陳福川 王慶飛 李龔健 趙巖
CHEN FuChuan,WANG QingFei**,LI GongJian and ZHAO Yan
中國(guó)地質(zhì)大學(xué)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室,北京 100083
State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Beijing 100083,China
2015-04-01 收稿,2015-06-19 改回.
煌斑巖是一種具斑狀結(jié)構(gòu)的暗色淺成巖漿巖,斑晶多為鎂鐵質(zhì)礦物,且?guī)r石揮發(fā)分含量高,常以小規(guī)模的巖脈,巖墻等形式產(chǎn)于多種構(gòu)造環(huán)境中(Rock et al.,1991)。隨著研究的不斷深入,對(duì)煌斑巖成因的認(rèn)識(shí)經(jīng)歷了從普通的巖漿結(jié)晶分異到殼幔相互作用再到被普遍接受的交代富集地幔部分熔融的過(guò)程。雖然目前對(duì)煌斑巖巖漿形成的地幔的交代機(jī)制的認(rèn)識(shí)還不統(tǒng)一,但煌斑巖已經(jīng)被公認(rèn)為是一把可以打開(kāi)地球深部之門的“鑰匙”(Rock and Groves,1988;Stille et al.,1989)。通過(guò)煌斑巖研究,可以探討區(qū)域地殼減薄,地幔富集,巖漿演化等一系列巖石學(xué)和構(gòu)造地質(zhì)學(xué)問(wèn)題。
西南“三江”地區(qū)沿金沙江-哀牢山斷裂帶兩側(cè)發(fā)育著一條長(zhǎng)度逾1000km 的新生代富堿斑巖帶。哀牢山構(gòu)造帶位于該帶南段,產(chǎn)出大量與富堿斑巖具有成因聯(lián)系的造山型金礦床和巖漿熱液成因的銅鉬多金屬礦床,是我國(guó)著名的多金屬礦集區(qū)(張玉泉等,2000;Deng et al.,2014a,b)。因此,該帶內(nèi)新生代富堿斑巖的成因機(jī)制及其與成礦的關(guān)系的研究一直是國(guó)際地學(xué)界研究的熱點(diǎn)與重點(diǎn)(Hu et al.,1998;Zhang and Sch?rer,1999;Tran et al.,2014;Flower et al.,2013;Zhu et al.,2013;Zhang et al.,2014;Deng et al.,2015b;Deng and Wang,2015)。與富堿斑巖具有緊密時(shí)空聯(lián)系的煌斑巖,也越來(lái)越受到學(xué)者們的關(guān)注。鎮(zhèn)沅地區(qū)煌斑巖是整個(gè)金沙江-紅河富堿斑巖帶南段的重要組成部分,在鎮(zhèn)沅金礦區(qū)內(nèi)與花崗斑巖共同構(gòu)成了沿?cái)嗔逊植嫉膸r漿巖容礦帶,顯示出重要的巖石學(xué)和礦床學(xué)意義。前人對(duì)鎮(zhèn)沅煌斑巖進(jìn)行了一定程度的研究(黃智龍和王聯(lián)魁,1995,1996;黃智龍等,1999;Wang et al.,2001;Huang et al.,2002),并取得了豐碩的成果。但獲得的煌斑巖侵位年齡與區(qū)域富堿斑巖形成峰值有一定差異;對(duì)于鎮(zhèn)沅煌斑巖的演化過(guò)程及源區(qū)的部分熔融程度,也在一定的爭(zhēng)議(黃智龍和王聯(lián)魁,1997;Deng et al.,2014a)。
本文擬通過(guò)對(duì)鎮(zhèn)沅煌斑巖的Ar-Ar 精確定年和地球化學(xué)方面的研究,探討其侵位時(shí)代,源區(qū)特征,巖漿演化過(guò)程及其所蘊(yùn)含的地質(zhì)意義。
哀牢山縫合帶處于三江特提斯構(gòu)造域的北東邊界,介于揚(yáng)子板塊和印支地塊之間,北接金沙江縫合帶,南銜Song Ma縫合帶,呈北西向展布,北窄南寬,延伸約400km(圖1a)。該縫合帶在印支期和喜馬拉雅期兩次造山作用過(guò)程中形成并保存下來(lái)了多個(gè)世代的疊加構(gòu)造變形(楊立強(qiáng)等,2010),最終構(gòu)成了由特提斯蛇綠巖套、變質(zhì)地體和新生代構(gòu)造剪切帶組合而成的哀牢山構(gòu)造帶(劉俊來(lái)等,2011)。哀牢山斷裂的兩側(cè),平行分布兩個(gè)變質(zhì)亞帶:北東以角閃巖-綠片巖相的L-S 型糜棱巖為特征的高級(jí)變質(zhì)帶和南西以低綠片巖相千糜巖為特征的低級(jí)變質(zhì)帶(張進(jìn)江等,2006)。區(qū)內(nèi)由東向西依次發(fā)育了元古宙-古生代變質(zhì)巖系、古生代和三疊紀(jì)的火山沉積地層、石炭紀(jì)混雜巖系、上三疊統(tǒng)的磨拉石建造和一套石炭系地層。
圖1 鎮(zhèn)沅金礦區(qū)地質(zhì)簡(jiǎn)圖(a、b 分別據(jù)Hou et al.,2007、石貴勇等,2012,略有修改)1-上三疊統(tǒng)泥巖、砂巖及砂礫巖;2-下石炭統(tǒng)(二段為硅質(zhì)絹云板巖-含炭質(zhì)砂質(zhì)絹云板巖,一段為含炭質(zhì)薄層泥灰?guī)r泥質(zhì)灰?guī)r);3-上泥盆統(tǒng)(二段為絹云板巖-含炭質(zhì)放射蟲(chóng)硅質(zhì)巖,一段為變質(zhì)石英雜砂巖);4-古生代絹云板巖、砂巖、砂礫巖;5-蝕變玄武巖;6-蝕變超基性巖;7-花崗閃長(zhǎng)斑巖;8-蝕變輝綠巖;9-煌斑巖、花崗斑巖組成的斷裂巖漿巖容礦帶;10-斷層;11-地層整合界線;12-地層不整合界線;13-采樣點(diǎn);14-樣品編號(hào)Fig.1 Geological sketch map of the Zhenyuan ore district (a,b,modified after Hou et al.,2007;Shi et al.,2012,respectively)
圖2 鎮(zhèn)沅煌斑巖野外和正交偏光顯微鏡下特征(a)煌斑巖脈野外露頭;(b)樣品ZY-12-2 中蝕變的輝石斑晶;(c)樣品ZY-14-4 中輝石假象晶、黑云母斑晶及磁鐵礦;(d)樣品ZY-16-1 中巖漿成因的白云石Fig.2 Field photo and micro-photos under cross-polarized light of lamprophyre in the Zhenyuan area(a)outcrop photo of lamprophyre;(b)altered pyroxene of sample ZY-12-2;(c)pseudomorphosed pyroxene,biotite and magnetite of sample ZY-14-4;(d)magmatic dolomite of sample ZY-16-1
