• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      土傳病害生物防治研究進(jìn)展

      2015-03-17 17:52:12李興龍李彥忠
      草業(yè)學(xué)報(bào) 2015年3期
      關(guān)鍵詞:生防土傳根腐病

      李興龍,李彥忠,2*

      (1.草地農(nóng)業(yè)生態(tài)系統(tǒng)國(guó)家重點(diǎn)實(shí)驗(yàn)室,蘭州大學(xué)草地農(nóng)業(yè)科技學(xué)院,甘肅 蘭州730020;2.中國(guó)農(nóng)業(yè)科學(xué)院草原研究所,內(nèi)蒙古 呼和浩特010010)

      植物土傳病害是發(fā)生在植物根部或莖部以土壤為媒介進(jìn)行傳播病害的統(tǒng)稱(chēng)[1],包括根腐病、枯萎病、猝倒病、立枯病、疫病、黃萎病等病害種類(lèi)。這類(lèi)病害的病原物其生活史一部分或大部分存在于土壤中,在條件適宜時(shí)病原物萌發(fā)并侵染植物根部或莖部導(dǎo)致植物發(fā)生病害[2]。近年來(lái)由于化肥的大量施用,造成土壤肥力嚴(yán)重下降,土壤微生物區(qū)系紊亂,農(nóng)作物土傳病害逐年加重給農(nóng)業(yè)生產(chǎn)帶來(lái)了巨大的經(jīng)濟(jì)損失,嚴(yán)重制約著我國(guó)農(nóng)業(yè)生產(chǎn)發(fā)展[3]。應(yīng)用化學(xué)藥劑防治植物土傳病害在農(nóng)業(yè)生產(chǎn)中發(fā)揮著重要作用,然而化學(xué)藥劑的大量使用引起的藥物殘留、環(huán)境污染和抗藥性積累等問(wèn)題已經(jīng)不符合農(nóng)業(yè)健康可持續(xù)發(fā)展的要求[4-6]。生物防治因其低成本、環(huán)境友好和無(wú)藥物殘留等特點(diǎn)已成為當(dāng)前國(guó)內(nèi)外防治植物土傳病害的研究熱點(diǎn)[7-9],將逐步取代傳統(tǒng)的化學(xué)防治手段,具有較為廣闊的應(yīng)用前景。

      生物防治是指利用一種或多種微生物來(lái)抑制病原菌生命活力和繁殖能力的方法。生物防治植物病害的常見(jiàn)機(jī)制有:改善土壤理化性質(zhì)及營(yíng)養(yǎng)狀況促進(jìn)植物生長(zhǎng),提高植物健康水平,增強(qiáng)寄主植物的抗病能力;利用生防細(xì)菌、真菌及放線菌等拮抗微生物的寄生、抗生作用,及其與病原菌的營(yíng)養(yǎng)物質(zhì)、生態(tài)位的競(jìng)爭(zhēng)效應(yīng)抑制和消滅病原菌;誘導(dǎo)寄主植物產(chǎn)生對(duì)病原菌的系統(tǒng)抗性[10-12]。

      1 改善土壤理化性質(zhì)及營(yíng)養(yǎng)狀況

      土壤微生物區(qū)系對(duì)于保持土壤健康狀況和控制植物病害發(fā)生具有積極的作用[13],通過(guò)增施生物有機(jī)肥來(lái)改善植物根際土壤中微生物的活動(dòng)狀況可以有效地防治植物土傳病害的發(fā)生[14]。

      O’Rourke等[15]對(duì)西澳多個(gè)地區(qū)的地三葉(Trifoliumsubterraneum)根部病害進(jìn)行了研究,結(jié)果表明地三葉無(wú)論是主根還是側(cè)根,其病害的發(fā)生均與土壤中礦質(zhì)養(yǎng)分的利用有密切關(guān)系,而且對(duì)于地三葉等豆科多年生牧草,其主根上發(fā)生的病害對(duì)牧草減產(chǎn)的影響往往遠(yuǎn)大于側(cè)根。Yadessa等[16]對(duì)番茄青枯?。≒seudomonassolanncearum)生物防治的研究表明通過(guò)對(duì)表層土壤的改良可以有效防治病害的發(fā)生,提高番茄(Lycopersiconesculentum)的產(chǎn)量,1%青草堆肥、10%椰子殼泥炭土與5%~10%農(nóng)家肥混合對(duì)病害防治的效果最佳。

      Li和Dong[17]將石英、黑云母、鉀長(zhǎng)石、斜長(zhǎng)石、橄欖石和稻秸粉碎過(guò)篩后按其質(zhì)量比為1∶3∶2∶1∶1∶2均勻混合制成土壤改良粉劑,改良劑對(duì)番茄青枯病具有較好的防治效果,2011和2012年溫室試驗(yàn)的防效分別高達(dá)81.11%和74.36%,這種土壤改良劑與有機(jī)肥混施后病害的防效會(huì)更佳。Zhang等[18]研究發(fā)現(xiàn),由兩種拮抗微生物作為主要成分而制成的生物有機(jī)肥能夠有效地防治黃瓜根腐?。‵usariumoxysporumf.sp.cucumerinum)的發(fā)生提高黃瓜(Cucumissativus)產(chǎn)量。相對(duì)于無(wú)拮抗微生物成分的傳統(tǒng)有機(jī)肥,這種生物有機(jī)肥使發(fā)病率下降了20.0%~37.5%,施用這種生物有機(jī)肥后土壤中微生物的種類(lèi)和活力得到了明顯改善。

      Wiggins和Kinkel[19]研究表明,通過(guò)增施綠肥和作物輪作的方式,可以增加土壤中生防微生物的種群數(shù)量,增強(qiáng)微生物的生命活動(dòng),這對(duì)苜蓿根腐?。‵usariumoxysporumf.sp.medicaginis)的防治具有積極的作用。Qiu等[20]研究發(fā)現(xiàn),利用拮抗微生物制作的生物有機(jī)肥對(duì)尖孢鐮刀菌(Fusariumoxysporum)引起的黃瓜根腐病具有較好的防治效果,根腐病的發(fā)病率下降了83%。

