徐德立,徐來祥
曲阜師范大學生命科學學院, 曲阜 273165
食物限制對黑線倉鼠免疫功能的影響
徐德立,徐來祥*
曲阜師范大學生命科學學院, 曲阜 273165
溫帶地區(qū)小型哺乳動物經(jīng)常面臨著食物資源的波動。食物對動物的免疫功能具有重要影響。將19只成年雄性黑線倉鼠(Cricetulusbarabensis)隨機分為自由取食組(n=9)和限食組(n=10)。注射植物血球凝集素(PHA)來測定細胞介導的免疫反應,用匙孔血藍蛋白(KLH)免疫動物,然后測定抗KLH抗體的濃度以反映其體液免疫功能。旨在檢驗食物限制是否會抑制黑線倉鼠的細胞免疫和體液免疫功能。結果發(fā)現(xiàn),與對照組相比,限食組黑線倉鼠具有較低的體重、體脂、脾臟鮮重、血清瘦素水平、免疫球蛋白IgG和IgM濃度。而限食對胸腺鮮重、白細胞數(shù)、皮質酮水平以及PHA反應沒有顯著影響。結果表明黑線倉鼠免疫系統(tǒng)的不同成分對限食反應存在差異,在食物資源短缺時,黑線倉鼠防御細胞外病原體的能力降低,從而導致生存能力的下降。
食物限制;體液免疫;黑線倉鼠(Cricetulusbarabensis);植物血球凝集素反應
免疫系統(tǒng)在動物防止或減少環(huán)境中的病毒、細菌、真菌等病原體攻擊中起著至關重要的作用,是其防御有害因子侵害機體的重要保障,因此免疫功能是決定動物生存的重要因素之一,它能在一定程度上反映動物的生存能力,并最終影響到動物的適合度[1]。影響動物免疫功能的因素很多,而食物的數(shù)量和質量是重要的影響因素[2]。一些研究者研究了食物可利用性降低對小型哺乳動物免疫功能的影響,但他們的結果卻存在差異[3-12]。大多數(shù)研究發(fā)現(xiàn)食物限制抑制動物的免疫能力。限食抑制拉布拉多白足鼠(Peromyscusmaniculatus)細胞介導的免疫反應[3],并可通過降低脾臟來源的抗體生成B細胞的數(shù)目損害其免疫記憶[4-5]。限食抑制短光照條件下黑線毛足鼠(Phodopussungorus)的延遲型超敏性反應,但對長光照條件下的免疫功能沒有影響[6]。妊娠期大倉鼠(Tscherskiatriton) 限食處理后,其雄性后代具有較低免疫反應[7]。體液免疫功能在限食的小鼠中也受到損害[8]。能量限制的宿主更易感染病原體[9]。然而,少數(shù)研究發(fā)現(xiàn)食物或能量限制能增加動物的免疫功能,例如能量限制能增加大鼠淋巴細胞的數(shù)目、自然殺傷細胞(natural killer cells, NK)活性,并且脾細胞對刀豆素A(concanavalin A, Con A)和脂多糖(lipopolysachride, LPS)的增殖反應顯著增強[10]。限食可提高短光照條件下黑線毛足鼠的體液免疫功能[11]。然而,長期溫和的限食不影響長爪沙鼠(Merionesunguiculatus)的體液免疫和細胞介導的免疫反應[12]。上述的這些研究結論不一致,因而還需在更多物種中深入研究。
黑線倉鼠(Cricetulusbarabensis) 是中國北方的主要農(nóng)業(yè)害鼠,在俄羅斯、蒙古國和朝鮮也有分布, 該物種為夜行性動物,春夏季節(jié)主要以植物的莖葉為食,冬季以貯存的作物種子為食[13]。黑線倉鼠生境特點是夏季溫暖干旱(極端最高溫42.6 ℃),冬季嚴寒(極端最低溫-20 ℃以下),因而該物種經(jīng)歷環(huán)境溫度、光周期以及食物可利用性的顯著性季節(jié)變化[13-14]。人們關注的問題是當面臨食物可利用性降低時黑線倉鼠免疫功能將會發(fā)生怎樣的變化,該問題的解決可幫助人們理解食物資源短缺如何影響其存活能力,同時也有助于從免疫學角度理解其分布和種群動態(tài)。前期研究表明限食可降低黑線倉鼠的基礎代謝率(basal metabolic rate, BMR)和非顫抖性產(chǎn)熱(nonshivering thermogenesis, NST)[15],為此,假設限食同樣會抑制黑線倉鼠的細胞免疫和體液免疫功能。
1.1 實驗對象
本實驗中所使用的成年雄性黑線倉鼠捕自于山東省曲阜九仙山(35°46.275′N, 116°59.976′E)。室內單籠(30 cm×15 cm×20 cm)飼養(yǎng)于12L∶12D的光周期和(21±1) ℃溫度條件下,使用鋸末為墊料。食物為標準鼠飼料塊(濟寧醫(yī)學院動物飼養(yǎng)中心),自由取食和飲水。
1.2 實驗設計
