葉蕾 劉金菊 牛耀齡 郭鵬遠(yuǎn) 孫普 崔慧霞
YE Lei1,LIU JinJu1,NIU YaoLing2,3**,GUO PengYuan1,SUN Pu1 and CUI HuiXia1
1. 蘭州大學(xué)地質(zhì)科學(xué)與礦產(chǎn)資源學(xué)院,蘭州 730000
2. Department of Earth Science,Durham University,Durham DH1 3LE,UK
3. 中國(guó)科學(xué)院海洋研究所海洋地質(zhì)與環(huán)境重點(diǎn)實(shí)驗(yàn)室,青島 266071
1. School of Earth Sciences,Lanzhou University,Lanzhou 730000,China
2. Department of Earth Sciences,Durham University,Durham DH1 3LE,UK
3. Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China
2013-10-23 收稿,2014-09-02 改回.
玄武巖是地幔巖部分熔融的產(chǎn)物,其化學(xué)組成和同位素組成受控于地幔源區(qū)、部分熔融程度、地幔潛在溫度和巖石圈厚度等諸多因素,因此可用于反演深部地幔的演化歷史,是人類認(rèn)識(shí)地球深部的重要窗口(Niu and Batiza,1991;Niu et al.,1996,2001,2011;Langmuir et al.,1992;Depaolo and Daley,2000;徐義剛,2006b)。華北克拉通廣泛分布的中、新生代板內(nèi)玄武巖為研究該地區(qū)深部地幔的性質(zhì)和演化提供了天然樣品。
華北克拉通東西兩側(cè)(以大興安嶺-太行山重力梯度帶為界)玄武巖的時(shí)空分布存在較大的差異。東部的中、新生代玄武巖分布較廣,前人研究較多(Deng et al.,1998,2004;徐義剛,1999;Xu,2001;Zheng et al.,2001,2007;Zhang et al.,2002;Wu et al.,2003,2006;Gao et al.,2004;Xu et al.,2006,2009,2010),而重力梯度帶以西的地區(qū),除了漢諾壩因含有豐富的幔源包體,研究程度較高以外(Fan and Hopper,1991;Basu et al.,1991;Song et al.,1990;Zhi et al.;1990;Choi et al.,2008;Zheng et al.,2009),其他地區(qū)的玄武巖直到最近幾年才被重視(馬金龍和徐義剛,2004;Xu et al.,2005;Tang et al.,2006;Ho et al.,2011;Zhang et al.,2012a,b;朱昱升等,2012)。且西部玄武巖主要分布在重力梯度帶附近,根據(jù)前人的K-Ar 定年結(jié)果,主要屬于新生代玄武巖(王慧芬等,1988;劉若新等,1992;Tang et al.,2006),我們推測(cè)這種時(shí)空特殊性對(duì)其成因應(yīng)該有某種指示意義。
華北克拉通是世界上最古老的陸核之一,但是與全球大多克拉通不同的是,華北克拉通巖石圈發(fā)生了較大程度的減薄(Menzies et al.,1993;Griffin et al.,1998,1999,2003;Fan et al.,2000;Xu,2001;Zheng et al.,2001),從古生代的200km 減薄到了新生代的<90km(Fan and Menzies,1992;Zheng et al.,2009)。華北克拉通巖石圈減薄的認(rèn)識(shí)主要是基于對(duì)中國(guó)東部地區(qū)為主的金伯利巖攜帶的地幔橄欖巖捕虜體和橄欖石捕虜晶的研究提出的(鄭建平,1999;Xu,2001;Menzies et al.,1993;池際尚和路鳳香,1996;Griffin et al.,1998;Fan et al.,2000;Gao et al.,2002),最新的研究表明東西部巖石圈地幔減薄存在時(shí)空不均一性(Xu,2007;徐義剛,2006b),但是對(duì)于西部巖石圈減薄的時(shí)空范圍和造成這種巖石圈減薄的機(jī)制尚不清楚,有待進(jìn)一步討論。
基于以上問題,本文以重力梯度帶附近的繁峙蘇孟莊堿性玄武巖和應(yīng)縣亞堿性玄武巖為研究對(duì)象,采用巖相學(xué)、元素及同位素地球化學(xué)等方法研究巖漿源區(qū)特征及巖漿演化過程。此外,我們還通過研究區(qū)新生代玄武巖與重力梯度帶附近其他地區(qū)新生代玄武巖的對(duì)比,探討重力梯度帶附近玄武巖深部成因與地幔源區(qū)特征的異同性,并對(duì)重力梯度帶附近地區(qū)新生代玄武巖的形成機(jī)制給出一個(gè)較為合理的解釋。
華北克拉通是世界上最古老的陸核之一(3.8 ~2.5Ga;Jahn et al.,1987;Liu et al.,1992),也是中國(guó)東部最為重要的地質(zhì)構(gòu)造單元。南以秦嶺-大別-蘇魯造山帶為界(Li et al.,1993;Bai et al.,2007;Meng and Zhang,2000;Zhao and Zheng,2009;Zheng et al.,2013),北臨中亞造山帶(Windley et al.,2007),西接青藏高原東北部,東連太平洋板塊(Zheng et al.,2013)。華北克拉通的東部地塊和西部地塊在~1.85Ga 時(shí)碰撞拼合,克拉通化,形成了一條南北貫穿克拉通的古元古代造山帶——大興安嶺-太行山重力梯度帶(Zhao et al.,1999,2001)。該帶東、西兩側(cè)在地貌、地殼厚度、巖石圈厚度、地表熱流值均存在明顯的差異:東部地塊的巖石圈較薄(<80km),地溫梯度高,地表熱流值高;西部巖石圈厚度大(100 ~150km),地溫梯度低,地表熱流值低(陳國(guó)英等,1991;Niu,2005;徐義剛,2006a)。在這一造山帶的東緣發(fā)育著太行山斷裂帶。晚中生代以來大規(guī)模的伸展作用形成了華北克拉通內(nèi)部廣泛分布的北北東向裂谷系統(tǒng):華北裂谷系、銀川-河套和山西-陜西裂谷系(Ye et al.,1987;Ren et al.,2002;圖1)。
前人根據(jù)對(duì)金伯利巖攜帶的地幔橄欖巖捕虜體和橄欖石捕虜晶的巖石學(xué)和礦物化學(xué)成分以及Re-Os 同位素的研究指出,華北克拉通曾存在巨厚的太古代巖石圈地幔(>200km;鄧晉福,1988;Menzies et al.,1993;池際尚和路鳳香,1996;Griffin et al.,1998;Fan et al.,2000;Gao et al.,2002),在中生代時(shí)期發(fā)生了重要的巖石圈減薄事件,且重力梯度帶東西兩側(cè)巖石圈的減薄存在時(shí)空上不均一性,導(dǎo)致了重力梯度帶兩側(cè)巖石圈厚度的較大差異(Xu,2007;徐義剛,2006a;Guo et al.,2014),東部巖石圈在中生代經(jīng)歷了減薄(吳福元等,2003),新生代以來逐漸增厚,而西部巖石圈主要在新生代發(fā)生減薄(徐義剛,2006a)。
圖1 繁峙地區(qū)地質(zhì)圖(a)華北克拉通位置圖;(b)華北克拉通的三分(東部地塊、西部地塊和中央帶)以及新生代裂谷系分布圖(據(jù)Zhao et al.,2001 修改);(c)太行山新生代玄武巖、中生代侵入巖和太古代地體分布圖(據(jù)吳雅頌和王興武,1978①吳雅頌,王興武. 1978. 山西的近期玄武巖. 山西省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì),1 -136修改)Fig.1 Geological map in the Fanshi region(a)location of the North China Craton;(b)three subdivisions of the craton and the distribution of Cenozoic rift systems (modified after Zhao et al.,2001);(c)distribution of the Cenozoic basalts,Mesozoic intrusive rocks and Archean terrains in the Taihang mountains
繁峙玄武巖位于華北克拉通大興安嶺-太行山重力梯度帶附近,構(gòu)造上位于恒山山脈東段南麓、山西斷隆-五臺(tái)隆起北東部。繁峙地區(qū)發(fā)育有滹沱河新裂陷,在約30 億年的地質(zhì)歷史中,經(jīng)歷了復(fù)雜的構(gòu)造、沉積、巖漿、變質(zhì)等地質(zhì)作用,尤其是新生代以來,可能是太平洋板塊的俯沖和印度-歐亞陸-陸碰撞的共同結(jié)果,該區(qū)地質(zhì)構(gòu)造運(yùn)動(dòng)活躍,繁峙玄武巖火山作用可能是這一大規(guī)模區(qū)域構(gòu)造活動(dòng)的局部響應(yīng)。繁峙玄武巖之下的古老基底主要由角閃巖相到麻粒巖相的太古代片麻巖和綠巖以及碎屑巖夾層構(gòu)成,之上覆蓋的是靜樂紅土層,以及其他上新統(tǒng)、更新統(tǒng)的沉積物。玄武巖出露面積約550km2,厚約800m,最大傾角<15°,本文樣品采集于繁峙縣城城北的蘇孟莊巖體和大石線S205 上靠近應(yīng)縣的川草坪巖體(即后文中的應(yīng)縣玄武巖),蘇孟莊玄武巖主要屬于堿性系列,底部攜帶有大量的地幔橄欖巖包體,應(yīng)縣玄武巖屬于亞堿性系列,不含包體。全巖K-Ar 年齡為26.3 ~24.3Ma(Tang et al.,2006),屬于新生代漸新世玄武巖(圖1)。