      2 生防微生物

      利用生防微生物對(duì)植物土傳病害進(jìn)行防治已經(jīng)在許多植物上取得成功。生防微生物的寄生作用表現(xiàn)為拮抗寄生物與目標(biāo)病原菌進(jìn)行特異性識(shí)別,并誘導(dǎo)產(chǎn)生細(xì)胞壁裂解酶降解病原菌的細(xì)胞壁使寄生物能進(jìn)入病原菌的菌絲內(nèi)以發(fā)揮抑菌和滅殺作用[12]。生防微生物通過(guò)與病原菌爭(zhēng)奪營(yíng)養(yǎng)物質(zhì)和生態(tài)位以調(diào)節(jié)微生物的種群動(dòng)態(tài)從而達(dá)到生物防治的目的,研究表明發(fā)生在葉片表面的營(yíng)養(yǎng)競(jìng)爭(zhēng)有利于降低病原菌孢子的萌發(fā)和侵染能力。在貧瘠土壤中生防微生物與病原菌對(duì)碳源的競(jìng)爭(zhēng)較為普遍,生防微生物對(duì)土壤中病原菌孢子的萌發(fā)有較強(qiáng)的抑制作用[12]。植物根際促生菌(plant growth promoting rhizobacteria,簡(jiǎn)稱(chēng)PGPR)可通過(guò)各種代謝途徑來(lái)促進(jìn)植物生長(zhǎng)并抑制有害微生物,菌株單獨(dú)接種和混合接種均能促進(jìn)植物生長(zhǎng)和產(chǎn)量增加,但混合接種的效果更好[21]。

      生防微生物的抗生作用表現(xiàn)為微生物產(chǎn)生一些揮發(fā)性物質(zhì)、細(xì)胞裂解酶和次級(jí)代謝產(chǎn)物,這些物質(zhì)能有效抑制和抵抗病原菌的活性[12],一般分為兩類(lèi):一類(lèi)抵抗細(xì)菌的生長(zhǎng),另一類(lèi)抵抗真菌和放線菌的生長(zhǎng)。

      2.1 生防細(xì)菌

      芽孢桿菌(Bacillus)和假單孢桿菌(Pseudomonas)兩種生防微生物,因其具有對(duì)動(dòng)植物弱致病性和穩(wěn)定抗菌性的特點(diǎn)在植物土傳病害的防治中發(fā)揮著重要的作用。

      2.1.1 芽孢桿菌 芽孢桿菌的菌株既能有效地防治病害的發(fā)生同時(shí)又能很好地促進(jìn)植物的生長(zhǎng)。Wakelin等[22]從土壤中分離得到的芽孢桿菌菌株對(duì)豌豆根腐絲囊霉(Aphanomyceseuteiches)有較強(qiáng)的室內(nèi)抑菌和田間防治效果,其中菌株 MW27使豌豆(Pisumsativum)根中病原菌孢子的形成下降了83%。Idris等[23]從高粱(Sorghumbicolor)根際土壤中分離的芽孢桿菌菌株對(duì)由終極腐霉菌(Pythiumultimum)引起的根腐病防治效果較好,室內(nèi)抑菌率和溫室防效分別在14.00%~47.36%和62.98%~86.23%之間。多粘類(lèi)芽孢桿菌(Paenibacilluspolymyxa)和枯草芽孢桿菌(Bacillussubtilis)是目前生產(chǎn)中應(yīng)用最廣的兩類(lèi)芽孢桿菌。

      多粘類(lèi)芽孢桿菌廣泛存在于植物根際土壤中,能抑制寄生在寄主植物根部的病原菌,最大程度地保護(hù)植物根部免受病害危害[24],抑菌的作用機(jī)理是因?yàn)槎嗾愁?lèi)芽孢桿菌能產(chǎn)生蛋白酶、β-1,3-葡聚糖酶、纖維素酶、木聚糖酶、脂肪酶、淀粉酶和幾丁質(zhì)酶等多種水解酶,這些酶在病害的防治中發(fā)揮著極其重要的作用[25-27]。Helbig[28]從成熟草莓(Fragariaananassa)果實(shí)中分離得到的多粘類(lèi)芽孢桿菌菌株(18191)對(duì)灰葡萄孢菌(Botrytiscinerea)有極強(qiáng)的抑制作用,菌株菌液能顯著抑制灰葡萄孢菌芽管的生長(zhǎng)和分生孢子在葉片上的分布,接種菌株8d草莓灰霉病的發(fā)病率下降了68%。國(guó)外學(xué)者經(jīng)研究發(fā)現(xiàn)多粘類(lèi)芽孢桿菌對(duì)由尖孢鐮刀菌、絲囊霉、終極腐霉和立枯絲核菌(Rhizoctoniasolani)具有較好的防治效果[24,29]。

      枯草芽孢桿菌能有效防治植物土傳病害的發(fā)生,相關(guān)研究表明枯草芽孢桿菌對(duì)小麥全飾病菌(Gaeumannomycesgraminis)、核盤(pán)菌(Sclerotinia)、尖孢鐮刀菌、立枯絲核菌、葡萄頂枯病菌(Eutypalata)、鏈格孢菌(Alternariaburnsii)、灰葡萄孢菌、指狀青霉(Penicilliumdigitatum)和稻瘟菌(Magnaportheoryzae)等多種病原菌具有較強(qiáng)的抑制和滅殺作用[30]。Wharton等[31]用分離得到的枯草芽孢桿菌菌株對(duì)由疫霉引起的馬鈴薯晚疫?。≒hytophthorainfestans)進(jìn)行了有效防治,2006和2007年,晚疫病的發(fā)病率分別降低了20.0%和14.2%;馬鈴薯(Solanumtuberosum)塊莖的腐爛率分別降低了14.9%和11.9%。Sowndhararajan等[32]從茶葉(Camellia sinensis)微生物區(qū)系中分離得到的蒼白桿菌(Ochrobactrumanthropi)菌株對(duì)茶皰狀疫病具有較好的防治效果,小區(qū)試驗(yàn)中對(duì)茶樹(shù)噴霧接種120d后,菌株BMO-111對(duì)該病的防效達(dá)到了73.4%,較化學(xué)藥劑防效提高了8.7%。Chen等[33]從黃瓜根際土壤中分離得到的枯草芽孢桿菌菌株B579對(duì)尖孢鐮刀菌根腐病防效較佳,用菌液浸泡處理種子和菌液灌根處理幼苗,病害的防治效果分別達(dá)到了73.60%和50.88%。Abo-Elyousr和Mohamed[34]研究表明,枯草芽孢桿菌菌株對(duì)馬鈴薯鐮刀枯萎病在溫室和田間的防效分別達(dá)到了67.4%和42.4%。

      2.1.2 假單孢桿菌 假單孢桿菌是一種普遍存在于土壤中的根際微生物,這種微生物不但能促進(jìn)植物的生長(zhǎng),而且能促進(jìn)改善植物的養(yǎng)分吸收狀況,增強(qiáng)植物對(duì)干旱、鹽漬、重金屬毒害和藥害等逆境脅迫的抗性[35-37],因其旺盛的生根能力和豐富的代謝產(chǎn)物等特性被廣泛用于種子接種以防治病害的發(fā)生[38]。