鎮(zhèn)沅金礦床位于哀牢山斷裂與九甲-墨江斷裂之間的低級(jí)變質(zhì)單元,包括老王寨、冬瓜林、浪泥塘、搭橋箐、比幅山和庫(kù)獨(dú)木共六個(gè)礦段,是整個(gè)哀牢山地區(qū)最具代表性的喜山期造山型金礦(Deng et al.,2015a)。整個(gè)區(qū)域受哀牢山-紅河斷裂,轉(zhuǎn)馬路斷裂和九甲-墨江斷裂的控制,并且受到多期次北西向脆性剪切作用的疊加影響,導(dǎo)致鎮(zhèn)沅金礦床礦體主體呈北西向延伸,與區(qū)域構(gòu)造走向大體一致,具有明顯的構(gòu)造控礦特征。礦區(qū)內(nèi)出露的地層從老到新主要有:上泥盆統(tǒng)變質(zhì)石英砂巖-含炭質(zhì)放射蟲(chóng)硅質(zhì)巖(D3)、下石炭統(tǒng)含炭質(zhì)薄層泥灰?guī)r-硅質(zhì)絹云板巖(C1)和上三疊統(tǒng)一碗水組紫紅色泥質(zhì)粉砂巖(T3y)。巖漿巖較為發(fā)育,早期超基性-基性巖主要出露于老王寨和浪泥塘礦段,酸性斑巖則大多分布在庫(kù)獨(dú)木、老王寨和冬瓜林礦段(圖1b)?;桶邘r在鎮(zhèn)沅金礦各礦段均廣泛分布,與金礦化處于相同的地質(zhì)環(huán)境中,具有緊密的成因聯(lián)系,而且含金煌斑巖也是主要的礦石類型之一,可見(jiàn)煌斑巖在鎮(zhèn)沅金礦的形成的過(guò)程中具有重要的意義(黃智龍等,1999)。
本區(qū)的煌斑巖皆呈大小不一的巖脈狀產(chǎn)出(圖2a),且相互間沒(méi)有穿插關(guān)系,被認(rèn)為是同一期巖漿活動(dòng)的產(chǎn)物(黃智龍等,1999)。巖脈主體沿北西-南東向的F1 和F2 斷裂及其次級(jí)斷裂分布,與花崗斑巖緊密共生,共同組成了以煌斑巖和花崗斑巖為主的穿切于黑色頁(yè)巖系的斷裂巖漿巖含金礦帶。
鎮(zhèn)沅金礦床煌斑巖已被廣泛蝕變,本文選取老王寨和冬瓜林礦段新鮮(蝕變相對(duì)較弱)的煌斑巖進(jìn)行研究分析。煌斑巖風(fēng)化面為灰黃色,新鮮面則為灰綠-灰黑色,具有典型的斑狀結(jié)構(gòu),塊狀構(gòu)造。巖石由斑晶和基質(zhì)兩部分組成。斑晶為具有一定程度蝕變的單斜輝石(10%)、橄欖石(<5%)和黑云母(15%),呈自形-半自形晶。單斜輝石是主要的斑晶之一,可以明顯見(jiàn)到有一個(gè)灰黑色的核(圖2b),由于后期被一定程度綠泥石化和碳酸鹽化,很難見(jiàn)到其兩組近于垂直的解理,顆粒邊緣則主要為綠泥石、碳酸鹽和磁鐵礦等次生礦物共生形成的反應(yīng)邊。橄欖石在煌斑巖中皆呈斑晶產(chǎn)出,蝕變嚴(yán)重,被綠泥石、蛇紋石、石英和碳酸鹽等次生礦物替代。黑云母斑晶則多為發(fā)育完全的自形的長(zhǎng)條狀,蝕變?nèi)酰S色-紅褐色,多色性明顯,干涉色為二級(jí)紅-三級(jí)藍(lán),近平行消光(圖2c);基質(zhì)主要由蝕變單斜輝石(10%)、正長(zhǎng)石(35%)、斜長(zhǎng)石(10%)、云母(原生云母和次生云母)(10%)、他形石英(2%)和碳酸鹽(1%)等組成。基質(zhì)普遍發(fā)生了一定程度綠泥石化,形成了具有異常水墨藍(lán)干涉色的綠泥石。副礦物主要為磷灰石、磁鐵礦及鋯石等。此外,研究區(qū)煌斑巖還可見(jiàn)少量原生巖漿結(jié)晶的碳酸鹽礦物,以白云石、鐵白云石為主(圖2d),形態(tài)不規(guī)則,呈高級(jí)白干涉色。據(jù)此判斷,鎮(zhèn)沅煌斑巖應(yīng)該為云煌巖。
本次研究的樣品采自鎮(zhèn)沅金礦床各個(gè)礦段蝕變較弱的煌斑巖脈。其中浪泥塘礦段1 件樣品(ZY-12-2);冬瓜林礦段3 件樣品(ZY-12-3、ZY-12-4、ZY-16-1);老王寨礦段2 件樣品(ZY-14-4、ZY-15-3)。
樣品全巖地球化學(xué)分析在廊坊市中國(guó)地質(zhì)調(diào)查實(shí)驗(yàn)中心進(jìn)行。先使用瑪瑙磨將所有樣品粉碎至大約200μm。主量元素分析使用飛利浦1480 型光譜儀依照標(biāo)準(zhǔn)的X 射線熒光(XRF)方法測(cè)定。微量元素則采用電感耦合等離子體質(zhì)譜儀(ICP-MS)分析。檢出范圍分別為質(zhì)量分?jǐn)?shù)小于0.1%的主量元素和小于2 ×10-6的微量元素。40Ar-39Ar 同位素年齡測(cè)定在中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所同位素實(shí)驗(yàn)室完成。測(cè)試的對(duì)象為新鮮煌斑巖中的黑云母單礦物,通過(guò)階段加熱在多接收稀有氣體質(zhì)譜儀Helix MC 上測(cè)定,監(jiān)控標(biāo)樣為ZBH-25 黑云母(132.7 ±1.2Ma)。具體實(shí)驗(yàn)測(cè)試分析流程見(jiàn)相關(guān)文獻(xiàn)(陳文等,2006;張彥等,2006)。
主量元素分析結(jié)果(表1)顯示,鎮(zhèn)沅金礦床煌斑巖SiO2含量整體較低,為43.26% ~47.66%,平均45.77%,其中僅兩個(gè)樣品SiO2含量略低于45%,屬于超基性-基性巖類。對(duì)比哀牢山構(gòu)造帶上的白馬寨鎳礦(管濤等,2003)、大坪金礦(王治華等,2010)和馬廠箐銅鉬金多金屬礦區(qū)(賈麗瓊等,2013)煌斑巖的SiO2含量,平均值為49.01% ~51.69%。由于鎮(zhèn)沅金礦床煌斑巖中含有巖漿成因的白云石(圖2d),導(dǎo)致其燒失量(LOI)相對(duì)較高。MgO 含量為5.15% ~11.41%,平均8.52%,介于白馬寨鎳礦區(qū)煌斑巖(平均7.16%)和大坪金礦(平均9.80%),馬廠箐銅鉬金多金屬礦區(qū)(平均11.71%)煌斑巖之間;TiO2含量在0.66% ~0.84%之間,平均0.72%,屬于低Ti 煌斑巖(TiO2<1.5%)。鎮(zhèn)沅煌斑巖的K2O 含量為5.42% ~6.56%,平均6.05%;Na2O含量為0.98% ~1.66%,平均1.32%。K2O + Na2O 為6.39% ~8.22%,且?guī)r石的K2O 與Na2O 含量之間無(wú)相關(guān)性,表明富鉀是該巖石的特征。在(K2O +Na2O)-SiO2圖解(圖3a)中,鎮(zhèn)沅煌斑巖所有樣品投點(diǎn)都落在了堿性巖石區(qū)的粗安巖、玄武粗安巖和響巖質(zhì)堿玄巖范圍內(nèi);K2O/Na2O 比值為3.68 ~5.55,平均4.70,屬于高鉀系列,在K2O-Na2O 圖解(圖3b)中,都投點(diǎn)在鈣堿性煌斑巖區(qū)域內(nèi),表明鎮(zhèn)沅金礦床煌斑巖屬于堿性、高鉀鈣堿性低鈦煌斑巖。
表1 鎮(zhèn)沅煌斑巖巖石化學(xué)成分表(wt%)Table 1 Chemical composition of lamprophyre in the Zhenyuan area (wt%)
圖3 煌斑巖的(Na2O+K2O)-SiO2 圖(a,底圖據(jù)Middlemost,1994)和K2O-SiO2 圖(b,底圖據(jù)Rock,1987)Fig.3 (Na2O +K2O)-SiO2 diagram (a,base map after Middlemost,1994)and K2O-SiO2 diagram (b,base map after Rock,1987)for classification of Zhenyuan lamprophyres