蘇孟莊堿性玄武巖主要分為重要的兩層:頂層樣品主要為灰黑色氣孔狀玄武巖,有些氣孔中充填有方解石或其它碳酸鹽礦物,呈杏仁狀構(gòu)造;底層樣品為黑色致密塊狀玄武巖,其中含有豐富地幔橄欖巖包體,但與漢諾壩玄武巖不同的是,包體主要為尖晶石二輝橄欖巖相,沒有發(fā)現(xiàn)輝石巖和麻粒巖。包體中的橄欖石蝕變較嚴(yán)重,一般為中粒至粗粒結(jié)構(gòu)不等,呈淺黃綠色至深黃綠色,部分礦物顆粒因?yàn)檠趸g變顏色深暗。玄武巖鏡下主要為斑狀結(jié)構(gòu),斑晶以橄欖石為主,橄欖石斑晶粒徑可達(dá)3mm,呈自形-半自形,短柱狀或不規(guī)則顆粒狀,裂理發(fā)育,正高突起,少量發(fā)生伊丁石化,除橄欖石斑晶以外,還存在少量磁鐵礦斑晶和較多的斜長(zhǎng)石微晶。包體以尖晶石相二輝橄欖巖為主,橄欖石占70%,單斜輝石14%,斜方輝石12%,尖晶石3%,磁鐵礦1%,與中國(guó)東部的地幔捕擄體相似。應(yīng)縣亞堿性玄武巖主要呈灰黑色致密塊狀結(jié)構(gòu),鏡下斑晶主要為單斜輝石和橄欖石,單斜輝石呈聚晶出現(xiàn),斜長(zhǎng)石穿插其中,單斜輝石聚晶含量約占15%~20%,自形-半自形,干涉色可達(dá)Ⅱ級(jí)藍(lán),基質(zhì)為斜長(zhǎng)石微晶、磁鐵礦以及火山玻璃等。
表1 繁峙新生代玄武巖主量元素(wt%)Table 1 Major elements data (wt%)of basalts from Fanshi
挑選較新鮮且具代表性的樣品,切成薄塊,用石英砂磨盤磨去鋸痕及風(fēng)化面,用碎樣器粗碎至5mm,剔除樣品中的杏仁體和斑晶,用去離子水在超聲波中清洗兩次,放烘箱中烘干樣品,最后用瑪瑙研磨儀磨至200 目粉末。全巖主微量元素的分析在中國(guó)地質(zhì)大學(xué)(北京)地質(zhì)過程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室完成,主量元素采用堿熔法,用電感耦合等離子發(fā)射光譜儀(ICP-OES)測(cè)試,測(cè)試精度1% ~3%,分析結(jié)果見表1;微量元素采用混合酸溶樣法,樣品測(cè)定選用Agilent 7500a 型四極桿電感耦合等離子體質(zhì)譜儀(ICP-MS)進(jìn)行測(cè)定,分析精度依所測(cè)元素的濃度高低變化于5% ~15%之間,分析結(jié)果見表2。主微量元素詳細(xì)的分析流程見Song et al.(2010)。
圖2 玄武巖SiO2-(Na2O+K2O)圖解DB 為前人重力梯度帶附近的新生代玄武巖數(shù)據(jù)(Fan and Hopper,1991;Tang et al.,2006;馬金龍和徐義剛,2004;Xu et al.,2005;張文慧等,2005;Zhang et al.,2012a,b;朱昱升等,2012);SMZ 為采自蘇孟莊的玄武巖樣品,YX 為采自靠近應(yīng)縣的川草坪巖體的樣品,圖3-圖8 同F(xiàn)ig.2 SiO2 vs. Na2O +K2O diagram showing our studied samples from Sumengzhuang (SMZ)and Chuancaoping near Yingxian (YX)For comparison,the literature data (DB)of the Cenozoic basalts near Taihang mountains are also plotted (data sources:Fan and Hopper,1991;Tang et al.,2006;Ma and Xu,2004;Xu et al.,2005;Zhang et al.,2005,2012a,b;Zhu et al.,2012). SMZ are basalts we collected from Sumengzhuang;and YX are our basalts from Chuancaoping near Yingxian.Fig.3 to Fig.8 are same
表2 繁峙新生代玄武巖微量元素(×10 -6)Table 2 Trace elements data (×10 -6)of basalts from Fanshi
Sr-Nd-Pb-Hf 同位素樣品分離在中國(guó)科學(xué)院地質(zhì)與地球物理研究所同位素超凈實(shí)驗(yàn)室完成,詳細(xì)的分離流程見Chu et al.(2009)。Sr 同位素比值測(cè)試分析在天津地質(zhì)礦床研究所同位素實(shí)驗(yàn)室用Triton 熱電離質(zhì)譜儀(TIMS)上完成(見李潮峰等,2011),Nd 和Pb 同位素在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室用多接收等離子體質(zhì)譜儀(MC-ICP-MS)測(cè)定,Hf 同位素在中國(guó)科學(xué)院地質(zhì)與地球物理研究所用MC-ICP-MS 分析,Sr-Nd-Hf 同位素的分餾分別采用86Sr/88Sr = 0.1194,146Nd/144Nd = 0.7219 和179Hf/177Hf =0.7325 進(jìn)行指數(shù)法校正,標(biāo)樣分析結(jié)果分別為:NBS-987 Sr為87Sr/86Sr = 0.710245 ± 16,JNdi-1 Nd 為143Nd/144Nd =0.512118 ±12,Alfa Hf176Hf/177Hf 為0.282179 ±4,NBS-981 Pb 標(biāo)樣得到206Pb/204Pb=16.915 ±10,207Pb/204Pb=15.465 ±9,208Pb/204Pb=36.617 ±11。樣品分析結(jié)果見表3。
圖3 繁峙新生代玄武巖主量元素氧化物及微量元素Cr、Ni 對(duì)MgO 的協(xié)和圖Fig.3 Various oxides and Cr,Ni plotted against MgO for Cenozoic basalts in Fanshi with literature data plotted for comparison
表3 繁峙新生代玄武巖全巖Sr-Nd-Pb-Hf 同位素組成Table 3 Sr-Nd-Pb-Hf isotopic compositions of basalts from Fanshi
圖4 繁峙玄武巖稀土元素球粒隕石標(biāo)準(zhǔn)化配分圖(a)和不相容元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(b)數(shù)據(jù)來源:原始地幔、球粒隕石、N-MORB、OIB(Sun and McDonough,1989),DB 為前人重力梯度帶附近的新生代玄武巖數(shù)據(jù)(Tang et al.,2006;馬金龍和徐義剛,2004;張文慧等,2005;朱昱升等,2012)Fig.4 Chondrite-normalized REE patterns (a)and primitive mantle normalized incompatible element diagrams (b)for basalts in FanshiNormalization values PM,CHUR,N-MORB and OIB after Sun and McDonough,1989;DB after Tang et al.,2006;Ma and Xu,2004;Zhang et al.,2005;Zhu et al.,2012
在TAS 圖解(圖2)中,蘇孟莊采集的玄武巖基本落在堿性系列中,頂層樣品主要屬于玄武巖,底層樣品主要屬于粗面玄武巖和堿玄巖/碧玄巖;應(yīng)縣采集的樣品均落在亞堿性系列中。因此本文認(rèn)為蘇孟莊玄武巖可能是多階段噴發(fā)的結(jié)果,至少可分為重要的兩層,頂層以堿性玄武巖為主,底層以粗面玄武巖為主,蘇孟莊最底層樣品幾乎落在堿性系列和亞堿性的分界線上,可能暗示著一個(gè)由堿性到亞堿性的過渡轉(zhuǎn)變。
繁峙玄武巖主量元素分析結(jié)果見表1,其SiO2含量介于43.39% ~50.54%,TiO2為1.92% ~2.54%,K2O +Na2O 值為3.78% ~5.92%,Na2O/K2O 比值為1.76 ~4.54,全鐵Fe2O3T為11.02% ~12.85%,Mg#為55.6 ~60.0。從主量元素氧化物及微量元素對(duì)MgO 的協(xié)和圖中可以看出,SiO2與MgO 呈簡(jiǎn)單的負(fù)相關(guān)關(guān)系,TiO2、Fe2O3T和CaO/Al2O3與MgO 呈簡(jiǎn)單的正相關(guān)關(guān)系,Na2O、K2O 隨MgO 的降低變化不明顯,微量元素Cr、Ni 與MgO 大致呈正相關(guān)關(guān)系(圖3)。此外,蘇孟莊堿性玄武巖和應(yīng)縣亞堿性玄武巖在成分上存在差異,應(yīng)縣玄武巖的SiO2含量相較蘇孟莊偏高,TiO2、Na2O、P2O5較蘇孟莊玄武巖低,這可能與巖漿源區(qū)和熔融條件有關(guān)。