      Tran等[39]研究表明,假單胞桿菌的6個(gè)菌株150-A、269-A、199-B、267-C、SS-101和214-D對(duì)黑胡椒(Piper nigrum)由辣椒疫霉菌(Phytophthoracapsici)引起的根腐病有較強(qiáng)的防治效果。Malandraki等[40]研究發(fā)現(xiàn)熒光假單胞桿菌的兩個(gè)菌株對(duì)由尖孢鐮刀菌引起的茄子(Solanummelongena)枯萎病具有較好的防治效果。Yanes等[38]從苜蓿(Medicagosativa)根際分離得到的熒光假單孢桿菌(fluorescentPseudomonas)菌株對(duì)于幼苗猝倒病具有較好的防治效果,接種該菌后苜蓿的田間出苗率得到了顯著提高,其中4種菌株顯著促進(jìn)了苜蓿植株的生長(zhǎng)。Singh等[41]從毛喉鞘蕊花(Coleusforskohlii)根際土壤中分離得到的蒙氏假單孢桿菌(Pseudomonas monteilii)菌株CRC1對(duì)毛喉鞘蕊花枯萎病和根腐病的防治效果較佳,接種CRC1后,枯萎病和根腐病的田間發(fā)病率分別降低了52%和56%。Liu等[42]從番茄無(wú)土栽培的可再生基質(zhì)中分離得到的假單胞桿菌的兩個(gè)菌株FC-2B和FC-8B對(duì)番茄鐮刀菌根腐病有較好的防治效果,接種兩菌株后根腐病的發(fā)病率分別下降了66%和70%。Akhtar和Siddiqui[43]對(duì)鷹嘴豆(Cicerarietinum)根腐病的研究結(jié)果表明,接種假惡臭假單孢桿菌(Pseudomonasputida)、產(chǎn)堿假單胞桿菌(Pseudomonasalcaligenes)和假單胞桿菌菌株P(guān)s28對(duì)由根結(jié)線蟲(chóng)引起的根腐病有較強(qiáng)的防治效果,根腐病的發(fā)病率分別降低了59%,48%和44%。

      2.2 生防真菌

      2.2.1 木霉菌(Trichoderma)由于化學(xué)農(nóng)藥的殘留對(duì)土壤環(huán)境的破壞、對(duì)人體帶來(lái)的副作用及病原菌抗藥性的日益明顯,利用木霉菌作為生物殺菌劑的研究引起了世界各國(guó)的廣泛興趣[44]。木霉作為一類(lèi)重要的生防真菌,廣泛存在于土壤、空氣和植物體表面等生態(tài)環(huán)境中,具有適應(yīng)性強(qiáng),存在范圍廣和廣譜、高效等優(yōu)點(diǎn)[21]。利用木霉菌和病原菌的交叉保護(hù)效應(yīng),可以有效防治病害的發(fā)生。國(guó)內(nèi)外研究現(xiàn)已報(bào)道的有灰葡萄孢菌[45]、德巴利腐霉(Pythiumdebaryanum)[9]、尖孢鐮刀菌[9,46-48]、變灰尾孢菌(Cercosporacanescens)、假尾孢菌(Pseudocerco-spora)[49]、立枯絲核菌[49-50]、炭疽菌[50]、鐮刀菌(Fusarium)[50-51]、終極腐霉菌[52]。

      古麗君等[44]研究結(jié)果表明深綠木霉(Trichodermaaureoviride)T2菌株的施用有效降低了草坪草根腐病的發(fā)生,同時(shí)還減少了土壤中其他真菌的數(shù)量,從而降低了其他真菌病害侵染草坪草的機(jī)率。目前在生產(chǎn)中應(yīng)用最廣的兩種木霉是哈茨木霉(Trichodermaharzianum)和綠色木霉(Trichodermaviride)。Wharton等[31]用分離得到的哈茨木霉菌株對(duì)馬鈴薯晚疫病進(jìn)行了防治研究,用菌液對(duì)馬鈴薯種子進(jìn)行處理后,馬鈴薯晚疫病在2006和2007年的發(fā)病率分別降低了30.9%和45.8%,馬鈴薯塊莖的腐爛率分別下降了21.5%和38.4%。

      Diaz等[52]從榆樹(shù)(Ulmuspumila)中分離得到的綠色木霉菌株對(duì)荷蘭榆樹(shù)病原菌的6個(gè)分離菌株均具有較好的抑制作用,對(duì)菌絲生長(zhǎng)的抑制率在50%以上,對(duì)黑曲霉菌菌株(Aspergillusniger,GF35)、尖孢鐮刀菌菌株(Fusariumoxysporum,CECT2715)、青霉菌菌株(Penicillium,GF37)、匍枝根霉菌株(Rhizopusstolonifer,GF38)和大麗輪枝孢菌菌株(Verticilliumdahliae,CECT2884)的菌絲生長(zhǎng)均具有極強(qiáng)的抑制作用。Perveen和Bokhari[48]從棗椰樹(shù)(Phoenixdactylifera)土壤中分離獲得的哈茨木霉菌株TvDPs、TDPs和T1s對(duì)尖孢鐮刀菌引起的根腐病的防治效果較好,3個(gè)菌株對(duì)尖孢鐮刀菌的抑制率分別為66.30%,57.40%和56.43%;綠色木霉菌株TvDPs、T1s和TDPs產(chǎn)生的揮發(fā)性代謝產(chǎn)物對(duì)尖孢鐮刀菌菌絲生長(zhǎng)的抑制率分別為40.91%,25.97%和7.57%。

      2.2.2 內(nèi)生真菌 內(nèi)生真菌(Endophytic bacteria)是一種寄生于寄主體內(nèi)但在外部不表現(xiàn)任何病狀的體內(nèi)寄生菌,因其強(qiáng)大的養(yǎng)分競(jìng)爭(zhēng)能力和促進(jìn)寄主植物生根繁殖的特性常被用于防治植物的土傳病害[53-58]。Ma等[56]從三七(Panaxnotoginseng)的根、莖、葉、葉柄和種子中分離得到1000份內(nèi)生真菌的菌株,其中104份菌株對(duì)三七根腐病綜合致病體系——尖孢鐮刀菌、青枯病菌(Ralstonia)和北方根結(jié)線蟲(chóng)(Meloidogynehapla)中的至少一種表現(xiàn)出抵抗活性。10種菌株對(duì)青枯病菌的抑菌圈直徑在5.20~20.06mm之間,13種菌株對(duì)尖孢鐮刀菌的抑菌率在34.95%~62.17%之間,28種菌株對(duì)北方根結(jié)線蟲(chóng)的觸殺率在46.5%~100.0%之間;25種菌株對(duì)青枯病菌和尖孢鐮刀菌的抑菌率在44.75%~52.97%之間,10種菌株對(duì)青枯菌的抑菌圈直徑和對(duì)北方根結(jié)線蟲(chóng)的觸殺率分別在5.74~18.33mm和38.23%~100.00%之間,8種菌株對(duì)尖孢鐮刀菌和北方根結(jié)線蟲(chóng)的抑菌率和觸殺率分別在40.12%~58.45%和44.16%~100.00%之間。