圖4 鎮(zhèn)沅煌斑巖原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖(a,原始地幔值據(jù)McDonough and Sun,1995)和球粒隕石標(biāo)準(zhǔn)化稀土元素配分圖(b,球粒隕石值據(jù)Boynton,1984)N-MORB 和OIB 數(shù)值據(jù)Sun and McDonough,1989;哀牢山-紅河構(gòu)造帶新生代富堿巖漿巖數(shù)據(jù)引自Tran et al. ,2014;其余數(shù)據(jù)來(lái)源同表1Fig.4 Primitive mantle-normalized spidergrams (a,primitive mantle data after McDonough and Sun,1995)and chondritenormalized REE patterns (b,chondrite data after Boynton,1984)for Zhenyuan lamprophyresN-MORB and OIB data after Sun and McDonough,1989;Cenozoic alkali-rich magmatic rocks data in Ailaoshan-Red River belt from Tran et al.,2014;Rest data source with the same as those in Table 1
鎮(zhèn)沅煌斑巖的微量元素組成特征顯示(表2、圖4a)鎮(zhèn)沅金礦床煌斑巖不相容元素含量明顯高于原始地幔,表現(xiàn)出不同程度的富集;大離子親石元素(LILE)Rb、Ba、K 和Sr 相對(duì)富集,且含量波動(dòng)較小,與前人統(tǒng)計(jì)的鈣堿性煌斑巖基本一致(Rock et al.,1991)。高場(chǎng)強(qiáng)元素(HFSE)Nb、Ta、Ti 和Zr虧損,其中Nb、Ta 和Ti 具有顯著的“TNT”負(fù)異常,和形成于與俯沖帶相關(guān)的高K/Ti-低Ti 鉀質(zhì)巖石非常相似,而明顯不同于板內(nèi)低K/Ti-高Ti 鉀質(zhì)巖石(李獻(xiàn)華等,2002)。這也與前面的主量元素高K 低Ti 特征相吻合。與MORB 和OIB 相比,本區(qū)煌斑巖明顯富集LILE,而與白馬寨、大坪以及馬廠箐煌斑巖,具有相似的配分模式(圖4a),表明其成因過(guò)程一致。本區(qū)煌斑巖的微量元素配分模式與金沙江-哀牢山新生代富堿斑巖帶南段的哀牢山-紅河構(gòu)造帶新生代富堿巖漿巖基本一致,表明他們可能來(lái)自于相同的源區(qū)。
稀土元素組成特征(表2、圖4b)表明,鎮(zhèn)沅金礦床所有煌斑巖樣品∑REE 值變化范圍較小,為110.8×10-6~140.5×10-6,平均124.4 ×10-6。低于哀牢山構(gòu)造帶上的白馬寨(平均164.2 ×10-6)、大坪(平均158.3 ×10-6)和馬廠箐煌斑巖(平均169.5 ×10-6)。本區(qū)煌斑巖配分模式大致相同,與新生代富堿巖漿巖整體比較,輕重稀土分異相對(duì)較弱,這與煌斑巖相對(duì)于其它富堿斑巖演化分異程度較低有關(guān)。鎮(zhèn)沅煌斑巖LREE 為96.71 ×10-6~121.5 ×10-6,平均108.2 ×10-6;HREE 為13.27 ×10-6~19.00 ×10-6,平均16.16 ×10-6;LREE/HREE 為6.32 ~7.44,平均6.75。整體顯示LREE 富集,HREE 相對(duì)虧損,輕重稀土明顯分異的特征。與Rock et al. (1991)統(tǒng)計(jì)的不同類型的煌斑巖相比,本區(qū)煌斑巖∑REE 含量較低;高∑REE 值為地幔相對(duì)低部分熔融的產(chǎn)物,而低∑REE 值為地幔相對(duì)較高部分熔融的結(jié)果(黃智龍,1999),故本區(qū)煌斑巖巖漿可能起源于地幔一定程度的部分熔融。δEu 為0.80 ~0.91,δCe 為0.92 ~0.96,Eu 和Ce 都呈
弱的負(fù)異常,表明巖漿演化過(guò)程中基本沒(méi)有經(jīng)歷過(guò)斜長(zhǎng)石分離結(jié)晶作用。
表2 鎮(zhèn)沅煌斑巖微量元素含量(×10 -6)Table 2 Trace element composition of Zhenyuan lamprophyres (×10 -6)
圖5 鎮(zhèn)沅煌斑巖40Ar-39Ar 坪年齡譜(a-c)和等時(shí)線年齡(a1-c1)Fig.5 The 40Ar-39 Ar age spectrum (a-c)and 36Ar/40 Ar-39 Ar/40 Ar isochronal plots (a1-c1)of the lamprophyres from Zhenyuan area
本次對(duì)三件新鮮的鎮(zhèn)沅煌斑巖樣品中的黑云母單礦物進(jìn)行了40Ar-39Ar 同位素測(cè)年,Ar 同位素的階段加熱數(shù)據(jù)見(jiàn)表3,坪年齡圖及等時(shí)線圖見(jiàn)圖5。
樣品ZY-12-4 坪年齡包括了700 ~1300℃共10 個(gè)加熱階段的數(shù)據(jù)(表3),對(duì)應(yīng)了100%的39Ar 含量。10 個(gè)階段一起構(gòu)成了一個(gè)很好的年齡坪,坪年齡tp=35.74 ±0.26Ma(圖5a)。其39Ar/40Ar-36Ar/40Ar 反等時(shí)線年齡ti=35.69 ±0.40Ma(圖5a1),與坪年齡在誤差范圍內(nèi)保持一致。40Ar/36Ar 的初始比
值為295.3 ±3.6(MSWD=2.4)(圖5a1)。
表3 鎮(zhèn)沅煌斑巖黑云母階段升溫測(cè)年數(shù)據(jù)Table 3 Stepwise heating analytical data for biotites of lamprophyres from Zhenyuan area
樣品ZY-14-4 經(jīng)歷了700 ~1400℃共10 個(gè)階段的加熱,總氣體年齡(Total age)為36.2Ma。在第一個(gè)加熱階段(700℃)表現(xiàn)出一個(gè)相對(duì)較低的年齡值,在800 ~1400℃九個(gè)加熱階段的數(shù)據(jù)相對(duì)穩(wěn)定(表3),析出了總量中99.61%的39Ar,代表一個(gè)坪年齡tp=36.17 ±0.28Ma(圖5b)。對(duì)應(yīng)的39Ar/40Ar-36Ar/40Ar 反等時(shí)線擬合好,等時(shí)年齡ti=36.21 ±0.43Ma(圖5b1),與坪年齡在誤差范圍內(nèi)保持一致。40Ar/36Ar 的初始比值為295.4 ±5.9(MSWD=4.2)(圖5b1)。
孟寶民表示,旅游是不斷滿足人們美好生活需求的幸福產(chǎn)業(yè),是全面建成小康社會(huì)的應(yīng)有之義。2019年,全省文化和旅游系統(tǒng)將按照文化和旅游部安排部署,認(rèn)真落實(shí)省委、省政府的決策要求,緊盯國(guó)際一流文化旅游中心建設(shè)目標(biāo),持續(xù)抓好全域旅游示范省創(chuàng)建工作,不斷推動(dòng)全省旅游高質(zhì)量發(fā)展,為落實(shí)“五新”戰(zhàn)略任務(wù),推動(dòng)“三個(gè)經(jīng)濟(jì)”發(fā)展助力添彩!