繁峙玄武巖的稀土元素(REE)總量總體偏高,蘇孟莊玄武巖為149.7 ×10-6~192.8 ×10-6,應(yīng)縣玄武巖為103.1 ×10-6~123.0 ×10-6,應(yīng)縣玄武巖相對(duì)蘇孟莊明顯偏低。稀土元素球粒隕石標(biāo)準(zhǔn)化配分圖(圖4a)顯示該地區(qū)玄武巖都具有LREEs 富集,HREEs 虧損的特點(diǎn),輕重稀土分餾明顯,呈右傾模式,只是蘇孟莊和應(yīng)縣的分餾程度不同,蘇孟莊玄武巖(La/Yb)N為13.3 ~21.6,(La/Sm)N為2.78 ~3.20,(Gd/Yb)N為2.79 ~4.30,而應(yīng)縣兩樣品的(La/Yb)N<10,(La/Sm)N<2.6,(Gd/Yb)N<2.7,蘇孟莊玄武巖的分餾程度明顯高于應(yīng)縣玄武巖。Sr、Eu 元素?zé)o虧損,Eu 甚至輕微富集,Eu/Eu*(Eu/Eu*= (Sm + Gd)/2Eu)介于1.00 ~1.21之間。
原始地幔(PM)標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖中(圖4b),繁峙玄武巖顯示了與洋島玄武巖(OIB)類似的特征,隨著元素不相容性的升高而富集。采樣點(diǎn)的玄武巖均富集Rb、Ba、Th、U、Sr 等大離子親石元素(LILE),不虧損Nb、Ta、Zr、Hf 等高場(chǎng)強(qiáng)元素(HFSE),且Nb 和Ta 相對(duì)富集。繁峙玄武巖的Ce/Pb、Nb/U 比值較高,La/Nb、Ba/Nb 比值較低(圖5),同樣與OIB 相似。以上微量元素特征暗示繁峙玄武巖與OIB 具有相似的源區(qū)。
所測(cè)6 個(gè)樣品的Sr 同位素比值較低(87Sr/86Sr =0.703848 ~0.704870),Nd、Hf 同位素比值較高,分別為143Nd/144Nd =0.512617 ~0.513057 和176Hf/177Hf =0.282873~0.283001,εNd(t)= ﹣ 0.23 ~8.36,εHf(t)=4.00 ~8.60(表3)。87Sr/86Sr-143Nd/144Nd 圖(圖6a)可以看出蘇孟莊堿性玄武巖和應(yīng)縣亞堿性玄武巖投點(diǎn)均位于洋島玄武巖(OIB)區(qū)域,接近全硅酸鹽地球值(BSE),投點(diǎn)總體呈負(fù)相關(guān)關(guān)系。εNd(t)-εHf(t)圖解(圖6b)中研究區(qū)樣品基本投在OIB 區(qū)域,全球陣列參考線附近,εNd(t)與εHf(t)呈近似正相關(guān)關(guān)系。
6 個(gè)樣品的206Pb/204Pb 比值 在17.2 ~17.9 之間,207Pb/204Pb 和208Pb/204Pb 比值范圍分別為15.3 ~15.4 和37.5 ~37.9,且蘇孟莊堿性玄武巖Pb 同位素比值整體高于應(yīng)縣亞堿性玄武巖。從206Pb/204Pb-208Pb/204Pb 圖可見(圖7a),堿性玄武巖基本落在印度洋MORB 范圍內(nèi),平行于北半球參照線(NHRL),與漢諾壩玄武巖類似,亞堿性玄武巖則靠近五大連池巖體。在206Pb/204Pb-207Pb/204Pb 圖中(圖7b),樣品投點(diǎn)均落在NHRL 附近??傮w來說,繁峙玄武巖在同位素組成上與重力梯度帶附近的新生代玄武巖有著相似的特征(Tang et al.,2006;馬金龍和徐義剛,2004;Xu et al.,2005;張文慧等,2005;Zhang et al.,2012a,b;朱昱升等,2012),都具有類OIB 的同位素組成。
圖5 繁峙玄武巖的La/Nb-Ba/Nb (a)和Nb/U-Ce/Pb(b)圖解數(shù)據(jù)來源:N-MORB、OIB(Sun and McDonough,1989);BCC(Rudnick and Gao,2003)Fig.5 La/Nb vs. Ba/Nb (a)and Nb/U vs. Ce/Pb (b)plots for the Cenozoic basaltsData sources:N-MORB,OIB (Sun and McDonough,1989),BCC (Rudnick and Gao,2003)
圖6 繁峙新生代玄武巖的87Sr/86Sr-143Nd/144Nd 圖解(a)和εNd(t)-εHf(t)圖解(b)圖6a 中數(shù)據(jù)來源:漢諾壩玄武巖(Song et al.,1990;Zhi et al.,1990;Basu et al.,1991;解廣轟和王俊文,1992);白堊紀(jì)方城玄武巖、中生代巖石圈地幔和華北克拉通(NCC)巖石圈地幔(Zhang et al.,2002);NCC 下地殼(Jahn et al.,1999);MORB,OIB,EM1 和EM2(Zindler and Hart,1986);DB(Tang et al.,2006;馬金龍和徐義剛,2004;Xu et al.,2005;張文慧等,2005;Zhang et al.,2012a,b;朱昱升等,2012);圖6b 數(shù)據(jù)來源:中生代金伯利巖和中生代方城玄武巖(Zhang et al.,2002);五大連池高鎂安山巖(Zhang et al.,2003),DB(Zhang et al.,2012b;朱昱升等,2012);全球陣列參考線(εHf =1.36εNd +2.95,Vervoort and Blichert-Toft,1999)Fig.6 87Sr/86Sr vs. 143Nd/144Nd (a)and εNd(t)vs. εHf(t)(b)diagrams for Fanshi Cenozoic basaltsData sources in Fig.6a:Hannuoba basalts (Song et al.,1990;Zhi et al.,1990;Basu et al.,1991;Xie and Wang,1992),Cretaceous Fangcheng basalts,Mesozoic lithospheric mantle and old lithospheric mantle beneath the NCC (Zhang et al.,2002),lower crust of the NCC (Jahn et al.,1999),MORB,OIB,EM1 and EM2 (Zindler and Hart,1986);DB (Tang et al.,2006;Ma and Xu,2004;Xu et al.,2005;Zhang et al.,2005,2012a,b;Zhu et al.,2012);Data source in Fig.6b:Paleozoic kimberlite and Mesozoic basalts from Fangcheng (Zhang et al.,2002),Wulanhada high-Mg andisite (Zhang et al.,2003);DB (Zhang et al.,2012b;Zhu et al.,2012);Reference Terrestrial Array (εHf =1.36εNd +2.95)is after Vervoort and Blichert-Toft (1999)
圖7 繁峙新生代玄武巖的206 Pb/204 Pb-208 Pb/204 Pb (a)和206Pb/204Pb-207Pb/204Pb (b)圖解數(shù)據(jù)來源:印度洋、太平洋和北大西洋MORB(Barry and Kent,1998;Zou et al.,2000),NHRL(Hart,1984),五大連池玄武巖(Zhang et al.,1998;Zou et al.,2003);DB 為前人重力梯度帶附近的新生代玄武巖數(shù)據(jù)(Tang et al.,2006;張文慧等,2005;Zhang et al.,2012b)Fig.7 206 Pb/204 Pb vs. 208Pb/204 Pb (a)and206 Pb/204 Pb vs. 207Pb/204Pb (b)diagrams for the Fanshi Cenozoic basalts Data sources:Indian MORB and Pacific and North Atlantic MORB(Barry and Kent,1998;Zou et al.,2000),NHRL (Hart,1984),Wudalianchi basalts (Zhang et al.,1998a;Zou et al.,2003),DB(Tang et al.,2006;Zhang et al.,2005,2012b)