      Riyaz-Ul-Hassan等[58]從細(xì)葉野豌豆(Thelypterisangustifolia)中分離得到的內(nèi)生真菌進(jìn)行的研究表明,內(nèi)生真菌產(chǎn)生的丙酮、2-戊酮、2,4-二甲基-3-己酮、1-丁醇等揮發(fā)油成分對(duì)棕櫚疫霉(Phytophthorapalmivora)、立枯絲核菌、核盤(pán)菌(Sclerotiniasclerotiorum)和樟疫霉菌(Phytophthoracinnamomi)有較好的防治效果。

      2.2.3 叢枝菌根(Arbuscular Mycorrhiza,AM)Singh等[41]研究結(jié)果表明,接種 AM 真菌球囊霉菌(Gloms fasciculatum)和假單胞桿菌的毛喉鞘蕊花植株對(duì)枯萎病和根腐病有較強(qiáng)的抗性,兩種病在田間的發(fā)病率分別降低了68%和63%。Wang等[59]得到的2個(gè)AM真菌菌株Glomusmosseae和Glomusversiforme對(duì)黃瓜鐮刀菌枯萎病防治效果較佳,接種菌株后,病情指數(shù)分別下降了11.7%和26.7%。Martinez-Medina等[60]研究表明,AM 真菌的4個(gè)菌株Glomusintraradices、Glomusmosseae、Glomusclaroideum和Glomusconstrictum對(duì)西瓜(Citrulluslanatus)鐮刀枯萎病有較強(qiáng)的防治效果。

      2.2.4 寄生真菌和其他真菌 黃藍(lán)狀菌(Talaromycesflavus)是一種在土壤中廣泛存在的寄生真菌,它代謝產(chǎn)生的有機(jī)物質(zhì)對(duì)于控制植物病害的發(fā)生具有重要作用,Naraghi等[61]研究證實(shí)了黃藍(lán)狀菌對(duì)于由大麗輪枝孢引起的棉花(Gossypiumspp.)和馬鈴薯枯萎病的防治具有較好的效果。Zhu等[62]從308份輪枝菌(Verticillium)材料中分離得到的兩個(gè)菌株(CVd-WHw,CVn-WHg)對(duì)由大麗輪枝孢引起的棉花黃萎病有較好的防治效果,研究表明相較于棉花幼苗單獨(dú)接種大麗輪枝菌,幼苗接種兩分離菌株18d后再接種病原菌,黃萎病的發(fā)病率分別降低了95.0%和94.1%,病情指數(shù)分別降低了97.2%和96.6%;幼苗接種兩分離菌株25d后再接種病原菌,其發(fā)病率均降低了77.9%,病情指數(shù)分別降低了86.2%和85.0%。

      2.3 生防放線菌

      Castano等[63]分離得到的鏈霉素菌(Streptomyces)菌株A19對(duì)馬鈴薯鐮刀菌枯萎病的防治和產(chǎn)量的提高具有較好的效果。El-Tarabily等[57,64]研究結(jié)果表明,黃瓜根中的放線菌菌株Actinoplanescampanulatus,Mi-cromonosporachalcea和Streptomycesspiralis對(duì)由瓜果腐霉(Pythiumaphanidermatum)引起的黃瓜枯萎病在溫室和田間均具有較好的防治效果。Xue等[65]分離得到的鏈霉素菌的4個(gè)菌株ZY-153、B-49、X-4和Z-13對(duì)棉花大麗輪枝孢菌枯萎病在溫室的防治效果在18.7%~65.8%之間,其中用菌液處理種子后的防效為13.5%~48.0%,菌液接種幼苗后的防效為17.8%~51.4%。Minuto等[66]從水蘚(Sphagnum)泥炭中分離得到的鏈霉(Streptomycesgriseoviridis)菌株 K61對(duì)馬鈴薯由殼孢屬菌(Pyrenochaetalycopersici)引起的軟腐病、尖孢鐮刀菌根腐病和大麗輪枝孢菌枯萎病防治效果較佳。Gopalakrishnan等[67]從25種不同的草本植物堆肥中分離得到的5個(gè)對(duì)尖孢鐮刀菌抑制作用最強(qiáng)的放線菌菌株 CAI-24、CAI-127、CAI-121、KAI-32 和 KAI-90,5個(gè)菌株在溫室條件下使根腐病的發(fā)病率分別下降了76%,72%,67%,56%和45%;在田間使鐮刀菌枯萎病的發(fā)病率下降了4%~19%。

      3 誘導(dǎo)寄主植物產(chǎn)生對(duì)病原菌的系統(tǒng)抗性

      誘導(dǎo)系統(tǒng)抗病性(induced systemic resistance,ISR)是指經(jīng)某種因子適度刺激后提高寄主作物抗病能力的現(xiàn)象,這種現(xiàn)象目前已經(jīng)在細(xì)胞水平和分子水平上得到了廣泛而深入的研究[12]。研究結(jié)果表明,寄主在識(shí)別外界刺激因子后迅速在體內(nèi)進(jìn)行相關(guān)信號(hào)的傳導(dǎo)釋放和相關(guān)基因的轉(zhuǎn)錄翻譯,進(jìn)而合成一些抗病分子比如植物抗毒素、病程相關(guān)蛋白和細(xì)胞壁木質(zhì)素,細(xì)胞壁的加厚和木質(zhì)化減緩了病原菌在寄主植物體內(nèi)的擴(kuò)展速度,同時(shí)合成的這些抗病分子能誘導(dǎo)寄主產(chǎn)生過(guò)敏性反應(yīng)殺死被感染的細(xì)胞,防治病原菌的進(jìn)一步擴(kuò)展[12]。