動物體重穩(wěn)定后,將19只成年雄性隨機分為限食組 (FR) (n=10) 和自由取食組(Fed) (n=9) 。黑線倉鼠對食物短缺比較敏感(與聊城大學趙志軍交流)[15],考慮到野生動物福利,為避免限食處理過程中出現(xiàn)動物死亡,將限食量確定為90%(自由取食量的90%),處理時間為21 d。FR組10只動物每2 d投喂定量足夠食物,連續(xù)測定6 d,然后計算出每只動物平均日攝食量(即基準食物量),F(xiàn)R組動物每天投喂食物量為基準食物量的90%。FR0和 FRn分別代表限食第0、n天。
1.3 細胞免疫的測定
植物血球凝集素(PHA)反應是檢測哺乳動物細胞免疫功能的常用指標[16], PHA 反應的測定參考Xu 和Wang的方法[17]。在FR19,取自由取食組和限食組的黑線倉鼠,用數(shù)顯電子測微尺(Mitutoyo Absolute cod. 547-301, 日本)測定倉鼠左后足足墊的厚度(精確至± 0.01 mm),用75%酒精對足墊消毒,然后在足墊中心處注射0.03 mL含0.1 mg PHA (PHA-P, Sigma L-8754)的無菌PBS緩沖液(pH 值7.4),6、24、48 h后分別測量左后足足墊的厚度,PHA反應的計算公式為:(注射后足墊厚度-注射前足墊厚度)/注射前足墊厚度,每只動物測定6次,最后取6次測定的平均值[16-17]。
1.4 體液免疫的測定
通過注射特異性的抗原如匙孔血藍蛋白(KLH) 然后測定相應抗體濃度的方法通常用于反映動物的體液免疫功能[11,18]。注射KLH(Sigma LH7017)的時間為處死動物前15 d(FR6),背部皮下注射0.1 mL濃度為0.15 mg/mL的KLH注射液(溶于無菌生理鹽水), 5 d(FR11)、10 d(FR16)后,用眼眶取血的方法取大約0.5 mL,取血后迅速取20 μL血液,溶于0.38 mL白細胞稀釋液中,用于白細胞數(shù)目的測定(詳細步驟參照1.6白細胞數(shù)的測定),其余血液置于冰浴中,1 h后在4000 r/min、4 ℃條件下離心30 min,取血清貯存于-80 ℃冰箱中保存,用于檢測抗KLH抗體的濃度;注射KLH 15 d后(FR21)處死動物,頸部取血并按上述方法獲得血清,-80 ℃冰箱中保存,用于測定抗KLH抗體、瘦素以及皮質酮水平。選取這些取血時間點主要是獲得免疫球蛋白M(IgM)和IgG峰值,IgM 是注射KLH后最先產(chǎn)生的免疫球蛋白,IgG是KLH挑戰(zhàn)后產(chǎn)生的優(yōu)勢免疫球蛋白[18/]。
抗KLH抗體測定:將包被液(將KLH按0.5 mg/mL的濃度溶于0.05 mol/L Na2CO3-NaHCO3緩沖液,pH 值9.6)以每孔100 μL加入到96 孔酶標板,4 ℃,過夜。用洗滌液(含0.05% Tween 20的磷酸鹽緩沖液, pH 值7.4; PBS-T)滿孔洗滌3遍,每次3 min。每孔內加入100 μL 5%脫脂奶粉(溶于PBS-T),4 ℃,過夜,以減少非特異性結合。把酶標板孔內的5%脫脂奶粉倒出,用PBS-T洗滌3遍,每次3 min;溶化的血清用PBS-T按1∶20比例(血清∶PBS-T)進行稀釋,然后向抗原包被過的孔中加入150 μL稀釋樣品。陽性對照樣品是KLH反復注射的黑線倉鼠中取得的血清(用PBS-T稀釋)和陰性對照樣品為KLH未致敏黑線倉鼠中取得的血清(用PBS-T稀釋)。然后封上酶標板,37 ℃孵育3 h;然后用PBS-T洗滌3遍,每次3 min。向每孔內加入100 μL二抗(堿性磷酸酶結合的抗小鼠IgG,按1∶2000的比例用PBS-T稀釋, Cappel, Durham, NC; 或者堿性磷酸酶結合的抗小鼠IgM, 按1∶500的比例用 PBS-T 稀釋, Cappel, Durham, NC);將酶標板封上后,37 ℃孵育1 h;然后用PBS-T 洗滌3遍,每次3 min。每孔加入150 μL酶底物對硝基苯磷酸[Sigma Chemical, St Louis, MO (濃度是1 mg/mL, 溶于二乙醇胺底物緩沖液)],37 ℃避光孵育20 min。每孔加入50 μL 1.5 mol/L NaOH 終止液,使反應終止。在酶標儀上(Tunable Versamax microplate reader)讀取波長為405 nm時的吸光值,每個樣品重復2次。抗KLH抗體含量用樣品的光吸收值與陽性對照光吸收值的比值來表示[11,18]。
1.5 器官的解剖
