fā)的熱點(diǎn).農(nóng)藥行政管理部門趨向于只選擇所需光活性異構(gòu)體的注冊(cè),不認(rèn)可無效體,以免將其施放到環(huán)境中污染環(huán)境.
目前,無論是天然提取還是人工合成的手性物質(zhì)的生產(chǎn)和使用已相當(dāng)普遍,在環(huán)境中的擴(kuò)散也在日趨漫延.環(huán)境中手性物質(zhì)的分離分析和測(cè)量、表征具有更重要的研究意義.在環(huán)境分析中“手性識(shí)別”用到一個(gè)重要概念,即以對(duì)映體濃度比值ER(Enantiomer Ratios)來描述手性對(duì)映體在環(huán)境中的行為,ER=[R]/[S],當(dāng)ER=1時(shí),手性物質(zhì)為外消旋體,當(dāng)發(fā)生對(duì)映體選擇性行為時(shí),ER可以為{0,∞}.為避免無窮大,Harner建議使用對(duì)映體分?jǐn)?shù)EF (Enantiomer Fraction)來描述環(huán)境中的對(duì)映體選擇行為.EF=ER/(1+ER),EF的范圍為{0,1},當(dāng)EF=0.5時(shí)為外消旋體[10].于是測(cè)試環(huán)境中的EF可以分析得到對(duì)映體在環(huán)境中的選擇性行為,從而有助于不同環(huán)境的“手性識(shí)別”.
探索需要分析測(cè)量與表征,環(huán)境中手性物質(zhì)的測(cè)量需要簡(jiǎn)便快捷的分析方法,手性物質(zhì)的表征更看重的是選擇性分析.目前,常用的分離分析和測(cè)定方法主要有毛細(xì)管電泳法[14]、氣相色譜法[15]、高效液相色譜法[16]、超臨界流體色譜法(SFC)[17]、GC-MS聯(lián)用法[18]和原子力顯微技術(shù)(AFM)[19]等.這些方法均為先分離后分析,操作比較繁復(fù)且投入較大.光譜分析方法可簡(jiǎn)化手性識(shí)別,目前主要有紫外-可見(UV-Vis)光譜[20]、近紅外(NIR)光譜[21]、核磁共振(NMR)[22]等,通過手性選擇性試劑和手性異構(gòu)體的混合溶液在光譜上的細(xì)微變化,借助偏最小二乘法、多元回歸圖解法、主因子分析法等量子化學(xué)計(jì)算或與其它光譜、色譜法聯(lián)用進(jìn)行手性識(shí)別研究.
還有研究表明[23],由于環(huán)境中手性物質(zhì)具有旋光性等光學(xué)性質(zhì),再與分子光譜分析方法結(jié)合,可建立簡(jiǎn)便快捷、靈敏度高、選擇性強(qiáng)的手性識(shí)別光譜分析方法.用分子光譜方法對(duì)兩個(gè)對(duì)映體的手性識(shí)別和定量分析是具有挑戰(zhàn)性的.如果要在特定環(huán)境下實(shí)現(xiàn)對(duì)手性對(duì)映體簡(jiǎn)捷快速的分析,并得出測(cè)量表征的結(jié)果,尤對(duì)某些手性對(duì)映體進(jìn)行快速簡(jiǎn)便的痕量分析,則以不經(jīng)分離而同時(shí)測(cè)定的手性分析最具分析價(jià)值.
常用作手性分析的手段有:手性選擇性試劑的選用以及手性光散射探針的合成.
手性選擇性試劑即為與手性對(duì)映體反應(yīng),形成非對(duì)映異構(gòu)體以使其擴(kuò)大光譜差異的反應(yīng)試劑.常用的這類試劑有:手性表面活性劑(膽酸鹽)、環(huán)糊精、手性冠醚、卟啉及金屬卟啉衍生物、大環(huán)抗生素親和手性選擇性試劑等.
手性光散射探針可以是改變手性光散射體系的散射光強(qiáng)度和提高散射分析方法的選擇性的手段和試劑,以顯現(xiàn)和擴(kuò)張手性對(duì)映體的光譜差異進(jìn)行分析.這類手段和試劑常見的有:CdX(X=S、Se、Te…)量子點(diǎn)分析手段[24],金、銀納米微米分析體系[25],香豆素衍生物[26]或羥基氨基喹啉衍生物[29]等試劑.提出合成手性光散射探針的手段對(duì)推動(dòng)手性識(shí)別應(yīng)用研究有重要意義.首先,確定手性光散射探針的作用機(jī)理機(jī)制和分類篩選及其拓展研究;其次,探索其合成路線;第三,發(fā)展以手性選擇性試劑或手性光散射探針試劑為主導(dǎo)的手性識(shí)別的分子光譜分析方法,進(jìn)一步拓展確立不經(jīng)分離而同時(shí)測(cè)定手性對(duì)映體的新分析方法是一項(xiàng)有意義的探索.