樣品ZY-15-3 在700 ~1400℃之間共進(jìn)行了11 個(gè)階段的加熱,坪年齡圖表現(xiàn)不規(guī)則,總氣體年齡為38.0Ma。低溫階段(700 ~980℃)視年齡值較大,且隨加熱溫度升高呈斜梯狀遞減,直到1020 ~1300℃才趨于平穩(wěn),形成一個(gè)很好的年齡坪。但溫度繼續(xù)升高(1400℃),視年齡再度異常,表現(xiàn)出異常高的值(77Ma)(表3)。樣品在低溫階段的異常很可能是因?yàn)樵摌悠分泻谠颇冈馐芰艘欢ǔ潭鹊奈g變。蝕變的巖漿巖,其在較高溫階段給出的坪年齡是可靠的。而該樣品在高溫階段表現(xiàn)出的異常高的視年齡很可能是因?yàn)楸A舻牡厍蛏畈凯h(huán)境中的過(guò)剩Ar(王非等,2014)被釋放出來(lái)。故取1020 ~1300℃共四個(gè)加熱階段做坪年齡,獲得一個(gè)穩(wěn)定的坪年齡tp=36.85 ±0.40Ma(圖5c)。對(duì)應(yīng)的39Ar/40Ar-36Ar/40Ar 反等時(shí)線年齡ti=36.1 ±5.9Ma(圖5c1),與坪年齡在誤差范圍內(nèi)保持一致。40Ar/36Ar 的初始比值為316 ± 160(MSWD=9.9)(圖5c1)。
坪年齡譜和等時(shí)線年齡圖顯示所測(cè)3 件鎮(zhèn)沅煌斑巖的坪年齡和等時(shí)年齡在誤差范圍內(nèi)基本一致,表明本區(qū)煌斑巖成巖時(shí)間相同,形成于同一期巖漿活動(dòng)。樣品ZY-12-4 和ZY-14-4 在實(shí)驗(yàn)過(guò)程中坪年齡和視年齡基本保持穩(wěn)定,說(shuō)明樣品中無(wú)過(guò)剩Ar 或者含有少量過(guò)剩Ar 但不干擾實(shí)驗(yàn)結(jié)果,且40Ar/36Ar 的初始比值和大氣Ar 同位素比值295.5 ±5 基本一致,故所測(cè)年齡值真實(shí)可靠,代表了煌斑巖形成時(shí)的年齡。樣品ZY-15-3 在實(shí)驗(yàn)過(guò)程中坪年齡圖不規(guī)則,總氣體年齡偏大,但在較高溫階段(1020 ~1300℃)形成的穩(wěn)定坪年齡接近樣品的成巖年齡。
通過(guò)對(duì)鎮(zhèn)沅煌斑巖3 件樣品(ZY-12-4、ZY-14-4、ZY-15-3)中黑云母的40Ar-39Ar 精確定年,分別獲得35.69 ±0.40Ma,36.21 ±0.43Ma、36.1 ±5.9Ma 的巖漿結(jié)晶年齡。由于樣品ZY-15-3 中含有過(guò)剩Ar,誤差較大,故采用ZY-12-4 和ZY-14-4 的定年結(jié)果(35.69 ~36.21Ma)作為鎮(zhèn)沅煌斑巖的成巖年齡。Wang et al. (2001)對(duì)老王寨煌斑巖中金云母的40Ar-39Ar 定年獲得的巖漿結(jié)晶年齡為30.8 ~34.3Ma,與本文獲得的年齡有一定的出入,可能為同期巖漿活動(dòng)不同階段的產(chǎn)物。
圖6 金沙江-哀牢山富堿侵入巖帶南段年齡對(duì)比圖數(shù)據(jù)來(lái)源:富堿斑巖數(shù)據(jù)引自梁華英等,2004;祝向平,2010;黃波等,2009;張超等,2014;Liang et al. ,2007;煌斑巖數(shù)據(jù)引自管濤等,2006;賈麗瓊等,2013;Wang et al. ,2001;Chen et al. ,2014Fig.6 Age comparison chart of southern Jinshajiang-Ailaoshan alkali-rich intrusive rock beltData sources:alkali-rich porphyry from Liang et al. ,2004,2007;Zhu,2010;Huang et al. ,2009;Zhang et al. ,2014;lamprophyre from Guan et al. ,2006;Jia et al. ,2013;Wang et al. ,2001;Chen et al. ,2014
本區(qū)的煌斑巖是沿金沙江-哀牢山斷裂分布的新生代富堿斑巖帶的一個(gè)重要組成單元,他們很可能形成于地幔拉張環(huán)境下的同源巖漿活動(dòng)(金志升等,1997)。金沙江-哀牢山縫合帶的富堿斑巖活動(dòng)高峰期為30 ~45Ma(李勇等,2011),而南段的高峰期約為36Ma(Deng et al.,2014a)。對(duì)比哀牢山構(gòu)造帶上的馬廠箐煌斑巖(33.77 ±0.11Ma)(賈麗瓊等,2013)、大坪煌斑巖(29.6 ~36.8Ma)(Chen et al.,2014)、白馬寨煌斑巖(32 ~33Ma)(管濤等,2006),本文所獲得的鎮(zhèn)沅煌斑巖形成年齡更接近金沙江-哀牢山縫合帶南部富堿斑巖活動(dòng)的峰值年齡(圖6)。
鎮(zhèn)沅煌斑巖具有典型的低SiO2含量、高鉀富堿、富集大離子親石元素(LILE)和輕稀土元素(LREE)、重稀土元素(HREE)及高場(chǎng)強(qiáng)元素(HFSE)相對(duì)虧損的特征。鐵鎂質(zhì)巖石的這些特征既可能由巖漿上侵過(guò)程中被地殼物質(zhì)混染引起(Ma et al.,1998),也可能是由巖石圈富集地幔受到俯沖的洋殼物質(zhì)改造所致(Tarney and Jones,1994)。
圖7 鎮(zhèn)沅煌斑巖源區(qū)特征(a)煌斑巖Nb/U-Nb 圖解(底圖據(jù)姜耀輝等,2006);(b)εNd(t)-(87 Sr/86 Sr)i 圖解;(c)(Hf/Sm)N-(Ta/La)N 圖解(底圖據(jù)La Flèche et al. ,1998);(d)Nb/Zr-Th/Zr 圖解(底圖據(jù)Ma et al. ,2014). 煌斑巖Sr-Nd 同位素?cái)?shù)據(jù)引自黃智龍等,1997;并使用t=36Ma 重新計(jì)算. 上地殼Sr-Nd 數(shù)據(jù)引自Taylor and McLennan,1985;下-中地殼Sr-Nd 數(shù)據(jù)引自Rudnick and Fountain,1995Fig.7 Characters of source area for Zhenyuan lamprophyres(a)Nb/U-Nb diagram (after Jiang et al. ,2006);(b)εNd(t)-(87Sr/86Sr)i diagram;(c)(Hf/Sm)N-(Ta/La)N diagram (afer La Flèche et al. ,1998);(d)Nb/Zr-Th/Zr diagram (after Ma et al. ,2014). Sr-Nd isotopic data of lamprophyres from Huang et al.,1997;and recalculated with t=36Ma. Sr-Nd isotopic data of upper crust from Taylor and McLennan,1985;Sr-Nd isotopic data of middle-lower crust from Rudnick and Fountain,1995
由于Nb/U 比值不會(huì)受到部分熔融和分離結(jié)晶作用的影響,因此可以作為指示巖漿源區(qū)的標(biāo)志(Hofmann,1988;Xu et al.,2005)。鎮(zhèn)沅煌斑巖的Nb/U 值為1.15 ~2.18,平均1.77,遠(yuǎn)遠(yuǎn)低于MORB 和OIB(Nb/U =47 ±7,Hofmann et al.,1986),也 低 于 陸 殼 上 地 殼(Nb/U ≈9,Taylor and McLennan,1985)。介于全球平均俯沖沉積物(Nb/U≈5,Plank and Langmuir,1998)和俯沖帶含水流體的Nb/U 比值(Nb/U≈0.22,Ayers,1998)之間,且更靠近俯沖帶含水流體的Nb/U 比值(圖7a),表明研究區(qū)煌斑巖不可能由地殼熔融形成的熔體演化而來(lái)。而俯沖帶含水流體的低Nb/U 比值特征是因?yàn)檠髿埰苌暮黧w帶走了大量的親石元素(LILE),而高場(chǎng)強(qiáng)元素(HFSE)則進(jìn)入了保留在俯沖板片的金紅石和鈦鐵礦等副礦物中(Ryerson and Watson,1987)。鎮(zhèn)沅煌斑巖位于印支地塊的北東緣(Wang et al.,2014),早二疊時(shí)期(~290Ma),金沙江-哀牢山古特提斯洋西向俯沖到印支地塊底部(Deng et al.,2014a;Wang et al.,2014),俯沖的殘留洋殼板片流體交代巖石圈地幔形成了鎮(zhèn)沅煌斑巖的原始源區(qū)。Sr-Nd 同位素?cái)?shù)據(jù)顯示鎮(zhèn)沅煌斑巖接近代表地幔源區(qū)的上地幔(UM)和玄武巖(B)端元(圖7b)。地殼物質(zhì),特別是上地殼(UCC)物質(zhì)幾乎不參與母巖漿的形成。因此,鎮(zhèn)沅煌斑巖是由俯沖作用引起的流體交代巖石圈地幔所形成,形成過(guò)程中可能有少量深部的下-中地殼(LCC/MCC)物質(zhì)混入。此外,本區(qū)煌斑巖不相容元素具有的Ta-Nb-Ti 負(fù)異常分布模式也顯示其起源于俯沖帶幔源巖石的成分特征(Rock et al.,1991)。
圖8 煌斑巖的La/Sm-La、Ce-Cr 和Sr-Cr 圖解(底圖分別據(jù)Allègre and Minster,1978;Stern and Hanson,1992)Fig.8 La/Sm-La,Ce-Cr and Sr-Cr diagrams of lamprophyres (base map after Allègre and Minster,1978;Stern and Hanson,1992,respectively)