大陸背景下的地幔派生巖漿在上升噴發(fā)過程中會(huì)通過比大洋地區(qū)更厚的地殼,難免會(huì)受到不同程度地殼混染作用,因此所顯現(xiàn)出來的地球化學(xué)特征要比大洋玄武巖更加復(fù)雜。但是觀察表明地殼混染作用對(duì)繁峙玄武巖組成改變的影響可以忽略不計(jì):(1)在蘇孟莊底層新生代玄武巖中發(fā)現(xiàn)有橄欖巖包體,表明該地區(qū)的玄武巖是巖漿快速上升的結(jié)果,在地殼中停留的時(shí)間較短,因此在上升的過程中經(jīng)歷的地殼混染作用較小;(2)從繁峙新生代玄武巖的地球化學(xué)特征來看,繁峙新生代玄武巖具有與洋島玄武巖以及漢諾壩玄武巖相似的地球化學(xué)特征,La/Nb-Ba/Nb 和Nb/U-Ce/Pb 圖(圖5)顯示繁峙玄武巖的不相容元素比值與OIB、N-MORB相近,離全大陸地殼(BCC)投點(diǎn)較遠(yuǎn),同樣說明地殼混染不明顯;(3)如果玄武巖在上升的過程中受到的地殼混染程度較高,將會(huì)賦予玄武巖較明顯的“地殼特征”。平均全大陸地殼以Nb、Ta、Ti 虧損為特征(Sun and McDonough,1989),較低的Nb、Ta 含量,高的原始地幔標(biāo)準(zhǔn)化Th/Nb 比值、低Nb/La(<1)比值、明顯Nb、Ta、Ti 負(fù)異常的微量元素配分模式,是受到地殼混染的最鮮明的識(shí)別特征,但是從繁峙玄武巖中并沒有觀察到這些特征,繁峙玄武巖Nb、Ta 富集、(Th/Nb)N=0.34 ~0.45、(Nb/La)N=1.57 ~1.96,微量元素蛛網(wǎng)圖中Nb、Ta、Ti 呈正異常,看不到“地殼特征”,因此可以排除地殼混染的重要性。
一般認(rèn)為不含包體的玄武巖因上升速度較慢而在地殼中停留的時(shí)間較長(zhǎng),將能更高程度地同化地殼物質(zhì)。應(yīng)縣亞堿性玄武巖及蘇孟莊上層不含包體的堿性玄武巖的的Nb、Ta 含量相對(duì)較低,可能暗示著地殼混染程度較蘇孟莊底層玄武巖高。但是整個(gè)繁峙玄武巖的地球化學(xué)特征總體上都與地殼混染程度較小的OIB 和漢諾壩玄武巖相似(Song et al.,1990;Zhi et al.,1990;Basu et al.,1991),表明地殼混染作用對(duì)繁峙玄武巖的地球化學(xué)特征的改變可忽略不計(jì)。
繁峙玄武巖的Mg#為55.6 ~60.0,表明巖漿在演化過程中必然經(jīng)歷了一定程度的分離結(jié)晶作用。顯微鏡下觀察到,蘇孟莊玄武巖中含有橄欖石(ol)斑晶,斜長(zhǎng)石(pl)微晶,應(yīng)縣玄武巖中含有橄欖石、單斜輝石(cpx)斑晶。在無水或少水條件下(如俯沖帶巖漿作用條件),橄欖石和單斜輝石同時(shí)在液相線的結(jié)晶表明高壓條件下的結(jié)晶分異作用,與巖石圈地幔條件巖漿房的推測(cè)一致。斜長(zhǎng)石微晶是地表或近地表噴發(fā)時(shí)驟然降溫冷卻的結(jié)果。
微量元素蛛網(wǎng)圖中(圖4b),Eu 和Sr 沒有明顯的負(fù)異常,說明斜長(zhǎng)石的分離結(jié)晶作用不明顯,CaO/Al2O3與MgO呈正相關(guān)關(guān)系,只是斜率較小,是單斜輝石分離結(jié)晶的結(jié)果。蘇孟莊玄武巖的Cr、Ni 隨MgO 的減小呈明顯的下降趨勢(shì),表明蘇孟莊玄武巖在上升過程中經(jīng)歷了橄欖石和單斜輝石的分離結(jié)晶。應(yīng)縣玄武巖的MgO 含量相對(duì)較低,Cr、Ni 隨MgO變化的趨勢(shì)不明顯,說明橄欖石和單斜輝石的分離結(jié)晶作用較蘇孟莊玄武巖弱。這些演化趨勢(shì)均與重力梯度帶附近的玄武巖相似(Fan and Hopper,1991;Basu et al.,1991;Tang et al.,2006;馬金龍和徐義剛,2004;Xu et al.,2005;張文慧等,2005;Zhang et al.,2012a,b;朱昱升等,2012),因此,該地區(qū)的巖漿演化過程中橄欖石和單斜輝石是常見的分離結(jié)晶礦物。
繁峙玄武巖的主微量組成、Ba/Nb、La/Nb 和Ce/Pb 等比值以及Sr-Nd-Pb-Hf 同位素組成均與OIB 及漢諾壩玄武巖相似(Song et al.,1990;Zhi et al.,1990;Basu et al.,1991;解廣轟和王俊文,1992),表明研究區(qū)玄武巖的源區(qū)與OIB 及漢諾壩玄武巖相似,可能均起源于軟流圈地幔。結(jié)合前人的研究發(fā)現(xiàn),漢諾壩、大同、集寧、陽原、鶴壁新生代玄武巖同樣具有該特征(Song et al.,1990;Zhi et al.,1990;Basu et al.,1991;Tang et al.,2006;馬金龍和徐義剛,2004;Xu et al.,2005;張文慧等,2005;Zhang et al.,2012a,b;朱昱升等,2012),推斷重力梯度帶附近的這些新生代玄武巖可能起源于同一軟流圈地幔源區(qū)。
繁峙玄武巖的地幔源區(qū)物質(zhì)比OIB、原始地幔更富集不相容元素(Sun and McDonough,1989),(La/Sm)繁峙玄武巖源區(qū)>(La/Sm)OIB源區(qū)>(La/Sm)PM,并且越不相容的元素越富集(圖4b),OIB 的這種富集特征被認(rèn)為是洋殼物質(zhì)(Hofmann and White,1982)、陸源沉積物(White and Duncan,1996;Weaver,1991)或者大陸巖石圈物質(zhì)(McKenzie and O’Nions,1983,1995)加入到了源區(qū)的結(jié)果。然而循環(huán)洋殼(如(La/Sm)PM<1)太虧損,陸源沉積物地殼特征(富集Pb,虧損Nb、Ta、P 和Ti)太明顯,都不適合作為OIB 的源區(qū)物質(zhì)(Niu and O’Hara,2003;Niu et al.,2011),因此巖石圈底部和地震波低速帶(LVZ)頂部交界處富集組分以及巖石圈中的富集巖脈對(duì)熔體的交代作用是造成OIB 富集特征最有可能的原因(Lambert and Wyllie,1970;Niu and O’Hara,2003,2007①Niu YL and O’Hara MJ. 2007. “Mantle plumes”are NOT from ancient oceanic crust. http://www. mantleplumes. org/NotFromCrust.html;Pilet et al.,2005;Niu et al.,2011)。對(duì)于遠(yuǎn)離板塊邊界的大陸背景下的玄武質(zhì)巖漿作用,可能也存在類似的地幔交代作用。中國(guó)東部之下的地震波層析成像圖顯示:在中國(guó)東部之下410 ~660km 過渡帶內(nèi)存在冷的太平洋俯沖板塊,其中的揮發(fā)分和富集不相容元素的熔體在浮力的作用下會(huì)聚集在LVZ 頂部,還有一些甚至上升結(jié)晶出液相線礦物加入橄欖巖圍巖,形成“堆晶”巖脈。軟流圈地幔在上涌的過程中會(huì)與這些富熔體層和巖脈發(fā)生交代作用,使噴發(fā)的巖漿相比之前更加富集(O’Reilly and Griffin,1988;Niu,2008;Niu et al.,2012)。
Sr-Nd-Hf(圖6)以及Pb 同位素圖解(圖7)可以看出:繁峙玄武巖同位素呈現(xiàn)虧損的特征,但與MORB 相比,其Sr 同位素比值相比較高,Nd、Hf 同位素比值相比較低,主要分布在OIB 范圍內(nèi),同位素都呈較良好的線性關(guān)系,這與中國(guó)東部的其他地區(qū)的新生代堿性玄武巖相似(Zhou and Armstrong,1982;Zhang et al.,2009;Wang et al.,2011b),表明至少有兩個(gè)地幔端元參與了繁峙玄武巖的成巖作用,即虧損地幔和富集地幔組分。虧損地幔指的是軟流圈地??赡苓€包括新生的巖石圈地幔,但是后者在沒有更高溫、新熱源的情況下不參與巖漿作用;富集地幔組分可能是EM1(Zhou and Armstrong,1982;Zhi et al.,1990)或者EM2(Zou et al.,2000)。對(duì)太行山地區(qū)玄武巖中攜帶的地幔橄欖巖包裹體以及中生代輝長(zhǎng)巖的研究表明:太行山地區(qū)之下的巖石圈厚度約80 ~100km(Ma,1989),且之下的巖石圈地幔具有類EM1 型富集地幔特征,可能是經(jīng)富集、交代后的古老巖石圈的殘余(Tatsumoto et al.,1992;Gao et al.,2002;Zhang et al.,2004;湯艷杰等,2004;Tang et al.,2006,2012;Rudnick et al.,2006;Wang et al.,2006;Huang et al.,2012),因此,我們推斷參與繁峙玄武巖成巖作用的富集端元極有可能是繁峙地區(qū)之下的具有EM1 型特征的古老巖石圈地幔。但是華北克拉通之下的古老巖石圈地幔經(jīng)歷了大程度熔體的抽離,很難熔融生成大量鎂鐵質(zhì)巖漿,因此,古老克拉通巖石圈地幔不可能是大陸玄武巖的主要源區(qū)。我們根據(jù)Sr-Nd 同位素二端員混合模擬(圖6a)得出富集組分<10%。
因此,我們推斷繁峙新生代玄武巖主要起源于軟流圈地幔的部分熔融,但存在軟流圈-巖石圈的相互作用:少量EM1型古老巖石圈地幔的加入解釋了繁峙玄武巖同位素總體上虧損,但相比MORB 富集的特征,吸收巖石圈底部的富熔體層和同化巖石圈中早期形成的交代巖脈解釋了不相容元素富集的特征。
玄武巖的硅飽和程度和熔融深度有關(guān)(Green and O’Hara,1971;DePaolo and Daley,2000),實(shí)驗(yàn)巖石學(xué)得出硅不飽和的堿性巖漿產(chǎn)生的壓力要高于硅飽和的拉斑玄武巖漿(Green and O’Hara,1971;Falloon et al.,1988;Kushiro,2001)。一般認(rèn)為華北的堿性玄武巖的源區(qū)壓力為25 ~30kbar(>80km),拉斑玄武巖的源區(qū)壓力為15 ~20kbar(50 ~60km;Nohda et al.,1991)。蘇孟莊玄武巖皆為堿性玄武巖,應(yīng)縣玄武巖為亞堿性玄武巖,且蘇孟莊玄武巖相比應(yīng)縣玄武巖的SiO2的含量較低,LREE 豐度較高,LREE/HREE 値較大,暗示著蘇孟玄武巖的熔融深度較應(yīng)縣玄武巖大。這種熔融深度的差異可能來自于地幔源區(qū)的不均一性,也可能來自于巖石圈的厚度的差異(Niu et al.,2011)。