在環(huán)境保護(hù)中對(duì)手性污染物的“手性識(shí)別”和選擇性分析顯得日趨重要.通過研究環(huán)境中手性污染物形成手性超分子體系或非對(duì)映體復(fù)合物體系的反應(yīng)機(jī)制和過程,探索光散射的特征、穩(wěn)定條件和優(yōu)化條件,結(jié)合探索合成修飾制備的條件,拓展分析應(yīng)用實(shí)例,發(fā)展手性對(duì)映體選擇性分析的新技術(shù)[1].環(huán)境中“手性識(shí)別”需要簡(jiǎn)便快捷的分析方法,更看重的是選擇性分析.通過手性物質(zhì)的光譜特征和差異,結(jié)合其他分析方法以及化學(xué)計(jì)量學(xué)等輔助方法,建立同時(shí)測(cè)定手性對(duì)映體的新方法,實(shí)現(xiàn)環(huán)境中手性物質(zhì)的質(zhì)量控制和痕量微量分析.不僅拓展和深化了光散射方法的新應(yīng)用,而且擴(kuò)展了手性識(shí)別的新途徑.這不僅是環(huán)境分析領(lǐng)域發(fā)展的需要,更是人類社會(huì)發(fā)展的需要[2].
致 謝:
本項(xiàng)目研究得到國(guó)家自然科學(xué)基金委兩次資助(No.21175015, No.21475014),特別致謝!
[1]楊季冬,楊瓊,周尚.共振瑞利散射光譜法同時(shí)測(cè)定手性對(duì)映體的研究進(jìn)展[J].重慶三峽學(xué)院學(xué)報(bào),2012,28(3):90-94.
[2]楊季冬,譚選平,楊瓊,等.研發(fā)光散射探針拓展光譜手性識(shí)別的研究進(jìn)展[J].食品安全質(zhì)量檢測(cè)學(xué)報(bào),2014,5(10):3064-3070.
[3]Luisa R. Bordajandi. Occurrence of PCBs,PCDD/Fs, PBDEs and DDTs in Spanish breast milk: Enantiomeric fraction of chiral PCBs[J]. Chemosphere , 2008,70:567-575.
[4]Shouhui Dai, Charles S. Wong, Jing Qiu, etal. Enantioselective accumulation of chiral polychlorinated biphenyls in lotus plant (Nelumbonucifera spp.)[J].Journal of Hazardous Materials,2014,280:612–618.
[5]María Asensio-Ramos, Javier Hernández-Borge,Teresa M. Borges-Miquel,etal. Ionic liquid-dispersive liquid–liquid microextraction for the simultaneous determination of pesticides and metabolites in soils using high-performance liquid chromatography and fluorescence detection[J].Journal of Chromatography A,2011,1218:4808–4816.
[6]L.Rubio,M.C. Ortiz,L.A. Sarabia. Identification and quantification of carbamate pesticides in dried lime tree flowers by means of excitation-emission molecular fluorescence and parallel factor analysis when quenching effect exists[J].Analytica Chimica Acta,2014,820: 9–22.
[7]Nicolas Ferretto Marc Tedetti, Catherine Guigue, Stéphane Mounier,etal. Identification and quantification of known polycyclic aromatic hydrocarbons and pesticides in complex mixtures using fluorescence excitation–emission matrices and parallel factor analysis[J]. Chemosphere, 2014, 107: 344–353.
[8]Hassan A. Azab, Axel Duerkop, E.M. Saad, etal..A novel luminescent terbium-3-carboxycoumarin probe for time-resolved fluorescence sensing of pesticides methomyl, aldicarb and prometryne[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2012, 97: 915–922.
[9]劉維屏,徐超,周珊珊.手性污染物與環(huán)境安全[J].環(huán)境化學(xué),2006,25(3):247-251.
[10]李衛(wèi)東.手性污染物在生態(tài)環(huán)境中的對(duì)映體選擇性行為研究進(jìn)展[J].北方環(huán)境,2013(9):91-97.
[11]Huijun Liu, Mingyu Xiong. Comparative toxicity of racemic metolachlor and S-metolachlor to Chlorella pyrenoidosa[J]. Aquatic Toxicology,2009,93: 100–106
[12]Weiping Liu,Jianying Gan,et al.Enantioselectivity in environmental safety of current chiral insecticides[J].PANS,2005,102:701-706
[13]Thomas D, et al. Two-dimensional gas chromatography coupled to triple quadrupole mass spectrometry for the unambiguous determination of atropisomeric polychlorinated biphenyls in environmental samples[J]. Journal of Chromatography A,2006,1110:156–164.
[14] Virginia Pérez-Fernández, et al. Chiral separation of agricultural fungicides[J]. Journal of Chromatography A,2011,1218:6561– 6582
[15]AcidKenichiroTodoroki,etal.4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium- -chloride as an enantioseparation enhancer for fluorescence chiralderivatization–liquid chromatographic analysis of dl-lactic acid[J]. Journal of Chromatography A,2014,1360:188-195 .