煌斑巖為易蝕變的巖漿巖,加之本區(qū)構(gòu)造活動(dòng)頻繁,鎮(zhèn)沅煌斑巖普遍具有一定程度的蝕變,導(dǎo)致K,Na 等主量元素含量不能代表母巖漿的K2O + Na2O 值,故不能采用Chen(1988)提出的利用K2O+Na2O 和Al2O3/SiO2來(lái)計(jì)算巖石部分熔融程度的方法。相比之下,某些賦存在副礦物中的微量元素在蝕變的過(guò)程中變化較小。通過(guò)對(duì)比研究平衡部分熔融和分離結(jié)晶作用中微量元素的分配系數(shù),發(fā)現(xiàn)部分熔融作用形成的巖漿巖La/Sm 比值隨La 含量的增高而增大;而結(jié)晶分離作用形成的巖漿巖,La/Sm 比值隨La 含量的增加基本保持不變(Allègre and Minster,1978)。鎮(zhèn)沅煌斑巖的所有樣品在La/Sm-La 圖解(圖8)上呈明顯的高角度陡坡?tīng)罘植迹砻鞅緟^(qū)煌斑巖起源經(jīng)歷了巖漿的一定程度的部分熔融作用。哀牢山地區(qū)在晚始新世-早漸新世時(shí)期(45 ~32Ma),發(fā)生了巖石圈地幔拆沉,軟流圈上涌,為煌斑巖母巖漿的部分熔融提供了局部拉張環(huán)境(Deng et al.,2014a)。由擠壓環(huán)境向伸展環(huán)境轉(zhuǎn)換,有利于殼幔相互作用和巖漿活動(dòng)(Deng et al.,2011;鄧軍等,2013),初步構(gòu)建了煌斑巖巖漿形成的動(dòng)力學(xué)模型。
巖漿形成時(shí)的地幔部分熔融和其后的結(jié)晶分異程度對(duì)所形成巖石的地球化學(xué)組分有著直接的關(guān)系。Cr 被認(rèn)為是在地幔部分熔融和結(jié)晶分異過(guò)程中為相容元素,而Ce 和Sr分別在地幔熔融和除長(zhǎng)石之外的結(jié)晶分異過(guò)程中為不形容元素;故可以利用Ce-Cr、Sr-Cr 關(guān)系圖來(lái)區(qū)分部分熔融和結(jié)晶分異作用(Stern and Hanson,1992)。在Ce-Cr、Sr-Cr 圖解(圖8)上,樣品投點(diǎn)顯示本區(qū)煌斑巖巖漿由交代富集地幔一定程度(約2%)的部分熔融形成,且后期演化過(guò)程中的分異結(jié)晶作用不明顯。
(1)滇西哀牢山構(gòu)造帶鎮(zhèn)沅金礦床蝕變?cè)苹蛶r脈為堿性、高鉀鈣堿性煌斑巖。其成巖年齡為35.69 ±0.40Ma 和36.21±0.43Ma,與沿金沙江-哀牢山斷裂分布的新生代富堿斑巖帶南段的鉀質(zhì)巖漿活動(dòng)高峰期相吻合。
(2)鎮(zhèn)沅煌斑巖富集大離子親石元素和輕稀土元素,相對(duì)虧損高場(chǎng)強(qiáng)元素和重稀土元素,且Ta、Nb 和Ti 具有“TNT”負(fù)異常,Nb/U 比值介于俯沖帶含水流體和全球平均俯沖沉積物之間,且更靠近俯沖帶含水流體,顯示其主要來(lái)源于俯沖帶脫水流體交代部分熔融形成的巖石圈富集地幔。
(3)煌斑巖母巖漿在巖石圈地幔拆沉,軟流圈上涌導(dǎo)致的伸展環(huán)境中經(jīng)過(guò)一定程度(約2%)的部分熔融,上升侵位成巖。
致謝 本次研究的野外工作得到了中國(guó)黃金集團(tuán)鎮(zhèn)沅金礦公司工作人員的支持;實(shí)驗(yàn)室測(cè)試分析得到廊坊中國(guó)地質(zhì)調(diào)查實(shí)驗(yàn)中心和中國(guó)地質(zhì)科學(xué)院地質(zhì)研究所同位素實(shí)驗(yàn)室工作人員的幫助;論文成文過(guò)程中得到中國(guó)地質(zhì)大學(xué)(北京)禹麗博士、黃鈺涵博士、喬龍博士和北京大學(xué)劉仲蘭博士的幫助;在此一并謹(jǐn)表謝忱。
Allègre CJ and Minster JF. 1978. Quantitative models of trace element behavior in magmatic processes. Earth and Planetary Science Letters,38(1):1 -25
Ayers J. 1998. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contributions to Mineralogy and Petrology,132(4):390 -404
Boynton WV. 1984. Geochemistry of the rare earth elements:Meteorite studies. In: Henderson P (ed. ). Rare Earth Element Geochemistry. New York:Elsevier,63 -114
Chen CH. 1988. Estimation of the degree of partial melting by (Na2O+K2O)and Al2O3SiO2of basic magmas. Chemical Geology,71(4):355 -364
Chen W,Zhang Y,Zhang YQ,Jin GS and Wang QL. 2006. Late Cenozoic episodic uplifting in southeastern part of the Tibetan Plateau:Evidence from Ar-Ar thermochronology. Acta Petrologica Sinica,22(4):867 -872 (in Chinese with English abstract)
Chen YH,Yao SZ and Pan YM. 2014. Geochemistry of lamprophyres at the Daping gold deposit,Yunnan Province,China:Constraints on the timing of gold mineralization and evidence for mantle convection in the eastern Tibetan Plateau. Journal of Asian Earth Sciences,93:129 -145
Deng J,Wang QF,Xiao CH,Yang LQ,Liu H,Gong QJ and Zhang J.2011. Tectonic-magmatic-metallogenic system,Tongling ore cluster region,Anhui Province,China. International Geology Review,53(5-6):449 -476
Deng J,Ge LS and Yang LQ. 2013. Tectonic dynamic system and compound orogeny:Additionally discussing the temporal-spatial evolution of Sanjiang orogeny,Southwest China. Acta Petrologica Sinica,29(4):1099 -1114 (in Chinese with English abstract)
Deng J,Wang QF,Li GJ and Santosh M. 2014a. Cenozoic tectonomagmatic and metallogenic processes in the Sanjiang region,southwestern China. Earth-Science Reviews,138:268 -299
Deng J,Wang QF,Li GJ,Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China. Gondwana Research,26(2):419 -437
Deng J and Wang QF. 2015. Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework. Gondwana Research,doi:10.1016/j.gr.2015.10.003
Deng J,Wang QF,Li GJ and Zhao Y. 2015a. Structural control and genesis of the Oligocene Zhenyuan orogenic gold deposit,SW China.Ore Geology Reviews,65:42 -54
Deng J,Wang QF,Li GJ,Hou ZQ,Jiang CZ and Danyushevshy L.2015b. Geology and genesis of the giant Beiya porphyry-skarn gold deposit,northwestern Yangtze Block,China. Ore Geology Reviews,70:457 -485
Flower MFJ,Hoàng N,Lo CH,Chi CT,Qu?'c Cu’ò’ng N,Liu FT,Deng JF and Mo XX. 2013. Potassic magma genesis and the Ailao Shan-Red River fault. Journal of Geodynamics,69:84 -105
Guan T,Huang ZL,Xie LH,Xu C and Li WB. 2003. Geochemistry of lamprophyres in Baimazhai nickel deposit,Yunnan Province,I.Major and trace elements. Acta Mineralogica Sinica,23(3):278 -288 (in Chinese with English abstract)
Guan T,Huang ZL,Xie LH,Xu C and Li WB. 2004. Geochemistry of lamprophyres in Baimazhai nickel deposit Yunnan Province,II.Characteristics of mantle source region. Acta Mineralogica Sinica,24(1):14 -18 (in Chinese with English abstract)