器官的解剖參考Xu和Wang的方法[17]。動物處死后快速分離肩胛間的褐色脂肪組織(IBAT)稱重,隨后分別取出動物的心臟、肺臟、胸腺、肝臟、腎臟、腎上腺、脾臟、睪丸、附睪、貯精囊,剔除器官表面附著的結締組織和脂肪,在濾紙上吸干器官表面的血液后稱重(精確到0.001 g),為器官鮮重。取出動物的消化道,分別分離出胃、小腸、肓腸、結腸,小心剔除器官腸系膜及結締組織和脂肪。分別稱量胃及其內容物、小腸及其內容物、盲腸及其內容物、結腸及其內容物重。之后,將其縱向剖開,用生理鹽水洗去內容物,置濾紙上吸干表面水分后,稱重,作為器官鮮重。此外,小心地分離皮下脂肪、性腺周圍脂肪、腎周脂肪、腹膜后脂肪和腸系膜脂肪,這5部分脂肪的總重被認為是總體脂重,脂肪含量的計算方法是分別用上述脂重除以終體重。
1.6 白細胞數(shù)的測定
在FR11、FR16和實驗結束后(FR21),分別用眼眶取血以及頸部取血的方法取血后,迅速取20 μL血液,溶于0.38 mL白細胞稀釋液[含1.5%的冰醋酸,1%龍膽紫(Sigma)]中,用手指輕彈混勻,一段時間后,然后取20 μL上述溶液小心地滴在已放有蓋玻片的血球計數(shù)板上,在低倍顯微鏡下(10×)觀察,并用血球計數(shù)器計算四個角四個大格中所有的白細胞總數(shù),然后乘以5×107,得數(shù)即為血液中所含白細胞數(shù)量(109個/L)[19]。
1.7 血清瘦素水平的測定
取動物處死后所獲得的血清,用小鼠ELISA試劑盒測定血清瘦素水平(Cat. No. XL-85K, Linco Research Inc., Missouri, USA)。當使用10 μL樣品時,該方法檢測的范圍是 0.3—8 ng/mL,詳細檢測步驟參考小鼠ELISA試劑盒中說明書進行。
1.8 血清皮質酮水平的測定
取動物處死后所獲得的血清,用小鼠ELISA試劑盒測定血清皮質酮水平(Cat. No. HR083, RapidBio Lab. Calabasas, California, USA)。當使用10 μL樣品時,該方法檢測的范圍是8—150 ng/mL,詳細檢測步驟參考小鼠ELISA試劑盒中說明書進行。
1.9 統(tǒng)計方法
數(shù)據(jù)統(tǒng)計采用SPSS13.0統(tǒng)計軟件包(SPSS package, 1998)。統(tǒng)計分析之前,用One-sample Kolmogorov-Simirnov test檢驗數(shù)據(jù)是否呈正態(tài)分布,以確定可否用下述方法統(tǒng)計分析數(shù)據(jù)。比值包括PHA反應、脂含量用反正弦轉換后用獨立樣本t-檢驗進行分析,自由取食組和限食組的體重變化用重復測量的方差分析(repeated measurement analysis),兩組間體重的差異用獨立樣本t-檢驗進行分析。比較自由取食組和限食組間器官鮮重用以體重為協(xié)變量的多因變量線性模型方差分析(General Linear Model multivariate analysis, GLM)進行,然后用Bonferroniposthoc進行檢驗。其它指標包括IgM 和IgG濃度、WBC、瘦素和皮質酮濃度用獨立樣本t-檢驗進行分析。PHA反應、IgM 和IgG濃度隨時間的變化用重復測量的方差分析進行。PHA反應、IgM 、IgG濃度與瘦素、皮質酮間的相關關系用皮爾遜相關分析進行。 結果數(shù)據(jù)均以平均值±標準誤(Mean ± SE)表示,P<0.05為差異顯著[在圖中以星號(*)表示]。
2.1 體重
在FR0, 自由取食組和限食組間體重沒有顯著性差異 (t=-0.125, df=17,P=0.902)。21 d限食處理后FR 組體重顯著降低(F21,168=13.583,P﹤0.001),而Fed 組的體重則沒有顯著性變化(F21,168=0.670,P=0.858)。從FR10(t=-2.214, df=17,P=0.041) 到 FR21(t=-2.733, df=17,P=0.014),F(xiàn)R組體重顯著低于Fed組。與FR0時的體重((30.6±1.3)g)相比,21 d限食處理后((25.7±1.4)g),F(xiàn)R組黑線倉鼠體重喪失(4.9±0.8)g (16.1%) (表 1)。
2.2 器官鮮重
限食顯著降低了黑線倉鼠腎周脂肪(t=-3.801, df=17,P<0.01)、腎周脂肪含量(t=-2.179, df=17,P<0.05)、腹膜后脂肪 (t=-2.308, df=17,P<0.05)、總體脂 (t=-2.675, df=17,P<0.05) (表1)、脾臟鮮重(F1,16=10.394,P=0.005)、心臟鮮重(F1,16=5.214,P=0.036)和胃及內容物重(F1,16=6.502,P=0.021) (表2)。其它身體成分和器官鮮重在兩組間則沒有顯著性差異(表1,表2)。