繁峙新生代玄武巖明顯富集輕稀土元素,輕重稀土分餾明顯,(La/Yb)N為8.42 ~21.60,呈明顯的右傾模式,且蘇孟莊玄武巖相比應(yīng)縣玄武巖分餾程度更加明顯,表明繁峙玄武巖都起源于以石榴子石二輝橄欖巖為主的較深的深度,且蘇孟莊玄武巖的熔融深度較應(yīng)縣玄武巖大。因?yàn)閷?duì)于石榴子石,Yb 是相容元素,而La、Sm 為不相容元素,石榴子石相橄欖巖部分熔融的程度越低,分異程度越明顯;而在尖晶石相橄欖巖部分熔融作用中,La/Yb 變化較小、Sm/Yb 基本不變,因此La/Yb-Sm/Yb 圖常用于區(qū)分來自石榴子石相橄欖巖和尖晶石相橄欖巖的玄武巖(Niu et al.,1996;Xu et al.,2005)。從繁峙玄武巖的La/Yb-Sm/Yb 圖中(圖8a)可以看出,蘇孟莊玄武巖和應(yīng)縣玄武巖都投在石榴子石二輝橄欖巖熔融模擬曲線上,且蘇孟莊玄武巖較應(yīng)縣玄武巖的熔融程度低,蘇孟莊約為1% ~3%,應(yīng)縣玄武巖約為3% ~5%。
高度不相容元素的比值可用于示蹤巖石形成的過程。地幔巖漿作用過程中Zr 相對(duì)于Y 更不相容,不相容元素Zr/Y 比值受部分熔融程度的影響,但基本不受分離結(jié)晶作用的影響,熔融程度越低,Zr/Y 比值越高(Nicholson and Latin,1992)。Zr-Zr/Y 圖中(圖8b),樣品所投的點(diǎn)相關(guān)性良好,具有一定的斜率,這說明研究區(qū)玄武巖主要起源于地幔物質(zhì)的部分熔融,樣品間化學(xué)組分的差異可能來源于不同深度地幔物質(zhì)的不同程度的部分熔融和源區(qū)物質(zhì)的不均一性。蘇孟莊玄武巖樣品的Zr/Y 比值整體比應(yīng)縣的高,說明蘇孟莊玄武巖的熔融程度較應(yīng)縣低,與La/Yb-Sm/Yb 圖得出的模擬計(jì)算結(jié)果一致。
圖8 La/Yb-Sm/Yb 圖(a)和Zr-Zr/Y 圖(b)用于判別巖漿的成巖過程(a)圖中:曲線旁數(shù)字代表熔融比例;源巖礦物組分和礦物熔融比例數(shù)據(jù)引自Johnson et al. (1990),元素分配系數(shù)據(jù)引自McKenzie and O’Nions(1991)Fig.8 La/Yb vs. Sm/Yb (a)and Zr vs. Zr/Y (b)for Fanshi basaltsIn Fig.8a:the number near the curve are melting ratio;Source rock mineral composition and mineral melting rate after Johnson et al.(1990)and element distribution coefficient data after Mckenzie and O′Nions (1991)
華北克拉通巖石圈減薄和廣泛分布的中、新生代玄武巖一直是研究的熱點(diǎn),其動(dòng)力學(xué)機(jī)制更是備受關(guān)注。地幔柱模型、斷裂模型、熱化學(xué)侵蝕、巖石圈拆沉都是可能的機(jī)制,但也都存在著一定的爭(zhēng)議。中國(guó)東部的地震波層析成像表明:在中國(guó)東部之下的410 ~660km 之間的過渡帶內(nèi)存在水平向西延伸的冷的古太平洋俯沖板片(Kárason and Van der Hilst,2000;Pei et al.,2004;Zhao,2004;Zhao et al.,2004),該板塊阻止下地幔的熱地幔上涌,不利于上地幔內(nèi)熱地幔柱的形成,因此,用地幔柱模型解釋中國(guó)東部中、新生代火山活動(dòng)不具有說服力(Niu,2005)。同時(shí),該冷的板塊需要從其上部和下部吸收熱量達(dá)到熱均衡,也沒有過剩熱量支持熱侵蝕作用(Griffin et al.,1998;Menzies and Xu,1998;徐義剛,1999;Xu,2001;Xu et al.,2004,2005)。巖石圈拆沉可以較好地解釋巖石圈的減薄和新生代玄武巖的地球化學(xué)特征(Gao et al.,1998,2004,2008,2009;Xu et al.,2006,2009,2010),但是缺少直觀的物理學(xué)理論解釋上浮的巖石圈地幔是如何下沉到高密度的軟流圈地幔中。拉張斷裂和被動(dòng)上涌減壓熔融模型將未知成因的盆地的存在作為中國(guó)東部拉張的證據(jù)(Davis and Darby,2010;Wang et al.,2011a,2012)也是危險(xiǎn)的(Niu,2005)。因此,華北克拉通的巖石圈減薄和中、新生代火山活動(dòng)的形成機(jī)制尚未定論,還需要進(jìn)一步探討。
太行山重力梯度帶形成于早白堊紀(jì),東西兩側(cè)在地貌、地殼厚度、巖石圈厚度、地表熱流値均存在明顯的差異(Xu,2007)。太行山重力梯度帶的東西兩側(cè)陡峭的梯度差異允許我們對(duì)重力梯度帶附近的新生代玄武巖的成因有新的推測(cè):軟流圈由西向東的流動(dòng)越過重力梯度帶時(shí)由于巖石圈驟然減薄(巖石圈-軟流圈界面從西部的~150km 變淺為東部的~80km)必然會(huì)發(fā)生減壓熔融,形成玄武質(zhì)巖漿(Niu,2005),斷裂的活動(dòng)與再活化為巖漿的侵入提供了通道,可形成重力梯度帶附近廣泛分布的新生代火山作用。如果該模型成立,那我們必須思考,什么動(dòng)力學(xué)機(jī)制驅(qū)動(dòng)軟流圈向東的流動(dòng)呢?有以下幾種觀點(diǎn):
(1)與印度-歐亞板塊碰撞有關(guān);印度板塊向北俯沖于歐亞板塊之下,推擠作用推動(dòng)鄂爾多斯塊體的逆時(shí)針旋轉(zhuǎn),促使太行山地區(qū)巖石圈拉張減薄,造成軟流圈物質(zhì)上涌產(chǎn)生玄武巖漿作用(Ren et al.,2002;Zhang et al.,2003;Tang et al.,2006)。此外,印度板塊以40mm/y 的速度向歐亞板塊之下俯沖,>50Ma 的連續(xù)不斷的物質(zhì)注入必然會(huì)驅(qū)動(dòng)軟流圈地幔側(cè)向流動(dòng)(Liu et al.,2004),但是Zhao et al. (2011)根據(jù)地球物理資料得出太行山地區(qū)巖石圈下部的上涌地幔流與印度-歐亞碰撞無關(guān)。
(2)與太平洋的向西俯沖有關(guān);地震波層析成像圖顯示:在中國(guó)東部之下410 ~660km 過渡帶內(nèi)存在冷的太平洋俯沖板塊,其西端水平延伸至太行山重力梯度帶之下(Kárason and Van der Hilst,2000;Pei et al.,2004;Zhao,2004;Zhao et al.,2004)。西太平洋俯沖帶是全球最大的俯沖帶之一,板塊向下俯沖,俯沖帶上部地幔楔必須有新物質(zhì)補(bǔ)給,產(chǎn)生“楔吸力”,驅(qū)動(dòng)中國(guó)大陸之下的軟流圈東流,造成更遠(yuǎn)的西部軟流圈向中國(guó)東部之下流動(dòng),因?yàn)闁|西巖石圈厚度在重力梯度帶處的差異,西部軟流圈東流必然會(huì)引起減壓熔融,形成中國(guó)東部的玄武質(zhì)火山作用(Niu,2005)。
太行山重力梯度帶恰好位于印度-歐亞板塊碰撞帶和西太平洋俯沖帶這兩種構(gòu)造域的邊界(Xu,2007),因此造成這種軟流圈東流的驅(qū)動(dòng)力到底是受單一機(jī)制的影響還是兩種機(jī)制的共同作用還需要進(jìn)一步的研究。
通過對(duì)繁峙玄武巖的元素和同位素地球化學(xué)特征的研究,我們得出以下幾點(diǎn)結(jié)論:
(1)繁峙蘇孟莊堿性玄武巖和應(yīng)縣亞堿性玄武巖均具有類OIB 的地球化學(xué)特征,與重力梯度帶附近的漢諾壩、大同、陽原、集寧、鶴壁等地區(qū)新生代玄武巖相似,表明它們可能起源于同一軟流圈地幔源區(qū)的部分熔融,且存在一定程度的軟流圈-巖石圈相互作用。
(2)巖漿在上升的過程中,地殼混染作用可忽略不計(jì),巖漿演化過程中橄欖石和單斜輝石是常見的分離結(jié)晶礦物。
(3)模擬計(jì)算得出蘇孟莊堿性玄武巖的熔融程度較小,熔融深度較大;而應(yīng)縣亞堿性玄武巖的熔融程度較大,熔融深度較小。該熔融深度的差異可能受熔融環(huán)境和深大斷裂的影響。
(4)重力梯度帶附近的新生代的火山活動(dòng)推測(cè)與軟流圈的向東流動(dòng)有關(guān),其驅(qū)動(dòng)力可能是太平洋俯沖板塊的楔吸力,也可能是印度板塊向歐亞板塊的俯沖的物質(zhì)補(bǔ)給,或者兩者兼而有之,該地區(qū)廣泛分布的斷裂帶可能為巖漿上涌提供了通道。
致謝 野外工作得到了高軍平老師、付飄兒、孫文禮的協(xié)助;樣品分離測(cè)試工作得到了文中所提實(shí)驗(yàn)室老師及相關(guān)人員的極大支持與幫助;審稿人認(rèn)真閱讀了本文,并提出寶貴的修改意見;在此一并表示衷心的感謝!