      大量研究表明,對(duì)寄主植物的根部或莖稈接種非致病菌能誘導(dǎo)植物對(duì)病原菌產(chǎn)生系統(tǒng)抗性,有效減緩了病害的發(fā)生和擴(kuò)展。Fuchs等[68]對(duì)番茄病害的生防研究發(fā)現(xiàn)非致病菌菌株Fo47能誘導(dǎo)番茄對(duì)根腐病產(chǎn)生系統(tǒng)抗性,同時(shí)還增強(qiáng)了幾丁質(zhì)酶、β-1,3-葡聚糖酶和β-1,4-葡聚糖酶的活性,這幾種酶能促進(jìn)病原菌細(xì)胞壁的裂解提高病害防治的效果。Phi等[69]研究發(fā)現(xiàn)從辣椒(Capsicumannuum)根際土壤中分離獲得多粘類(lèi)芽孢桿菌菌株KNUC265能誘導(dǎo)辣椒產(chǎn)生對(duì)歐文氏菌引起的辣椒軟腐病的系統(tǒng)抗性。Weller等[70]研究發(fā)現(xiàn),熒光假單孢桿菌的4個(gè)菌株P(guān)f-5、Q2-87、Q8r1-96和 HT5-1能誘導(dǎo)擬南芥(Arabidopsisthaliana)產(chǎn)生對(duì)番茄丁香假單胞桿菌(Pseudomonassyringae)的系統(tǒng)抗性。熒光假單孢菌能誘導(dǎo)合成抗生素2,4-二乙酰基間苯三酚(2,4-DAPG),2,4-DAPG對(duì)于多種作物的根莖腐病、枯萎病和猝倒病等土傳病害具有較強(qiáng)的防治效果。

      然而Olivain等[71]對(duì)亞麻(Linumusitatissimum)研究表明,非致病菌在誘導(dǎo)寄主作物對(duì)病原菌產(chǎn)生系統(tǒng)抗性的同時(shí)寄主細(xì)胞會(huì)發(fā)生一些生理性反應(yīng),比如pH、過(guò)氧化氫和鈣離子濃度的增加以及細(xì)胞的程序性死亡。同時(shí),嚴(yán)格地說(shuō)ISR與生防微生物的作用機(jī)理并不是完全的相互獨(dú)立,而是相互促進(jìn)、相互依存,所以ISR或許只能作為生防微生物制劑防治病害的一個(gè)輔助手段。

      4 其他生物防治方法

      堆肥茶(compost tea)是一種利用回收污水充分浸泡和通氣的堆肥,目前應(yīng)用較廣的有機(jī)肥料,將這種有機(jī)肥料噴施于植物的葉片表面,可以有效地防治植物葉部病害的發(fā)生。目前,這種方法已經(jīng)在防治蘋(píng)果(Malus pumila)瘡痂病,玫瑰(Rosarugosa)和馬鈴薯的白粉病,草莓和馬鈴薯的灰霉病,黃瓜幼苗猝倒病,番茄細(xì)菌性斑點(diǎn)病,馬鈴薯晚疫病,洋蔥(Alliumcepa)軟腐病,辣椒和黃瓜的炭疽病,西瓜白粉病等方面取得重大突破[72]。Pane等[73]研究表明,堆肥茶對(duì)馬鈴薯的灰霉孢菌、鏈格孢菌和殼孢屬菌(Pyrenochaetalycopersici)有較好的防治效果。

      Kotan等[74]對(duì)寄生植物槲寄生(Viscumcoloratum)葉浸出液防治病原菌的研究結(jié)果表明,槲寄生具有潛在的生物防治病害的價(jià)值,對(duì)48種真菌和193種細(xì)菌都有很好的防治作用。Klein等[47]研究發(fā)現(xiàn)作物殘茬用作有機(jī)肥結(jié)合土壤日曬可以有效防治黃瓜鐮刀根腐病的發(fā)生和為害,研究結(jié)果表明芝麻菜(Diplotaxistenuifolia)、狹葉青蒿(Artemisiadracunculus)、鼠尾草(Salviaofficinalis)和甘藍(lán)(Brassicaoleracea)作物殘茬對(duì)病害的防治效果較佳,病害的田間發(fā)病率下降了20%~80%。目前還有利用土壤熏蒸、作物輪作和耕地休耕的防治對(duì)土傳根腐病害進(jìn)行生物防治,而且取得了巨大進(jìn)展[12]。

      5 存在問(wèn)題及研究展望

      雖然國(guó)內(nèi)外學(xué)者對(duì)于植物土傳病害的生物防治研究已經(jīng)取得了巨大進(jìn)展,然而土傳病害的生物防治仍存在諸多問(wèn)題,具體表現(xiàn)在:1)生防微生物資源雖然豐富但能用于作物生產(chǎn)的制劑或產(chǎn)品的種類(lèi)和數(shù)量有限,無(wú)法滿足實(shí)際生產(chǎn)的需要;2)缺乏理想的、針對(duì)不同靶標(biāo)的優(yōu)良菌株,有限的菌株難以防治種類(lèi)繁多的病原物引致的病害;3)許多生防產(chǎn)品的作用機(jī)理尚不明確,導(dǎo)致室內(nèi)抑菌試驗(yàn)和田間試驗(yàn)的防治效果差異較大;4)氣候、土壤等條件將在很大程度上影響病害的流行和生防制劑的作用效果;5)生防制劑施用時(shí)間及作用部位的選擇評(píng)價(jià)體系不夠完善,導(dǎo)致防治效果不穩(wěn)定;6)誘導(dǎo)寄主植物產(chǎn)生對(duì)病原物的系統(tǒng)抗性受植物種類(lèi)甚至品種、植物生理階段及外界環(huán)境條件的影響較大。

      針對(duì)上述存在的問(wèn)題,在病害生物防治的過(guò)程中應(yīng)主要從以下幾個(gè)方面著手:

      1)為確保生防制劑的作用效果,須明確制劑的類(lèi)型、作用機(jī)理、施用時(shí)間和最佳施用濃度;

      2)由于氣候等因素的限制,生防制劑在寄主體內(nèi)發(fā)揮作用進(jìn)行擴(kuò)展的距離是有限的,因此需要選擇在適宜的時(shí)間將制劑作用于病原物在寄主植物的侵染點(diǎn);

      3)為確保生防制劑防治效果的可靠性,須致力于開(kāi)展田間防效的評(píng)價(jià)和研究。生防微生物與病原物爭(zhēng)奪生態(tài)位和營(yíng)養(yǎng)物質(zhì)是生防的主要方式,因此為了確保生防效果,生防微生物的用量要求盡可能大,尤其是在病原物數(shù)量難以確定的田間條件下;

      4)為了更好地發(fā)揮生防微生物的作用效果,可以考慮將多種作用機(jī)理不同的生防制劑進(jìn)行混合施用,這樣可以防治同一寄主植物上發(fā)生的多種不同病害或是不同寄主植物上發(fā)生的同一種病害;

      5)利用自然源物質(zhì)促進(jìn)寄主植物產(chǎn)生對(duì)病原物的防御反應(yīng),這類(lèi)物質(zhì)包括印楝油等植物提取物,海帶多糖等藻類(lèi)提取物,薄荷醇、香葉醇等香精油及過(guò)敏致病性蛋白等微生物次級(jí)代謝產(chǎn)物。然而這些物質(zhì)的生防效果同樣受到寄主植物種類(lèi)或是品種、寄主植物生理階段、病原物及氣候等因素的限制;

      6)結(jié)合病害預(yù)防、作物輪作、土地休耕、土壤曝曬、土壤熏蒸、增施有機(jī)肥、土壤改良等農(nóng)藝措施的改良進(jìn)行生防。

      Reference:

      [1]Xu M N,Wang G H,Jin X Q.Research progress on biological control of soil-borne disease.Journal of Jilin Agricultural Sciences,2005,30(2):39-42.