表1 限食對黑線倉鼠身體成分的影響Table 1 Effect of food restriction on body composition in striped hamsters
同一行中不同字母的上標表示組間差異顯著; ns表示差異不顯著
表2 限食對黑線倉鼠器官鮮重的影響Table 2 Effect of food restriction on wet organ mass in striped hamsters
同一行中不同字母的上標表示組間差異顯著; ns表示差異不顯著
2.3 白細胞數(shù)
圖1 限食對黑線倉鼠白細胞數(shù)的影響 Fig.1 Effect of food restriction on white blood cells in striped hamsters
KLH免疫挑戰(zhàn)后5 d(t=1.179, df=17,P=0.255)、10 d(t=0.293, df=17,P=0.773)和15 d (t=0.693, df=17,P=0.498),限食組和自由取食組間的白細胞數(shù)均無顯著性差異 (圖 1)。限食組(F2,18=2.253,P=0.168)和自由取食組(F2,16=0.138,P=0.872)白細胞數(shù)也不隨限食時間而變化。
2.4 細胞免疫
PHA 免疫后的6 h (t=-0.102, df=17,P=0.920)、24 h(t=1.853, df=17,P=0.081) 和48 h (t=-0.770, df=17,P=0.442),限食組黑線倉鼠的PHA反應均與對照組沒有顯著性差異。限食組(F2,18=70.502,P<0.001)和自由取食組(F2,16=56.201,P<0.001)PHA反應均隨時間的延長而顯著下降。
2.5 體液免疫
KLH挑戰(zhàn)后的5 d (t=-1.142, df=17,P=0.269)、10 d (t=-0.624, df=17,P=0.541)抗KLH IgG 濃度在兩組間沒有差異,KLH挑戰(zhàn)后的15 d限食組抗KLH IgG濃度顯著低于自由取食組 (t=-2.241, df=17,P=0.039) (圖2),此外限食組(F2,18=11.714,P=0.001)和自由取食組(F2,16=13.899,P<0.001) IgG 濃度隨限食時間的延長而升高。限食不影響KLH挑戰(zhàn)后的5 d(t=-0.470, df=17,P=0.644)、10 d(t=-1.675, df=17,P=0.112)的抗KLH IgM濃度,但顯著降低了KLH挑戰(zhàn)后15 d的抗KLH IgM濃度(t=-2.527, df=17,P=0.022) (圖2)。限食組(F2,18=2.979,P=0.076)和自由取食組(F2,16=3.202,P=0.068) IgM濃度不受限食時間的影響。
圖2 限食對黑線倉鼠IgG和 IgM濃度的影響Fig.2 Effect of food restriction on IgG and IgM concentrations in striped hamsters
2.6 血清瘦素水平
限食顯著降低了黑線倉鼠血清瘦素水平 (t=-2.622, df=17,P=0.018) (圖 3)。瘦素與總體脂重 (r=0.358,P=0.132)、PHA反應 (r=-0.379,P=0.109)、IgG (r=0.295,P=0.220) 和 IgM濃度 (r=0.341,P=0.154)均不存在相關關系。
圖3 限食對黑線倉鼠血清瘦素水平的影響 Fig.3 Effect of food restriction on leptin concentration in striped hamsters
2.7 血清皮質酮水平
限食對黑線倉鼠血清皮質酮水平?jīng)]有顯著性影響(t=-1.280, df=17,P=0.218)。皮質酮與PHA反應 (r=-0.064,P=0.795)、IgG (r=0.372,P=0.116) 和 IgM濃度 (r=0.635,P=0.003) 也不存在相關關系。
與預期的一樣,限食降低了黑線倉鼠的體重、體脂重、脾臟鮮重、血清瘦素水平和體液免疫功能,而胸腺鮮重、白細胞數(shù)、細胞免疫和皮質酮水平的變化與預期不一致。