Bai ZM,Zhang ZJ and Wang YH. 2007. Crustal structure across the Dabie-Sulu orogenic belt revealed by seismic velocity profiles.Journal of Geophysics and Engineering,4(4):436 -442
Barry TL and Kent RW. 1998. Cenozoic magmatism in Mongolia and the origin of Central and East Asian basalts. In:Flower MFJ,Chung SL,Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Geodynamics Series,Vol. 27. Washington DC:American Geophysical Union,347 -364
Basu AR,Wang JW,Huang WK,Xie GH and Tatsumoto M. 1991.Major element,REE,and Pb,Nd,and Sr isotopic geochemistry of Cenozoic volcanic rocks of eastern China:Implications for their origin from suboceanic-type mantle reservoirs. Earth and Planetary Science Letters,105(1 -3):149 -169
Chen GY,Song ZH,An CQ et al. 1991. Three-dimensional crust and upper mantle structure of the North China region. Acta Geophysica Sinica,34(2):172 -181 (in Chinese with English abstract)
Chi JS and Lu FX. 1996. Kimberlites on the North China Craton and Features of Paleozoic Lithospheric Mantle. Beijing:Science Press(in Chinese)
Choi SH,Mukasa SB,Zhou XH,Xian XH and Andronikov AV. 2008.Mantle dynamics beneath East Asia constrained by Sr,Nd,Pb and Hf isotopic systematics of ultramafic xenoliths and their host basalts from Hannuoba,North China. Chemical Geology,248(1 -2):40-61
Chu ZY,Wu FY,Walker RJ,Rudnick RL,Pitcher L,Puchtel IS,Yang YH and Wilde SA. 2009. Temporal evolution of the lithospheric mantle beneath the eastern North China Craton. Journal of Petrology,50(10):1857 -1898
Davis GA and Darby BJ. 2010. Early cretaceous overprinting of the Mesozoic Daqing Shan fold-and-thrust belt by the Hohhot metamorphic core complex,Inner Mongolia,China. Geoscience Frontiers,1(1):1 -20
Deng JF. 1988. Magma function and deep course of continental rift. In:Study on Cenozoic Basalts and Upper Mantle in North China.Beijing:Geological Publishing House,201 -218 (in Chinese)
Deng JF,Zhao HL,Luo ZH,Guo ZF and Mo XX. 1998. Mantle plumes and lithosphere motion in East Asia. In:Flower MFJ,Chung SL,Lo CH,Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington DC:American Geophysical Union,59 -65
Deng JF,Mo XX,Zhao HL,Wu ZX,Luo ZH and Su SG. 2004. A new model for the dynamic evolution of Chinese lithosphere:Continental roots-plume tectonics. Earth-Science Reviews,65(3 - 4):223-275
DePaolo DJ and Daley EE. 2000. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chemical Geology,169(1 -2):157 -185
Falloon TJ,Green DH,Hatton CJ and Harris KL. 1988. Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30kb and application to basalt petrogenesis. Journal of Petrology,29(6):1257 -1282
Fan QC and Hooper PR. 1991. The Cenozoic basaltic rocks of eastern China:Petrology and chemical composition. Journal of Petrology,32(4):765 -810
Fan WM and Menzies MA. 1992. Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China.Geotectonica et Metallogenia,16:171 -181
Fan WM,Zhang HF,Baker J,Jarvis KE,Mason PRD and Menzies MA.2000. On and off the North China Craton:Where is the Archaean keel?Journal of Petrology,41(7):933 -950
Gao S,Zhang BR,Jin ZM,Kern H,Luo TC and Zhao ZD. 1998. How mafic is the lower continental crust?Earth and Planetary Science Letters,161(1 -4):101 -117
Gao S,Rudnick RL,Carlson RW,McDonough WF and Liu YS. 2002.Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China Craton. Earth and Planetary Science Letters,198(3-4):307 -322
Gao S,Rudnick RL,Yuan HL,Liu XM,Liu YS,Xu WL,Ling WL,Ayers J,Wang XC and Wang QH. 2004. Recycling lower continental crust in the North China Craton. Nature,432(7019):892 -897
Gao S,Rudnick RL,Xu WL,Yuan HL,Liu YS,Walker RJ,Puchtel IS,Liu XM,Huang H,Wang XR and Yang J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters,270(1-2):41 -53
Gao S,Zhang JF,Xu WL and Liu YS. 2009. Delamination and destruction of the North China Craton. Chinese Science Bulletin,54(19):3367 -3378
Green DH and O’Hara MJ. 1971. Composition of basaltic magmas as indicators of conditions origin:Application to oceanic volcanism.Philosophical Transactions of the Royal Society of London (Series A,Mathematical and Physical Sciences),268(1192):707 -725
Griffin WL,Zhang AD,O’Reilly SY and Ryan CG. 1998. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In:Flower MFJ,Chung SL,Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interaction in East Asia. Washington DC:American Geophysical Union Monograph,27:107 -126
Griffin WL,O’Reilly SY and Ryan CG. 1999. The composition and origin of sub-continental lithospheric mantle. In:Fei Y,Bertka CM and Mysen BO (eds.). Mantle Petrology:Field Observations and High-Pressure Experimentation:A Tribute to France R. (Joe)Boyd. The Geochemical Society Special Publications,6:13 -46
Griffin WL,O’Reilly SY,Abe N,Aulbach S,Davies RM,Pearson NJ,Doyle BJ and Kivi K. 2003. The origin and evolution of Archean lithospheric mantle. Precambrian Research,127(1 -3):19 -41
Guo PY,Niu YL,Ye L,Liu JJ,Sun P,Cui HX,Zhang Y,Gao JP,Su L,Zhao JX and Feng YX. 2014. Lithosphere thinning beneath west North China Craton:Evidence from geochemical and Sr-Nd-Hf isotope compositions of Jining basalts. Lithos,202 -203:27 -54
Hart SR. 1984. A large-scale isotope anomaly in the southern hemisphere mantle. Nature,309(5971):753 -757
Ho KS,Liu Y,Chen JC,You CF and Yang HJ. 2011. Geochemical characteristics of Cenozoic Jining basalts of the western North China Craton:Evidence for the role of the lower crust,lithosphere,and asthenosphere in petrogenesis. Terrestrial,Atmospheric and Ocean Sciences,22(1):15 -40
Hofmann AW and White WM. 1982. Mantle plumes from ancient oceanic crust. Earth and Planetary Science Letters,57(2):421 -436
Huang XL,Zhong JW and Xu YG. 2012. Two tales of the continental lithospheric mantle prior to the destruction of the North China Craton:Insights from Early Cretaceous mafic intrusions in western Shandong,East China. Geochimica et Cosmochimica Acta,96:193-214
Jahn BM,Auvray B,Cornichet J,Bai YL,Shenk QH and Liu DY.1987. 3.5Ga old amphibolites from eastern Hebei Province China:Field occurrence,petrography,Sm-Nd isochron age,and REE geochemistry. Precambrian Research,34(3 -4):311 -346
Jahn BM,Wu FY,Lo CH and Tsai CH. 1999. Crust-mantle interaction induced by deep subduction of the continental crust:Geochemical and Sr-Nd isotopic evidence from post-collisional mafic-ultramafic intrusions of the northern Dabie Complex,Central China. Chemical Geology,157(1 -2):119 -146
Johnson KTM,Dick HJB and Shimizu N. 1990. Melting in the oceanic upper mantle:An ion microprobe study of diopsides in abyssal peridotites. Journal of Geophysical Research,95(B3):2661 -2678 Kárason H and Van der Hilst RD. 2000. Constraints on mantle convection from seismic tomography. American Geophysical Union,121:277 -288
Kushiro I. 2001. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annual Review of Earth and Planetary Sciences,29:71 -107
Lambert IB and Wyllie PJ. 1970. Low-velocity zone of the Earth’s mantle:Incipient melting caused by water. Science,169(3947):764 -766
Langmuir CH,Klein EM and Plank T. 1992. Petrological systematics of mid-ocean ridge basalts:Constraints on melt generation beneath ocean ridges. Geophysical Monograph-American Geophysical Union,71:183 -280
Li CF,Li XH,Guo JH,Li XH,Li HK,Zhou HY and Li GZ. 2011.Single-step separation of Rb-Sr and Pb from minor rock samples and high precision determination using thermal ionization mass spectrometry. Geochimica,40(5):399 - 406 (in Chinese with English abstract)
Li SG,Xiao TL,Liou DL,Chen YZ,Ge NJ,Zhang ZQ,Sun SS,Cong BL,Zhang RY,Hart SR and Wang SS. 1993. Collision of the North China and Yangtze Blocks and formation of coesite-bearing eclogites:Timing and processes. Chemical Geology,109(1 -4):89 -111
Liu DY,Nutman AP,Compston W,Wu JS and Shen QH. 1992.Remnants of 3800Ma crust in the Chinese part of the Sina-Korean craton. Geology,20(4):339 -342
Liu M,Cui XJ and Liu FT. 2004. Cenozoic rifting and volcanism in eastern China:A mantle dynamic link to the Indo-Asian collision?Tectonophysics,393(1 -4):29 -42
Liu RX,Chen WJ,Sun JZ and Li DM. 1992. K-Ar chronology and tectonic settings of Cenozoic volcanic rocks in China. In:Liu RX(ed.). Geochronology and Geochemistry of Cenozoic Volcanic Rocks in China. Beijing:Seismological Press,1 -43 (in Chinese)