Guan T,Huang ZL,Xu C,Zhang ZL,Yan ZF and Chen M. 2006.40Ar-39Ar dating and geochemical characteristics of lamprophyres in the Baimazhai nickel deposit,Yunnan Province. Acta Petrologica Sinica,22(4):873 -883 (in Chinese with English abstract)
Hofmann AW,Jochum KP,Seufert M and White WM. 1986. Nb and Pb in oceanic basalts:New constraints on mantle evolution. Earth and Planetary Science Letters,79(1 -2):33 -45
Hofmann AW. 1988. Chemical differentiation of the Earth: The relationship between mantle,continental crust,and oceanic crust.Earth and Planetary Science Letters,90(3):297 -314
Hou ZQ,Zaw K,Pan GT,Mo XX,Xu Q,Hu YZ and Li XZ. 2007.Sanjiang Tethyan metallogenesis in SW China:Tectonic setting,metallogenic epochs and deposit types. Ore Geology Reviews,31(1-4):48 -87
Hu RZ,Burnard PG,Turner G and Bi XW. 1998. Helium and argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan Province,China. Chemical Geology,146(1 -2):55 -63
Huang B,Liang HY,Mo JH and Xie YW. 2009. Zircon LA-ICP-MS UPb age of the Jinping Tongchang porphyry associated with Cu-Mo mineralization and its geological implication. Geotectonica et Metallogenia,33(4):598 -602 (in Chinese with English abstract)
Huang ZL and Wang LK. 1995. Discussion on the genesis of lamprophyres in the Laowangzhai gold district,Yunnan Province.Acta Petrologica et Mineralogica,14(4):313 -324 (in Chinese with English abstract)
Huang ZL and Wang LK. 1996. Geochemistry of lamprophyres in Laowangzhai gold deposit,Yunnan Province. Geochimica,25(3):255 -263 (in Chinese with English abstract)
Huang ZL and Wang LK. 1997. Discussion on some problems in geochemisty of lamprophyres in Laowangzhai gold ore district,Yunnan. Journal of Mineralogy and Petrology,(2):102 -109 (in Chinese with English abstract)
Huang ZL,Jin ZS,Zhu CM,Zhu D,Wang LK and Li XH. 1997. Study on the Sr,Nd isotopic composition of lamprophyres in Laowangzhai gold orefield,Yunnan. Acta Geoscientia Sinica,18(Suppl. ):160-163 (in Chinese with English abstract)
Huang ZL,Liu CQ and Zhu CM. 1999. The Origin of Lamprophyres in the Laowangzhai Gold Field,Yunnan Province and Their Relations with Gold Mineralization. Beijing:Geological Publishing House,1-252 (in Chinese)
Huang ZL,Liu CQ,Yang HL,Xu C,Han RS,Xiao YH,Zhang B and Li WB. 2002. The geochemistry of lamprophyres in the Laowangzhai gold deposits, Yunnan Province, China: Implications for its characteristics of source region. Geochemical Journal,36(2):91 -112
Jia LQ,Mo XX,Dong GC,Xu WY,Wang L,Guo XD,Wang ZH and Wei SG. 2013. Genesis of lamprophyres from Machangqing,western Yunnan:Constraints from geochemistry,geochronology and Sr-Nd-Pb-Hf isotopes. Acta Petrologica Sinica,29(4):1247 -1260 (in Chinese with English abstract)
Jiang YH,Jiang SY,Ling HF and Dai BZ. 2006. Petrogenesis of Cubearing porphyry associated with continent-continent collisional setting:Evidence from the Yulong porphyry Cu ore-belt,East Tibet.Acta Petrologica Sinica,22 (3):697 - 706 (in Chinese with English abstract)
Jin ZS,Huang ZL and Zhu CM. 1997. Consanguinity of alkaline intrusions and lamprophyres of Sanjiang district,Yunnan Province.Bulletin of Mineralogy,Petrology and Geochemistry,16(4):222 -224 (in Chinese)
La Flèche MR,Camiré G and Jenner GA. 1998. Geochemistry of post-Acadian,Carboniferous continental intraplate basalts from the Maritimes Basin,Magdalen Islands,Québec,Canada. Chemical Geology,148(3 -4):115 -136
Li XH,Zhou HW,Wei GJ,Liu Y,Zhong SL,Luo QH and Li JY.2002. Geochemistry and Sr-Nd isotopes of Cenozoic ultrapotassic lamprophyres in western Yunnan:Constraints on the composition of sub-continental lithospheric mantle. Geochimica,31(1):26 -34(in Chinese with English abstract)
Li Y,Mo XX,Yu XH,Huang XK and He WY. 2011. Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan Fault Zone and geological significance. Geoscience,25(2):189 -200 (in Chinese with English abstract)
Liang HY,Xie YW,Zhang YQ and Campbell I. 2004. The potassic alkaline intrusions constrain the copper mineralization:Case study from Machangqing copper deposit. Progress in Natural Science,14(1):116 -120 (in Chinese)
Liang HY,Campbell I,Allen CM,Sun WD,Yu HX,Xie YW and Zhang YQ. 2007. The age of the potassic alkaline igneous rocks along the Ailao Shan-Red River shear zone:Implications for the onset age of left-lateral shearing. The Journal of Geology,115(2):231 -242