限食導致脾臟萎縮但不影響胸腺鮮重,暗示著外周免疫器官的功能受到抑制而中樞免疫器官的功能不受限食的影響。與自由取食對照組相比,限食組黑線倉鼠體液免疫功能降低但細胞免疫功能沒發(fā)生變化,說明在面臨食物可利用性降低時,黑線倉鼠防御胞外病原體和寄生蟲的能力下降,而控制胞內病原體(如病毒)不受影響。與其它動物在面臨食物資源短缺時細胞免疫或體液免疫受到抑制[3-7]或升高[11]相比,黑線倉鼠表現(xiàn)出完全不同的免疫適應策略。
3.1 體脂與免疫
脂肪組織不僅是動物能量貯存的場所,而且最近被認為是重要的內分泌和免疫器官[20-21]。動物能量貯存(脂肪)的下降可導致免疫功能受到抑制[17-18];Houston等[22]認為具有較低能量貯存的動物分配給免疫防御的能量比具有較高能量貯存的要少。限食顯著降低了黑線倉鼠腎周脂肪、腹膜后脂肪和總體脂重,較低的能量貯存可能不足以維持昂貴生理過程包括免疫反應所需要的能量[23-24],這可能是限食組動物體液免疫能力受到抑制的原因之一。
3.2 瘦素與免疫
瘦素(leptin)是由脂肪細胞分泌的細胞因子樣蛋白激素,與體脂重呈正相關[25-26]。它可通過抑制動物攝食和促進能量消耗在能量平衡中發(fā)揮調節(jié)作用,同樣在免疫中也起重要作用,如瘦素可直接調節(jié)T細胞免疫反應[27-29]。許多研究發(fā)現(xiàn)低濃度瘦素會損害動物的免疫功能[29-31]。盡管沒有檢測到體液免疫與瘦素水平之間的相關性,限食導致黑線倉鼠瘦素水平的降低可能是其體液免疫功能受抑制的另一原因。
3.3 應激與免疫
應激通常會激活下丘腦-垂體-腎上腺軸(hypothalamic-pituitary-adrenal axis, HPA軸),導致應激激素如皮質酮分泌增加,而皮質酮具有抑制免疫的作用[32-33]。限食同樣導致應激激素皮質酮或皮質醇分泌增加[3,6]。黑線倉鼠皮質酮水平不受限食的影響,原因可能有兩個,一是本實驗的限食程度對黑線倉鼠而言可能比較溫和,所以不足以激活其HPA軸;二是皮質酮的產(chǎn)生受限食時間的影響很大,在限食初期皮質酮的產(chǎn)生可能會增加,但隨著限食時間的延長,黑線倉鼠可能已產(chǎn)生適應。應激激素與限食時間有何關系還需要深入研究。我們的結果與其它研究存在差異,例如,70%限食2周不影響對短光照不敏感的和長光照條件下黑線毛足鼠的血清皮質醇水平,但卻能降低對短光照敏感的黑線毛足鼠的血清皮質醇的水平[11]。80%限食35 d可降低長爪沙鼠血清皮質酮的水平[12]。這些結果的差異可能與限食的時間及程度、物種特點以及實驗環(huán)境的不同有關。皮質酮與細胞免疫、IgG 和IgM濃度均不存在相關性,說明皮質酮水平的變化可能還不能解釋限食對黑線倉鼠免疫的影響。
與其它研究相比[3-7,18],本文研究測定了免疫器官、白細胞數(shù)、體液免疫和細胞免疫等多種免疫學指標,這有助于比較全面地理解限食對動物免疫系統(tǒng)不同成分的影響。結果表明,食物可利用性降低對黑線倉鼠不同免疫系統(tǒng)成分的影響存在差異,限食抑制了脾臟和體液免疫功能,而胸腺、白細胞總數(shù)以及細胞免疫功能則不受限食的影響;限食導致的體脂和瘦素水平降低可能是體液免疫能力受抑制的原因。體液免疫的主要功能是結合胞外病原體并使之中性化,因此,面臨食物資源短缺時,黑線倉鼠防御胞外病原體的能力降低,其存活能力也會下降。
致謝:感謝張圣坤、孫志存和孟大千在本實驗中的幫助。
[1] Sheldon B C, Verhulst S. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends in Ecology and Evolution, 1996, 11(8): 317-321.
[2] Schaible U E, Kaufmann S H E. Malnutrition and infection: complex mechanisms and global impacts. PLoS Medicine, 2007, 4(5): e115.
[3] Demas G E, Nelson R J. Photoperiod, ambient temperature, and food availability interact to affect reproductive and immune function in adult male deer mice (Peromyscusmaniculatus). Journal of Biological Rhythms, 1998, 13(3): 253-262.