Ma JL and Xu YG. 2004. Petrology and geochemistry of the Cenozoic basalts from Yangyuan of Hebei Province and Datong of Shanxi Province:Implications for the deep process in the western North China Craton. Geochimica,33(1):75 - 88 (in Chinese with English abstract)
McKenzie D and O’Nions RK. 1983. Mantle reservoirs and ocean island basalts. Nature,301(5897):229 -231
McKenzie D and O’Nions RK. 1991. Partial melt distributions from inversion of rare earth element concentrations. Journal of Petrology,32(5):1021 -1091
McKenzie D and O’Nions RK. 1995. The source regions of ocean island basalts. Journal of Petrology,36(1):133 -159
Meng QR and Zhang GW. 2000. Geologic framework and tectonic evolution of the Qinling orogen,central China. Tectonophysics,323(3 -4):183 -196
Menzies MA,F(xiàn)an WM and Zhang M. 1993. Palaeozoic and Cenozoic lithoprobes and the loss of >120km of Archaean lithosphere,Sino-Korean Craton, China. Geological Society, London, Special Publications,76:71 -78
Menzies MA and Xu YG. 1998. Geodynamics of the North China Craton.In:Flower MFJ,Chung SL,Lo CH and Lee TY (eds.). Mantle Dynamics and Plate Interactions in East Asia. Washington DC:American Geophysical Union,155 -165
Nicholson H and Latin D. 1992. Olivine tholeiites from Krafla Iceland:Evidence for variations in melt fraction within a plume. Journal of Petrology,33(5):1105 -1124
Niu YL and Batiza R. 1991. An empirical method for calculating melt compositions produced beneath mid-ocean ridges:Application for axis and off-axis (seamounts)melting. Journal of Geophysical Research,96(B13):21753 -21777
Niu YL,Waggoner DG,Sinton JM and Mahoney JJ. 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centers:The East Pacific Rise,18° ~19°S. Journal of Geophysical Research,101(B12):27711 -27733
Niu YL, Bideau D, Hékinian R and Batiza R. 2001. Mantle compositional control on the extent of mantle melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation:A case study at the Mid-Atlantic Ridge 33° ~35°N.Earth and Planetary Science Letters,186(3 -4):383 -399
Niu YL and O’Hara MJ. 2003. Origin of ocean island basalts:A new perspective from petrology, geochemistry and mineral physics considerations. Journal of Geophysical Research,108(B4):2209(pages ECV 5 1 -19)
Niu YL. 2005. Generation and evolution of basaltic magmas:Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in eastern China. Geological Journal of China Universities,11(1):9 -46
Niu YL. 2008. The origin of alkaline lavas. Science,320(5878):883-884
Niu YL,Wilson M,Humphreys ER and O’Hara MJ. 2011. The origin of intra-plate Ocean Island Basalts (OIB):The lid effect and its geodynamic implications. Journal of Petrology,52(7 - 8):1443-1468
Niu YL,Wilson M,Humphreys ER and O’Hara MJ. 2012. A trace element perspective on the source of ocean island basalt (OIB)and fate of subducted ocean crust (soc)and mantle lithosphere (SML).Episodes,35(2):310 -327
Nohda S,Chen H and Tatsumi Y. 1991. Geochemical stratification in the upper mantle beneath NE China. Geophysical Research Letters,18(1):97 -100
O’Reilly YS and Griffin WL. 1988. Mantle metasomatism beneath western Victoria,Australia:Ⅰ. Metasomatic processes in Crdiopside lherzolites. Geochimica et Cosmochimica Acta,52(2):433 -447
Pei S,Chen YJ and Zhao DP. 2004. Tomographic structures of East Asia:Data and result. San Francisco:American Geophysical Union Fall Meeting
Pilet S,Hernandez J,Sylvester P and Poujol M. 2005. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth and Planetary Science Letters,236(1 -2):148 -166
Ren JY,Tamaki K,Li ST and Zhang JX. 2002. Late Mesozoic and Cenozoic rifting and its dynamic setting in Eastern China and adjacent areas. Tectonophysics,344(3 -4):175 -205
Rudnick RL and Gao S. 2003. Composition of the continental crust. In:Rudnick RL (ed.). The Crust. In:Holland HD and Turekian KK(eds.). Treatise on Geochemistry,3:1 -64
Rudnick RL,Gao S,Yuan HL,Puchtell I and Walker R. 2006.Persistence of Paleoproterozoic lithospheric mantle in the Central Zone of the North China Craton. Guangzhou,China:Abstract for the International Conference on Continental Volcanism-Iavcel
Song SG,Su L,Li XH,Zhang GB,Niu YL and Zhang LF. 2010.Tracing the 850Ma continental flood basalts from a piece of subducted continental crust in the North Qaidam UHPM belt,NW China. Precambrian Research,183(4):805 -816
Song Y,F(xiàn)rey FA and Zhi XC. 1990. Isotopic characteristics of Hannuoba basalts,eastern China:Implications for their petrogenesis and the composition of subcontinental mantle. Chemical Geology,88(1 -2):35 -52
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes.In:Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society,London,Special Publications,42(1):313 -345
Tang YJ,Zhang HF and Ying JF. 2004. High-Mg olivine xenocrysts entrained in Cenozoic basalts in central Taihang Mountains:Relicts of old lithospheric mantle. Acta Petrologica Sinica,20(5):1243 -1252 (in Chinese with English abstract)
Tang YJ,Zhang HF and Ying JF. 2006. Asthenosphere-lithospheric mantle interaction in an extensional regime:Implication from the geochemistry of Cenozoic basalts from Taihang Mountains,North China Craton. Chemical Geology,233(3 -4):309 -327
Tang YJ,Zhang HF,Ying JF,Su BX,Chu ZY,Xiao Y and Zhao XM.2012. Highly heterogeneous lithospheric mantle beneath the Central Zone of the North China Craton evolved from Archean mantle through diverse melt refertilization. Gondwana Research,23(1):130 -140 Tatsumoto M,Basu AR,Huang WK,Wang JW and Xie GH. 1992. Sr,Nd,Pb isotopes of ultramafic xenoliths in volcanic rocks of East china:Enriched components EM Ⅰand EM Ⅱin subcontinental lithosphere. Earth and Planetary Science Letters,113(1 -2):107-128
Vervoort JD and Blichert-Toft J. 1999. Evolution of the depleted mantle:Hf isotope evidence from juvenile rocks through time. Geochimica et Cosmochimica Acta,63(3 -4):533 -556
Wang HF,Yang XC,Zhu BG,F(xiàn)an SK and Dai TM. 1988. K-Ar geochronology and evolution of Cenozoic volcanic rocks in eastern China. Geochimica,17(1):1 - 12 (in Chinese with English abstract)
Wang T,Zheng YD,Zhang JJ,Zeng LS,Donskaya T,Guo L and Li JB.2011a. Pattern and kinematic polarity of Late Mesozoic extension in continental NE Asia: Perspectives from metamorphic core complexes. Tectonics,30(6):TC6007
Wang T,Guo L,Zheng YD,Donskaya T,Gladkochub D,Zeng LS,Li JB,Wang YB and Mazukabzov A. 2012. Timing and processes of Late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton:Mainly constrained by zircon U-Pb ages from metamorphic core complexes. Lithos,154:315 -345
Wang Y,Zhao ZF,Zheng YF and Zhang JJ. 2011b. Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China. Lithos,125(3 -4):940 -955
Wang YJ,F(xiàn)an WM,Zhang HF and Peng TP. 2006. Early Cretaceous gabbroic rocks from the Taihang Mountains:Implications for a paleosubduction-related lithospheric mantle beneath the central North China Craton. Lithos,86(3 -4):281 -302
Weaver BL. 1991. The origin of ocean island basalt end-member compositions:Trace element and isotopic constraints. Earth and Planetary Science Letters,104(2 -4):381 -397
White WM and Duncan RA. 1996. Geochemistry and geochronology of the Society Islands:New evidence for deep mantle recycling.American Geophysical Union Geophysical Monograph,95:183-206
Windley BF,Alexeiev D,Xiao W,Kr?ner A and Badarch G. 2007.Tectonic models for accretion of the Central Asian Orogenic Belt.Journal of the Geological Society,164(1):31 -47
Wu FY,Walker RJ,Ren XW,Sun DY and Zhou XH. 2003. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chemical Geology,196(1 -4):107 -129
Wu FY,Ge WC,Sun DY and Guo CL. 2003. Discussions on the lithospheric thinning in eastern China. Earth Science Frontiers,10(3):51 -60 (in Chinese with English abstract)
Wu FY,Walker RJ,Yang YH,Yuan HL and Yang JH. 2006. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochimica et Cosmochimica Acta,70(19):5013 -5034
Xie GH and Wang JW. 1992. The geochemistry of Hannuoba basalts and their ultra-mafic xenoliths. In:Liu RX (ed.). The Age and Geochemistry of Cenozoic Volcanic Rock in China. Beijing:Seismologic Press,149 -170 (in Chinese)
Xu WL,Wang QH,Wang DY,Guo JH and Pei FP. 2006. Mesozoic adakitic rocks from the Xuzhou-Suzhou area, eastern China:Evidence for partial melting of delaminated lower continental crust.Journal of Asian Earth Sciences,27(4):454 -464
Xu WL,Gao S,Yang DB,Pei FP and Wang QH. 2009. Geochemistry of eclogite xenoliths in Mesozoic adakitic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos,107(3-4):269 -280