[16] Michal Oravec,et al.The effect of humic acid and ash on enantiomeric fraction change of chiral pollutants[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2010,359: 60-65
[17]Marie Lecoeur-Lorin, Rapha?l Delépée,Michèle Adamczyk,etal. Simultaneous determination of optical and chemical purities of a drug with two chiral centers by liquid chromatography-circular dichroism detection on a non-chiral stationary phase[J].Journal of Chromatography A,2008,1206:123-130.
[18]Gema Flores,et al.Effect of sample freezing on the SPME performance in the analysis of chiralvolatile compounds in foods[J]. Food Chemistry,2006,96:334-339.
[19]Sergi GM, Fausto S. Nanochanics of lipid bilayers by force spectroscopy with AFM: A perspective[J]. BBA Biomenbranes, 2010, 1798: 741-749.
[20]Fakayode S O, Swamidoss I M, Busch M A,et al.Determination of the enantiomeric composition of some molecules of pharmaceutical interest by chemometric analysis of the UV spectra of guest host complexes formed with modified cyclodextrins[J].Talanta,2005,65:838-845.
[21]Tran C D, Grishko V I,Oliveira D. Determination of enantiomeric compositions of amino acids by near-infrared spectrometry through complexation with carbohydrate[J].Analytical chemistry,2003,75:6455-6462.
[22]Sugiura M,Kimura A,F(xiàn)ujiwara H. Discrimination of enantiomers by means of NMR spectroscopy using chiral liquid crystalline solution:application to triazole fungicides,uniconazole and diniconazole[J].Magnetic Resonance in Chemistry,2006,44: 121-126.
[23]Jidong Yang,Ernv Wang, Shang Zhou,etal. Effects of (R) - and (S)-PHpranolol hydrochloride enantiomers on the resonance Rayleigh scattering spectra with erythrosine B as PHbe and their analytical applications[J]. Talanta,2015,134,754-760.
[24]Yizhong Shen, Shaopu Liu, Jidong Yang,etal. A novel and sensitive turn-on fluorescent biosensor for the DNA detection using Sm3+-modulated glutathione-capped CdTe quantum dots[J]. Sensors and Actuators B,2014,199:389-397.
[25] Xuyue Zheng,Tianming Yao,Ying Zhu, etal. Cu2+modulated silver nanoclusters as an on-off-on fluorescence probe for the selective detection of L-histidine[J].Biosensors and Bioelectronics,2015,66:103-108.
[26] Syed S. Razi, Priyanka Srivastava, Rashid Ali,etal.A coumarin-derived useful scaffold exhibiting Cu2+induced fluorescence quenching and fluoride sensing (On-Off-On) via copper displacement approach[J].Sensors and Actuators B,2015,209:162-171.
[27] Deblina Sarkar, Arindam Pramanik, Subrata Jana, etal. Quinoline based reversible fluorescent‘turn-on’ chemosensor for the selective detection of Zn2+:Application in living cell imaging and as INHIBIT logic gate[J]. Sensors and Actuators B,2015,209:138-146.
(責(zé)任編輯:張新玲)
Outlook of Chiral Recognition Method in Environmental Analysis
ZHAO Yanmei1WU Huan1Yang Jidong1,2*
(1.School of Environment and Chemistry Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing 404000. 2. School of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100)
Chiral enantiomers dominate the wonders of nature and the mysteries of life. Numerous natural and synthetic chiral enantiomers exist widely in the environment, which plays a magnificent variety of roles. Chiral recognition and analysis are used to measure, characterize and explore the functions and changes of the chiral enantiomers in environmental analysis. In Natural environment, chiral environment can naturally launch into chiral recognition and chiral activation, while chiral recognition in human intervention requires the analytical tools to combine high sensitivity with high selectivity. Many spectral analysis methods with high sensitivity and simplicity draw support from chiral selective reagents such as organic dyes, nanoparticles, quantum dots, or synthesize and design certain light scattering probe reagents to form high effective and selective means. Chiral recognition of screening combines chiral selective reagents or chiral light scattering probe reagents with fluorescence, and scattering is an innovative work. It is a valuable exploration to develop molecular spectroscopy analysis methods of chiral recognition as the leading of chiral selective reagents or chiral light scattering probe reagents, and it further expands and then establishes a new analysis method of simultaneous determination without separation of chiral enantiomers.
environmental analysis; chiral recognition; separated analysis; simultaneous determination
O641
A
1009-8135(2015)03-0099-05
2015-03-28
趙艷梅(1991-),女,四川廣元人,重慶三峽學(xué)院碩士研究生,主要研究環(huán)境分析.
楊季冬(1956-),男,重慶豐都人,重慶三峽學(xué)院教授,博士生導(dǎo)師,主要研究分子光譜分析.
重慶三峽學(xué)院學(xué)報(bào)2015年3期