      [2]Li S D,Miao Z Q,Gao W D.Challenges,opportunities and obligations in management of soilborne plant diseases in China.Chinese Journal of Biological Control,2011,27(4):433-440.

      [3]Li H L,Huang J L,Yuan H X.Advances in control of plant soil-brone disease by organic amendments.Acta Phytopathologica Sinica,2002,32(4):289-295.

      [4]Zaki K,Misaghi I J,Heydari A,etal.Control of cotton seedling damping-off in the field by burkholderia(pseudomonas)cepacia.Plant Disease,1998,82(3):291-293.

      [5]Heydari A,Misaghi I J.Biocontrol activity of burkholderia cepacia against rhizoctonia solani in herbicide-treated soils.Plant and Soil,1998,202(1):109-116.

      [6]Heydari A,Misaghi I J.The role of rhizosphere bacteria in herbicide-mediated increase in rhizoctonia solani-induced cotton seedling dampingoff.Plant and Soil,2003,257(2):391-396.

      [7]Charudattan R.Biological control of weeds by means of plant pathogens:Significance for integrated weed management in modern agro-ecology.Biocontrol,2001,46(2):229-260.

      [8]Botelho,Hagler.Fluorescent pseudomonads associated with the rhizosphere of crops-an overview.Brazilian Journal of Microbiology,2006,37(4):401-416.

      [9]Abo-Elyousr K A M,Hashem M,Ali E H.Integrated control of cotton root rot disease by mixing fungal bio-control agents and resistance inducers.Crop Protection,2009,28(4):295-301.

      [10]Qiu D W.Current status and development strategy for biological control of plant disease in China.Plant Protection,2010,36(4):15-18.

      [11]Liu M X,Yi Z L,Zhao Y L,etal.Research advances of biological control on turf-grass disease.Acta Prataculturae Sinica,2004,13(6):1-7.

      [12]Alabouvette C,Olivain C,Steinberg C.Biological control of plant diseases:the European situation.European Journal of Plant Pathology,2006,114(3):329-341.

      [13]Pedersen B S,Mills N J.Single vs.multiple introduction in biological control:the roles of parasitoid efficiency,antagonism and niche overlap.Journal of Applied Ecology,2004,41(5):973-984.

      [14]Mazzola M.Assessment and management of soil microbial community structure for disease suppression.Annual Review of Phytopathology,2004,42:35-59.

      [15]O’Rourke T A,Ryan M H,Scanlon T T,etal.Amelioration of root disease of subterranean clover(Trifoliumsubterraneum)by mineral nutrients.Crop &Pasture Science,2012,63(7):672-682.

      [16]Yadessa G B,Bruggen A H C,Ocho F L.Effects of different soil amendements on bacterial wilt caused by ralstonia solanacearum and on the yield of tomato.Journal of Plant Pathology,2010,92(2):439-450.

      [17]Li J G,Dong Y H.Effect of a rock dust amendment on disease severity of tomato bacterial wilt.Antonie van Leeuwenhoek International Journal of General and Molecular Microbiology,2013,103(1):11-22.

      [18]Zhang S S,Raza W,Yang X M,etal.Control of fusarium wilt disease of cucumber plants with the application of a bioorganic fertilizer.Biology and Fertility of Soils,2008,44(8):1073-1080.

      [19]Wiggins E,Kinkel L L.Green manures and crop sequences influence alfalfa root rot and pathogen inhibitory activity among soil-borne streptomycetes.Plant and Soil,2005,268(1-2):271-283.

      [20]Qiu M H,Zhang R F,Xue C,etal.Application of bio-organic fertilizer can controlFusariumwilt of cucumber plants by regulating microbial community of rhizosphere soil.Biology and Fertility of Soils,2012,48(2):807-816.

      [21]Zhang Y,Zhu Y,Yao T,etal.Interaction of four PGRPs isolated from pasture rhizosphere.Acta Prataculturae Sinica,2013,22(1):29-37.

      [22]Wakelin S A,Walter M,Jaspers M,etal.Biological control ofAphanomyceseuteichesroot-rot of pea with spore-forming bacteria.Australasian Plant Pathology,2002,31(4):401-407.

      [23]Idris H A,Labuschagne N,Korsten L.Suppression ofPythiumultimumroot rot of sorghum by rhizobacterial isolates from Ethiopia and South Africa.Biological Control,2008,45(1):72-84.

      [24]Dijksterhuis J,Sanders M,Gorris L G M,etal.Antibiosis plays a role in the context of direct interaction during antagonism ofPaenibacillus polymyxatowardsFusariumoxysporum.Journal of Applied Microbiology,1999,86(1):13-21.

      [25]Beatty P H,Jensen S E.Paenibacilluspolymyxaproduces fusaricidin-type antifungal antibiotics active againstLeptosphaeriamaculans,the causative agent of blackleg disease of canola.Canadian Journal of Microbiology,2002,48:159-169.

      [26]Raza W,Yang W,Shen Q R.Paenibacilluspolymyxa:antibiotics,hydrolytic enzymes and hazard assessment.Journal of Plant Pathology,2008,90(3):419-430.

      [27]El-Tarabily K A.Rhizosphere-competent isolates of streptomycete and non-streptomycete actinomycetes capable of producing cell-wall-degrading enzymes to controlPythiumaphanidermatumdamping-off disease of cucumber.Canadian Journal of Botany-revue Canadienne de Botanique,2006,84(2):211-222.

      [28]Helbig J.Biological control of botrytis cinerea pers.ex.fr.in strawberry byPaenibacilluspolymyxa(isolate18191).Journal of Phytopathology-Phytopathologische Zeitschrift,2001,149(5):265-273.

      [29]Nielsen P,Sorensen J.Multi-target and medium-independent fungal antagonism by hydrolytic enzymes inPaenibacilluspolymyxaandBacilluspumilusstrains from barley rhizosphere.Fems Microbiology Ecology,1997,22(3):183-192.

      [30]Shan H Y,Zhao M M,Chen D X,etal.Biocontrol of rice blast by the phenaminomethylacetic acid producer of bacillus methylotrophicus strain BC79.Crop Protection,2013,44:29-37.