Liu JL,Tang Y,Song ZJ,Tran MD,Zhai YF,Wu WB and Chen W.2011. The Ailaoshan belt in western Yunnan:Tectonic framework and tectonic evolution. Journal of Jilin University (Earth Science Edition),41(5):1285 -1303 (in Chinese with English abstract)
Ma CQ,Li ZC,Ehlers C,Yang KG and Wang RJ. 1998. A postcollisional magmatic plumbing system:Mesozoic granitoid plutons from the Dabieshan high-pressure and ultrahigh-pressure metamorphic zone,east-central China. Lithos,45(1 - 4):431-456
Ma L,Jiang SY,Hou ML,Dai BZ,Jiang YH,Yang T,Zhao KD,Pu W,Zhu ZY and Xu B. 2014. Geochemistry of Early Cretaceous calc-alkaline lamprophyres in the Jiaodong Peninsula:Implication for lithospheric evolution of the eastern North China Craton. Gondwana Research,25(2):859 -872
McDonough WF and Sun SS. 1995. The composition of the Earth.Chemical Geology,120(3 -4):223 -253
Middlemost EAK. 1994. Naming materials in the magma/igneous rock system. Earth-Science Reviews,37(3 -4):215 -224
Plank T and Langmuir CH. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle.Chemical Geology,145(3 -4):325 -394
Rock NMS. 1987. The nature and origin of lamprophyres:An overview.Geological Society,London,Special Publications,30 (1):191-226
Rock NMS and Groves DI. 1988. Can lamprophyres resolve the genetic controversy over mesothermal gold deposits?Geology,16(6):538 -541
Rock NMS,Bowes DR and Wright AE. 1991. Lamprophyres. Glasgow:Blackie,1 -285
Rudnick RL and Fountain DM. 1995. Nature and composition of the continental crust:A lower crustal perspective. Rev. Geophys. ,33(3):267 -309
Ryerson FJ and Watson EB. 1987. Rutile saturation in magmas:Implications for Ti-Nb-Ta depletion in island-arc basalts. Earth and Planetary Science Letters,86(2 -4):225 -239
Shi GY,Sun XM,Pan WJ,Hu BM,Qu WJ,Du AD and Li C. 2012.Re-Os dating of auriferous pyrite from the Zhenyuan super-large gold deposit in Ailaoshan gold belt,Yunnan Province,southwestern China. Chin. Sci. Bull. ,57(35):4578 -4586
Stern RA and Hanson GN. 1992. Origin of Archean lamprophyre dykes,Superior Province,Canada:Rare earth element and Nd-Sr isotopic evidence. Contributions to Mineralogy and Petrology,111(4):515-526
Stille P,Oberh?nsli R and Wenger-Schenk K. 1989. Hf-Nd isotopic and trace element constraints on the genesis of alkaline and calc-alkaline lamprophyres. Earth and Planetary Science Letters,96(1 -2):209-219
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Tarney J and Jones CE. 1994. Trace element geochemistry of orogenic igneous rocks and crustal growth models. Journal of the Geological Society,151(5):855 -868
Taylor SR and McLennan SM. 1985. The Continental Crust:Its Composition and Evolution. Oxford:Wiley-Blackwell,1 -312
Tran MD,Liu JL,Nguyen QL,Chen Y,Tang Y,Song ZJ,Zhang ZC and Zhao ZD. 2014. Cenozoic high-K alkaline magmatism and associated Cu-Mo-Au mineralization in the Jinping-Fan Si Pan region,southeastern Ailao Shan-Red River shear zone,southwestern China-northwestern Vietnam. Journal of Asian Earth Sciences,79:858 -872
Wang F,Shi WB and Zhu RX. 2014. Problems of modern40Ar/39Ar geochronology:Reviews. Acta Petrologica Sinica,30(2):326 -340 (in Chinese with English abstract)
Wang JH,Qi L,Yin A and Xie GH. 2001. Emplacement age and PGE geochemistry of lamprophyres in the Laowangzhai gold deposit,Yunnan,SW China. Science in China (Series D),44(1):146-154
Wang QF,Deng J,Li CS,Li GJ,Yu L and Qiao L. 2014. The boundary between the Simao and Yangtze blocks and their locations in Gondwana and Rodinia:Constraints from detrital and inherited zircons. Gondwana Research,26(2):438 -448
Wang ZH,Guo XD,Ge LS,Chen X,Xu T and Fan JJ. 2010.Geochemical characteristics and genesis of lamprophyre in the Daping gold ore district, Yunnan Province. Acta Petrologica et Mineralogica,29(4):355 -366 (in Chinese with English abstract)
Xu YG,Ma JL,F(xiàn)rey FA,F(xiàn)eigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton. Chemical Geology,224(4):247 -271
Yang LQ,Liu JT,Zhang C,Wang QF,Ge LS,Wang ZL,Zhang J and Gong QJ. 2010. Superimposed orogenesis and metallogenesis:An example from the orogenic gold deposits in Ailaoshan gold belt,Southwest China. Acta Petrologica Sinica,26(6):1723 -1739 (in Chinese with English abstract)
Zhang C,Qi XX,Tang GZ,Zhao YH and Ji FB. 2014. Geochemistry and zircon U-Pb dating for the alkaline porphyries and its constraint on the mineralization in Chang’an Cu-Mo-Au ore concentration region,Ailaoshan orogenic belt,western Yunnan. Acta Petrologica Sinica,30(8):2204 -2216 (in Chinese with English abstract)