Xu WL,Yang DB,Gao S,Pei FP and Yu Y. 2010. Geochemistry of peridotite xenoliths in Early Cretaceous high-Mg#diorites from the Central Orogenic Block of the North China Craton:The nature of Mesozoic lithospheric mantle and constraints on lithospheric thinning. Chemical Geology,270(1 -4):257 -273
Xu YG. 1999. Roles of thermo-mechanic and chemical erosion in continental lithospheric thinning. Bulletin of Mineralogy Petrology and Geochemistry,18(1):1 -5 (in Chinese with English abstract)
Xu YG. 2001. Thermo-tectonic destruction of the Archaean lithospheric keel beneath the Sino-Korean Craton in China:Evidence,timing and mechanism. Physics and Chemistry of the Earth,Part A:Solid Earth and Geodesy,26(9 -10):747 -757
Xu YG,Chung SL,Ma JL and Shi LB. 2004. Contrasting Cenozoic lithospheric evolution and architecture in the Western and Eastern Sino-Korean Craton:Constraints from geochemistry of basalts and mantle xenoliths. The Journal of Geology,112(5):593 -605
Xu YG,Ma JL,F(xiàn)rey FA,F(xiàn)eigenson MD and Liu JF. 2005. Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton. Chemical Geology,224(4):247 -271
Xu YG. 2006a. Formation of the Taihangshan gravity lineament by the diachronous lithospheric thinning of the North China craton. Earth Science,31(1):14 -22 (in Chinese with English abstract)
Xu YG. 2006b. Using basalts geochemistry to constrain Mesozoic-Cenozoic evolution of the lithosphere beneath North China Craton.Earth Science Frontiers,13(2):93 -104 (in Chinese with English abstract)
Xu YG. 2007. Diachronous lithospheric thinning of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos,96(1 -2):281 -298
Ye H,Zhang BT and Mao FY. 1987. The Cenozoic tectonic evolution of the great North China:Two types of rifting and crustal necking in the great North China and their tectonic implications. Tectonophysics,133(3 -4):217 -227
Zhang HF,Sun M,Zhou XH,F(xiàn)an WM,Zhai MG and Yin JF. 2002.Mesozoic lithosphere destruction beneath the North China Craton:Evidence from major,trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contributions to Mineralogy and Petrology,144(2):241 -254
Zhang HF,Min S,Zhou MF,F(xiàn)an WM,Zhou XH and Zhai MG. 2004.Highly heterogeneous Late Mesozoic lithospheric mantle beneath the North China Craton:Evidence from Sr-Nd-Pb isotopic systematics of mafic igneous rocks. Geological Magazine,141(1):55 -62
Zhang JJ,Zheng YF and Zhao ZF. 2009. Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos,110(1 -4):305 -326
Zhang M,Zhou XH and Zhang JB. 1998. Nature of the lithospheric mantle beneath NE China:Evidence from potassic volcanic rocks and mantle xenoliths. In:Flower MFJ,Chung SL,Lo CH and Lee TY(eds.). Mantle Dynamics and Plate Interactions in East Asia.Geodynamics Series,American Geophysical Union,Washington,197 -219
Zhang M,Yang JH,Sun JF,Wu FY and Zhang M. 2012a. Juvenile subcontinental lithospheric mantle beneath the eastern part of the Central Asian Orogenic Belt. Chemical Geology,328:109 -122
Zhang WH,Han BF,Du W and Liu ZQ. 2005. Characteristics of mantle source for Jining Cenozoic basalts from southern Inner Mongolia:Evidence from element and Sr-Nd-Pb isotopic geochemistry. Acta Petrologica Sinica,21(6):1569 -1582 (in Chinese with English abstract)
Zhang WH,Zhang HF,F(xiàn)an WM,Han BF and Zhou MF. 2012b. The genesis of Cenozoic basalts from the Jining area,northern China:Sr-Nd-Pb-Hf isotope evidence. Journal of Asian Earth Sciences,61:128 -142
Zhang YQ,Ma YS,Yang N,Shi W and Dong SW. 2003. Cenozoic extensional stress evolution in North China. Journal of Geodynamics,36(5):591 -613
Zhao DP. 2004. Global tomographic images of mantle plumes and subducting slabs:Insight into deep Earth dynamics. Physics of the Earth and Planetary Interiors,146(1 -2):3 -34
Zhao DP,Lei JS and Tang RY. 2004. Origin of the Changbai intraplate volcanism in Northeast China:Evidence from seismic tomography.Chinese Science Bulletin,49(13):1401 -1408
Zhao GC,Wilde SA,Cawood PA and Lu LZ. 1999. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications. Tectonophysics,310(1 -4):37 -53
Zhao GC,Wilde SA,Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton:Lithological geochemical structural and P-T path constraints and tectonic evolution.Precambrian Research,107(1 -2):45 -73
Zhao L,Zheng TY,Lu G and Ai YS. 2011. No direct correlation of mantle flow beneath the North China Craton to the India-Eurasia Collision:Constraints from new SKS wave splitting measurements.Geophysical Journal International,187(2):1027 -1037
Zhao ZF and Zheng YF. 2009. Remelting of subducted continental lithosphere:Petrogenesis of Mesozoic magmatic rocks in the Dabie-Sulu orogenic belt. Science in China (Series D),52(9):1295-1318
Zheng JP. 1999. Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning beneath the Eastern China. Wuhan:China University of Geosciences Press (in Chinese)
Zheng JP,O’Reilly SY,Griffin WL,Lu FX,Zhang M and Pearson NJ.2001. Relict refractory mantle beneath the eastern North China block:Significance for lithosphere evolution. Lithos,57(1):43-66
Zheng JP,Griffin WL,O’Reilly SY,Yu CM,Zhang HF,Pearson N and Zhang M. 2007. Mechanism and timing of lithospheric modification and replacement beneath the eastern North China Craton:Peridotitic xenoliths from the 100Ma Fuxin basalts and a regional synthesis.Geochimica et Cosmochimica Acta,71(21):5203 -5225 Zheng JP,Griffin WL,Qi L,O’Reilly SY,Sun M,Zheng S,Pearson N,Gao JF,Yu CM,Su YP,Tang HY,Liu QS and Wu XL. 2009.Age and composition of granulite and pyroxenite xenoliths in Hannuoba basalts reflect Paleogene underplating beneath the North China Craton. Chemical Geology,264(1 -4):266 -280
Zheng YF,Xiao WJ and Zhao GC. 2013. Introduction to tectonics of China. Gondwana Research,23(4):1189 -1206
Zhi XC,Song Y,F(xiàn)rey FA,F(xiàn)eng JL and Zhai MZ. 1990. Geochemistry of Hannuoba basalts,eastern China:Constraints on the origin of continental alkalic and tholeiitic basalt. Chemical Geology,88(1 -2):1 -33
Zhou XH and Armstrong RL. 1982. Cenozoic volcanic rocks of eastern China:Secular and geographic trends in chemistry and strontium isotopic composition. Earth and Planetary Science Letters,58(3):301 -329
Zhu YS,Hou GS and Yang JH. 2012. Sources and petrogenesis of the Cenozoic alkali basalts in Hebi,eastern North China Craton:Geochemical and Sr-Nd-Hf istopic evidence. Acta Petrologica Sinaca,28(12):4064 -4076 (in Chinese with English abstract)
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences,14:493 -571
Zou HB,Zindler A,Xu XS and Qi Q. 2000. Major,trace element,and Nd,Sr and Pb isotope studies of Cenozoic basalts in SE China:Mantle sources,regional variations,and tectonic significance.Chemical Geology,171(1 -2):33 -47
Zou HB,Reid MR,Liu YS,Yao YP,Xu XS and Fan QC. 2003.Constraints on the origin of historic potassic basalts from northeast China by U-Th disequilibrium data. Chemical Geology,200(1 -2):189 -201
附中文參考文獻(xiàn)
陳國(guó)英,宋仲和,安昌強(qiáng)等. 1991. 華北地區(qū)三維地殼上地幔結(jié)構(gòu).地球物理學(xué)報(bào),34(2):172 -181
池際尚,路鳳香. 1996. 華北地臺(tái)金伯利巖及古生代巖石圈地幔特征. 北京:科學(xué)出版社
鄧晉福. 1988. 大陸裂谷巖漿作用及深部過程. 見:中國(guó)東部新生代玄武巖及上地幔研究. 北京:地質(zhì)出版社,201 -218
李潮峰,李獻(xiàn)華,郭敬輝,李向輝,李懷坤,周紅英,李國(guó)占. 2011.微量巖石樣品中Rb-Sr 和Pb 一步分離及高精度熱電離質(zhì)譜測(cè)試. 地球化學(xué),40(5):399 -406
劉若新,陳文寄,孫建中,李大明. 1992. 中國(guó)新生代火山巖的K-Ar年代與構(gòu)造環(huán)境. 見:劉若新主編. 中國(guó)新生代火山巖年代學(xué)與地球化學(xué). 北京:地震出版社,1 -43
馬金龍,徐義剛. 2004. 河北陽原和山西大同新生代玄武巖的巖石地球化學(xué)特征:華北克拉通西部深部地質(zhì)過程初探. 地球化學(xué),33(1):75 -88
湯艷杰,張宏福,英基豐. 2004. 太行山中段新生代玄武巖中高鎂橄欖石捕虜晶:殘留古老巖石圈地幔樣品. 巖石學(xué)報(bào),20(5):1243 -1252
王慧芬,楊學(xué)昌,朱炳泉,范嗣昆,戴橦謨. 1988. 中國(guó)東部新生代火山巖K-Ar 年代學(xué)及其演化. 地球化學(xué),17(1):1 -12
吳福元,葛文春,孫德有,郭春麗. 2003. 中國(guó)東部巖石圈減薄研究中的幾個(gè)問題. 地學(xué)前緣,10(3):51 -60
解廣轟,王俊文. 1992. 漢諾壩玄武巖及其超鎂鐵巖捕擄體的地球化學(xué). 見:劉若新主編. 中國(guó)新生代火山巖年代學(xué)與地球化學(xué).北京:地震出版社,149 -170
徐義剛. 1999. 巖石圈的熱-機(jī)械侵蝕和化學(xué)侵蝕與巖石圈減薄. 礦物巖石地球化學(xué)通報(bào),18(1):1 -5
徐義剛. 2006a. 太行山重力梯度帶的形成與華北巖石圈減薄的時(shí)空差異性有關(guān). 地球科學(xué),31(1):14 -22
徐義剛. 2006b. 用玄武巖組成反演中-新生代華北巖石圈的演化. 地學(xué)前緣,13(2):93 -104
張文慧,韓寶福,杜蔚,劉志強(qiáng). 2005. 內(nèi)蒙古集寧新生代玄武巖的地幔源區(qū)特征:元素及Sr-Nd-Pb 同位素地球化學(xué)證據(jù). 巖石學(xué)報(bào),21(6):1569 -1582
鄭建平. 1999. 中國(guó)東部地幔置換作用與中新生代巖石圈減薄. 武漢:中國(guó)地質(zhì)大學(xué)出版社
朱昱升,侯廣順,楊進(jìn)輝. 2012. 鶴壁新生代玄武巖源區(qū)及成因:地球化學(xué)和Sr-Nd-Hf 同位素證據(jù). 巖石學(xué)報(bào),28(12):4064-4076