      [31]Wharton P S,Kirk W W,Schafer R L,etal.Evaluation of biological seed treatments in combination with management practices for the control of seed-borne late blight in potato.Biological Control,2012,63(3):326-332.

      [32]Sowndhararajan K,Marimuthu S,Manian S.Biocontrol potential of phylloplane bacterium ochrobactrum anthropi BMO-111against blister blight disease of tea.Journal of Applied Microbiology,2013,114(1):209-218.

      [33]Chen F,Wang M,Zheng Y,etal.Quantitative changes of plant defense enzymes and phytohormone in biocontrol of cucumberFusariumwilt by Bacillus subtilis B579.World Journal of Microbiology & Biotechnology,2010,26(4):675-684.

      [34]Abo-Elyousr K A M,Mohamed H M.Biological control ofFusariumwilt in tomato by plant growth-promoting yeasts and rhizobacteria.Plant Pathology Journal,2009,25(2):199-204.

      [35]Naik P R,Raman G,Narayanan K B,etal.Assessment of genetic and functional diversity of phosphate solubilizing fluorescentPseudomonadsisolated from rhizospheric soil.BMC Microbiology,2008,8:230.

      [36]Ramesh P,Panwar N R,Singh A B,etal.Effect of organic nutrient management practices on the production potential,nutrient uptake,soil quality,input-use efficiency and economics of mustard(Brassicajuncea).Indian Journal of Agricultural Sciences,2009,79(1):40-44.

      [37]Rani A,Souche Y S,Goel R.Comparative assessment of in situ bioremediation potential of cadmium resistant acidophilicPseudomonasputida62BN and alkalophilicPseudomonasmonteilli97AN strains on soybean.International Biodeterioration &Biodegradation,2009,63(1):62-66.

      [38]Yanes M L,De la Fuente L,Altier N,etal.Characterization of native fluorescentPseudomonasisolates associated with alfalfa roots in Uruguayan agroecosystems.Biological Control,2012,63(3):287-295.

      [39]Tran H,Kruijt M,Raaijmakers J M.Diversity and activity of biosurfactant-producingPseudomonasin the rhizosphere of black pepper in Vietnam.Journal of Applied Microbiology,2008,104(3):839-851.

      [40]Malandraki I,Tjamos S E,Pantelides I S,etal.Thermal inactivation of compost suppressiveness implicates possible biological factors in disease management.Biological Control,2008,44(2):180-187.

      [41]Singh R,Soni S K,Kalra A.Synergy betweenGlomusfasciculatumand a beneficialPseudomonasin reducing root diseases and improving yield and forskolin content in coleus forskohlii Briq under organic field conditions.Mycorrhiza,2013,23(1):35-44.

      [42]Liu J B,Gilardi G,Sanna M,etal.Biocontrol ofFusariumcrown and root rot of tomato and growth-promoting effect of bacteria isolated from recycled substrates of soilless crops.Phytopathologia Mediterranea,2010,49(2):163-171.

      [43]Akhtar M S,Siddiqui Z A.Use of plant growth-promoting rhizobacteria for the biocontrol of root-rot disease complex of chickpea.Australasian Plant Pathology,2009,38(1):44-50.

      [44]Gu L J,Xu B L,Lian Q L,etal.Impact and colonisation ability ofTrichodermabiocontrol on lawn soil microflora.Acta Prataculturae Sinica,2013,22(3):321-326.

      [45]Yi T,Xu B L,Lian Q L,etal.UV mutagenesis and screening for fungicide resistant ofTrichodermaaureovirideT2.Acta Prataculturae Sinica,2013,22(2):117-122.

      [46]Dubey S C,Tripathi A,Singh B.Integrated management ofFusariumwilt by combined soil application and seed dressing formulations ofTrichodermaspecies to increase grain yield of chickpea.International Journal of Pest Management,2013,59(1):47-54.

      [47]Klein E,Katan J,Gamliel A.Soil suppressiveness toFusariumdisease following organic amendments and solarization.Plant Disease,2011,95:1116-1123.

      [48]Perveen K,Bokhari N A.Antagonistic activity of trichoderma harzianum and trichoderma viride isolated from soil of date palm field againstFusariumoxysporum.African Journal of Microbiology Research,2012,6(13):3348-3353.

      [49]Gu L J,Xu B L,Lian Q L,etal.Antagonism and mechanism of action ofTrichodermaaureovirideagainstPythiumaphanidermatumcausing turf-grass root rot.Acta Prataculturae Sinica,2011,20(2):46-51.

      [50]Manjunatha S V,Naik M K,Khan M F R,etal.Evaluation of bio-control agents for management of dry root rot of chickpea caused byMacrophominaphaseolina.Crop Protection,2013,45:147-150.

      [51]Yang Y,Chang K F,Hwang S F,etal.Biological control ofPythiumdamping-off in echinacea angustifolia withTrichodermaspecies.Journal of Plant Diseases and Protection,2004,111(2):126-136.

      [52]Diaz G,Corcoles A I,Asencio A D,etal.In vitro antagonism ofTrichodermaand naturally occurring fungi from elms against ophiostoma novo-ulmi.Forest Pathology,2013,43(1):51-58.

      [53]Hallmann J,QuadtHallmann A,Mahaffee W F,etal.Bacterial endophytes in agricultural crops.Canadian Journal of Microbiology,1997,43(10):895-914.

      [54]Pleban S,Ingel F,Chet I.Control ofRhizoctonia-solaniandSclerotium-rolfsiiin the greenhouse using endophytic bacillus spp.European Journal of Plant Pathology,1995,101(6):665-672.

      [55]Krid S,Rhouma A,Mogou I,etal.Pseudomonassavastanoi endophytic bacteria olive tree knots and antagonistic potential of strains of pseudomonas fluorescens and bacillus subtilis.Plant Pathology,2010,92(2):335-341.

      [56]Ma L,Cao Y H,Cheng M H,etal.Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex.Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2013,103(2):299-312.

      [57]El-Tarabily K A,Hardy G E S,Sivasithamparam K.Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control ofPythiumaphanidermatum,apathogen of cucumber under commercial field production conditions in the United Arab Emirates.European Journal of Plant Pathology,2010,128(4):527-539.

      [58]Riyaz-Ul-Hassan S,Strobel G,Geary B,etal.AnEndophyticnodulisporiumsp from Central America producing volatile organic compounds with both biological and fuel potential.Journal of Microbiology and Biotechnology,2013,23(1):29-35.

      [59]Wang C X,Li X L,Song F Q.Protecting cucumber fromFusariumwilt with arbuscular mycorrhizal fungi.Communications in Soil Science and Plant Analysis,2012,43(22):2851-2864.