Zhang J,Deng J,Chen HY,Yang,LQ,Cooke D,Danyushevsky L and Gong QJ. 2014. LA-ICP-MS trace element analysis of pyrite from the Chang`an gold deposit,Sanjiang region,China:Implication for oreforming process. Gondwana Research,26(2):557 -575
Zhang JJ,Zhong DL,Sang HQ and Zhou Y. 2006. Structural and geochronological evidence for multiple episodes of deformation since Paleocene along the Ailaoshan-Red River Shear Zone,southeastern Asia. Chinese Journal of Geology,41(2):291 -310 (in Chinese with English abstract)
Zhang LS and Sch?rer U. 1999. Age and origin of magmatism along the Cenozoic Red River shear belt,China. Contributions to Mineralogy and Petrology,134(1):67 -85
Zhang Y,Chen W,Chen KL and Liu XY. 2006. Study on the Ar-Ar age spectrum of diagenetic I/S and the mechanism of39Ar recoil loss:Examples from the clay minerals of P-T boundary in Changxing,Zhejiang Province. Geological Review,52(4):556 - 561 (in Chinese with English abstract)
Zhang YQ,Xie YW,Li XH,Qiu HN,Zhao ZH,Liang HY and Zhong SL. 2000. Chronology and Nd-Sr isotopes of the Ailaoshan-Jinshajiang alkali-rich intrusion. Science in China (Series D),30(5):493 -498 (in Chinese)
Zhu XP. 2010. Geological characteristics and metallogenesis in Habo porphyry Cu-Mo-Au deposit,Yunnan,China. Ph. D. Dissertation.Beijing:China University of Geosciences (in Chinese with English summary)
Zhu XP,Mo XX,White NC,Zhang B,Sun MX,Wang SX,Zhao SL and Yang Y. 2013. Petrogenesis and metallogenic setting of the Habo porphyry Cu-(Mo-Au)deposit,Yunnan,China. Journal of Asian Earth Sciences,66:188 -203
附中文參考文獻(xiàn)
陳文,張彥,張?jiān)罉?,金貴善,王清利. 2006. 青藏高原東南緣晚新生代幕式抬升作用的Ar-Ar 熱年代學(xué)證據(jù). 巖石學(xué)報(bào),22(4):867 -872
鄧軍,葛良勝,楊立強(qiáng). 2013. 構(gòu)造動(dòng)力體制與復(fù)合造山作用——兼論三江復(fù)合造山帶時(shí)空演化. 巖石學(xué)報(bào),29(4):1099 -1114
管濤,黃智龍,謝力華,許成,李文博. 2003. 云南白馬寨鎳礦區(qū)煌斑巖地球化學(xué)Ⅰ. 主要元素和微量元素. 礦物學(xué)報(bào),23(3):278 -288
管濤,黃智龍,謝力華,許成,李文博. 2004. 云南白馬寨鎳礦區(qū)煌斑巖地球化學(xué)Ⅱ. 地幔源區(qū)特征. 礦物學(xué)報(bào),24(1):14 -18
管濤,黃智龍,許成,張振亮,嚴(yán)再飛,陳覓. 2006. 云南白馬寨鎳礦區(qū)煌斑巖40Ar-39Ar 定年和地球化學(xué)特征. 巖石學(xué)報(bào),22(4):873 -883
黃波,梁華英,莫濟(jì)海,謝應(yīng)雯. 2009. 金平銅廠銅鉬礦床賦礦巖體鋯石LA-ICP-MS U-Pb 年齡及意義. 大地構(gòu)造與成礦學(xué),33(4):598 -602
黃智龍,王聯(lián)魁. 1995. 云南老王寨金礦區(qū)煌斑巖成因討論. 巖石礦物學(xué)雜志,14(4):313 -324
黃智龍,王聯(lián)魁. 1996. 云南老王寨金礦區(qū)煌斑巖的地球化學(xué). 地球化學(xué),25(3):255 -263
黃智龍,王聯(lián)魁. 1997. 云南老王寨金礦煌斑巖地球化學(xué)研究中的某些問(wèn)題. 礦物巖石,(2):102 -109
黃智龍,金志升,朱成明,朱丹. 王聯(lián)魁,李獻(xiàn)華. 1997. 云南老王寨金礦區(qū)煌斑巖的Sr、Nd 同位素研究. 地球?qū)W報(bào),18(增刊):160 -163
黃智龍,劉叢強(qiáng),朱成明. 1999. 云南老王寨金礦區(qū)煌斑巖成因及其與金礦化的關(guān)系. 北京:地質(zhì)出版社,1 -252
賈麗瓊,莫宣學(xué),董國(guó)臣,徐文藝,王梁,郭曉東,王治華,韋少港.2013. 滇西馬廠箐煌斑巖成因:地球化學(xué)、年代學(xué)及Sr-Nd-Pb-Hf 同位素約束. 巖石學(xué)報(bào),29(4):1247 -1260
姜耀輝,蔣少涌,凌洪飛,戴寶章. 2006. 陸-陸碰撞造山環(huán)境下含銅斑巖巖石成因——以藏東玉龍斑巖銅礦帶為例. 巖石學(xué)報(bào),22(3):697 -706
金志升,黃智龍,朱成明. 1997. 云南三江地區(qū)富堿侵入巖與煌斑巖的同源性. 礦物巖石地球化學(xué)通報(bào),16(4):222 -224
李獻(xiàn)華,周漢文,韋剛健,劉穎,鐘孫霖,羅清華,李寄嵎. 2002.滇西新生代超鉀質(zhì)煌斑巖的元素和Sr-Nd 同位素特征及其對(duì)巖石圈地幔組成的制約. 地球化學(xué),31(1):26 -34
李勇,莫宣學(xué),喻學(xué)惠,黃行凱,和文言. 2011. 金沙江-哀牢山斷裂帶幾個(gè)富堿斑巖體的鋯石U-Pb 定年及地質(zhì)意義. 現(xiàn)代地質(zhì),25(2):189 -200
梁華英,謝應(yīng)雯,張玉泉,Campbell I. 2004. 富鉀堿性巖體形成演化對(duì)銅礦成礦制約——以馬廠箐銅礦為例. 自然科學(xué)進(jìn)展,14(1):116 -120
劉俊來(lái),唐淵,宋志杰,Tran MD,翟云峰,吳文彬,陳文. 2011. 滇西哀牢山構(gòu)造帶:結(jié)構(gòu)與演化. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),41(5):1285 -1303
石貴勇,孫曉明,潘偉堅(jiān),胡北銘,屈文俊,杜安道,李超. 2012.云南哀牢山金礦帶鎮(zhèn)沅超大型金礦載金黃鐵礦Re-Os 定年及其地質(zhì)意義. 科學(xué)通報(bào),57(26):2492 -2500
王非,師文貝,朱日祥. 2014.40Ar/39Ar 年代學(xué)中幾個(gè)重要問(wèn)題的討論. 巖石學(xué)報(bào),30(2):326 -340
王治華,郭曉東,葛良勝,陳祥,徐濤,范俊杰. 2010. 云南大坪金礦區(qū)煌斑巖的地球化學(xué)特征及成因探討. 巖石礦物學(xué)雜志,29(4):355 -366
楊立強(qiáng),劉江濤,張闖,王慶飛,葛良勝,王中亮,張靜,龔慶杰.2010. 哀牢山造山型金成礦系統(tǒng):復(fù)合造山構(gòu)造演化與成礦作用初探. 巖石學(xué)報(bào),26(6):1723 -1739
張超,戚學(xué)祥,唐貫宗,趙宇浩,吉風(fēng)寶. 2014. 滇西哀牢山構(gòu)造帶長(zhǎng)安銅鉬金礦集區(qū)堿性斑巖巖石地球化學(xué)、鋯石U-Pb 定年及其對(duì)成礦作用的約束. 巖石學(xué)報(bào),30(8):2204 -2216
張進(jìn)江,鐘大賚,桑海清,周勇. 2006. 哀牢山-紅河構(gòu)造帶古新世以來(lái)多期活動(dòng)的構(gòu)造和年代學(xué)證據(jù). 地質(zhì)科學(xué),41(2):291-310
張彥,陳文,陳克龍,劉新宇. 2006. 成巖混層(I/S)Ar-Ar 年齡譜型及39Ar 核反沖丟失機(jī)理研究——以浙江長(zhǎng)興地區(qū)P-T 界線粘土巖為例. 地質(zhì)論評(píng),52(4):556 -561
張玉泉,謝應(yīng)雯,李獻(xiàn)華,邱華寧,趙振華,梁華英,鐘孫霖. 2000.青藏高原東部鉀玄巖系巖漿巖同位素特征:巖石成因及其構(gòu)造意義. 中國(guó)科學(xué)(D 輯),30(5):493 -498
祝向平. 2010. 云南哈播斑巖型銅(-鉬-金)礦床地質(zhì)特征與成礦作用研究. 博士學(xué)位論文. 北京:中國(guó)地質(zhì)大學(xué)