      [60]Martinez-Medina A,Pascual J A,Lloret E,etal.Interactions between arbuscular mycorrhizal fungi andTrichodermaharzianumand their effects onFusariumwilt in melon plants grown in seedling nurseries.Journal of the Science of Food and Agriculture,2009,89(11):1843-1850.

      [61]Naraghi L,Heydari A,Rezaee S,etal.Biocontrol agent talaromyces flavus simulates the growth of cotton and potato.Journal of Plant Growth Regulation,2012,31:471-477.

      [62]Zhu H Q,F(xiàn)eng Z L,Li Z F,etal.Characterization of two fungal isolates from cotton and evaluation of their potential for biocontrol ofVerticilliumwilt of cotton.Journal of Phytopathology,2013,161(2):70-77.

      [63]Castano R,Borrero C,Trillas M I,etal.Selection of biological control agents against tomatoFusariumwilt and evaluation in greenhouse conditions of two selected agents in three growing media.Biocontrol,2013,58(1):105-116.

      [64]El-Tarabily K A,Nassar A H,Hardy G,etal.Plant growth promotion and biological control ofPythiumaphanidermatum,apathogen of cucumber,by endophytic actinomycetes.Journal of Applied Microbiology,2009,106(1):13-26.

      [65]Xue L,Xue Q H,Chen Q,etal.Isolation and evaluation of rhizosphere actinomycetes with potential application for biocontrol ofVerticilliumwilt of cotton.Crop Protection,2013,43:231-240.

      [66]Minuto A,Spadaro D,Garibaldi A,etal.Control of soilborne pathogens of tomato using a commercial formulation ofStreptomycesgriseoviridisand solarization.Crop Protection,2006,25(5):468-475.

      [67]Gopalakrishnan S,Pande S,Sharma M,etal.Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control ofFusariumwilt of chickpea.Crop Protection,2011,30(8):1070-1078.

      [68]Fuchs J G,MoenneLoccoz Y,Defago G.NonpathogenicFusariumoxysporumstrain Fo47induces resistance toFusariumwilt in tomato.Plant Disease,1997,81(5):492-496.

      [69]Phi Q T,Park Y M,Seul K J,etal.Assessment of root-associatedPaenibacilluspolymyxagroups on growth promotion and induced systemic resistance in pepper.Journal of Microbiology and Biotechnology,2010,20(12):1605-1613.

      [70]Weller D M,Mavrodi D V,van Pelt J A,etal.Induced systemic resistance in arabidopsis thaliana againstPseudomonassyringaepv.tomato by 2,4-diacetylphloroglucinol-producingPseudomonasfluorescens.Phytopathology,2012,102(4):403-412.

      [71]Olivain C,Trouvelot S,Binet M N,etal.Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains ofFusariumoxysporum.Applied and Environmental Microbiology,2003,69(9):5453-5462.

      [72]Naidu Y,Meon S,Siddiqui Y.In vitro and in vivo evaluation of microbial-enriched compost tea on the development of powdery mildew on melon.Biocontrol,2012,57(6):827-836.

      [73]Pane C,Celano G,Villecco D,etal.Control ofBotrytiscinerea,AlternariaalternataandPyrenochaetalycopersicion tomato with whey compost-tea applications.Crop Protection,2012,38:80-86.

      [74]Kotan R,Okutucu A,Gormez A A,etal.Parasitic bacteria and fungi on common mistletoe and their potential application in biocontrol.Journal of Phytopathology,2013,161(3):165-171.

      [1]徐美娜,王光華,靳學(xué)慧.土傳病害生物防治研究進(jìn)展.吉林農(nóng)業(yè)科學(xué),2005,30(2):39-42.

      [2]李世東,繆作清,高衛(wèi)東.我國(guó)農(nóng)林園藝作物土傳病害發(fā)生和防治現(xiàn)狀及對(duì)策分析.中國(guó)生物防治學(xué)報(bào),2011,27(4):433-440.

      [3]李洪連,黃俊麗,袁紅霞.有機(jī)改良劑在防治植物土傳病害中的應(yīng)用.植物病理學(xué)報(bào),2002,32(4):289-295.

      [10]邱德文.我國(guó)植物病害生物防治的現(xiàn)狀及發(fā)展策略.植物保護(hù),2010,36(4):15-18.

      [11]劉明稀,易自力,趙運(yùn)林,等.草坪病害生物防治研究進(jìn)展.草業(yè)學(xué)報(bào),2004,13(6):1-7.

      [21]張英,朱穎,姚拓,等.分離自牧草根際四株促生菌株(PGPR)互作效應(yīng)研究.草業(yè)學(xué)報(bào),2013,22(1):29-37.

      [44]古麗君,徐秉良,梁巧蘭,等.生防木霉對(duì)草坪土壤微生物區(qū)系的影響及定殖能力研究.草業(yè)學(xué)報(bào),2013,22(3):321-326.

      [45]尹婷,徐秉良,梁巧蘭,等.耐藥性木霉T2菌株的篩選、紫外誘變與藥劑馴化.草業(yè)學(xué)報(bào),2013,22(2):117-122.

      [49]古麗君,徐秉良,梁巧蘭,等.生防木霉菌T2菌株對(duì)禾草腐霉病抑菌作用及機(jī)制研究.草業(yè)學(xué)報(bào),2011,20(2):46-51.

      猜你喜歡
      生防土傳根腐病
      番茄萎蔫膨果慢 當(dāng)心根腐病
      茴香根腐病 防治有辦法
      飼用南瓜根腐病的發(fā)生原因及防治措施
      同種負(fù)密度制約效應(yīng)與園林樹(shù)木土傳病害的有效防控
      北京園林(2020年4期)2020-01-18 05:16:50
      生防芽孢桿菌產(chǎn)生的抗菌物質(zhì)的特性與純化方法的研究進(jìn)展
      土壤真菌多樣性對(duì)土傳病害影響的研究進(jìn)展
      巨大芽孢桿菌L2菌株生防機(jī)制的初步研究
      察右后旗馬鈴薯土傳病害防治試驗(yàn)總結(jié)
      番茄根腐病的發(fā)生與防治
      上海蔬菜(2016年5期)2016-02-28 13:18:10
      土傳疾病的生物解決方案
      通州市| 揭东县| 新乡县| 江山市| 汉寿县| 手机| 瑞昌市| 江西省| 蓝山县| 吐鲁番市| 高雄市| 禹州市| 离岛区| 东乡族自治县| 饶阳县| 青冈县| 泗水县| 寻甸| 九龙坡区| 自治县| 治多县| 高平市| 彭水| 娱乐| 琼中| 精河县| 高唐县| 淮南市| 商河县| 罗江县| 桓台县| 友谊县| 濉溪县| 慈溪市| 鹤岗市| 寻乌县| 晋城| 渭南市| 祁门县| 平凉市| 玉龙|