[4] Martin L B II, Navara K J, Weil Z M, Nelson R J. Immunological memory is compromised by food restriction in deer micePeromyscusmaniculatus. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 2007, 292(1): R316-R320.
[5] Martin L B II, Navara K J, Bailey M T, Hutch C R, Powell N D, Sheridan J F, Nelson R J. Food restriction compromises immune memory in deer mice (Peromyscusmaniculatus) by reducing spleen-derived antibody-producing B cell numbers. Physiological and Biochemical Zoology, 2008, 81(3): 366-372.
[6] Bilbo S D, Nelson R J. Photoperiod influences the effects of exercise and food restriction on an antigen-specific immune response in Siberian hamsters. Endocrinology, 2004, 145(2): 556-564.
[7] Liang H, Zhang J J, Zhang Z B. Food restriction in pregnant rat-like hamsters (Cricetulustriton) affects endocrine, immune function and odor attractiveness of male offspring. Physiology and Behavior, 2004, 82(2/3): 453-458.
[8] Ishikawa L L W, Fran?a T G D, Chiuso-Minicucci F, Zorzella-Pezavento S F G, Marra N M, Pereira P C M, Silva C L, Sartori A. Dietary restriction abrogates antibody production induced by a DNA vaccine encoding the mycobacterial 65 kDa heat shock protein. Genetic Vaccines and Therapy, 2009, 7(1): 11-19.
[9] Kristan D M. Calorie restriction and susceptibility to intact pathogens. Age, 2008, 30(2/3): 147-156.
[10] Pahlavani M A, Vargas D A, Evans T R, Shu J H, Nelson J F. Melatonin fails to modulate immune parameters influenced by calorie restriction in aging Fischer 344 rats. Experimental Biological Medicine, 2002, 227(3): 201-207.
[11] Zysling D A, Garst A D, Demas G E. Photoperiod and food restriction differentially affect reproductive and immune responses in Siberian hamstersPhodopussungorus. Functional Ecology, 2009, 23(5): 979-988.
[12] Xu D L, Liu X Y, Wang D H. Food restriction and refeeding have no effect on cellular and humoral immunity in Mongolian gerbils (Merionesunguiculatus). Physiological and Biochemical Zoology, 2011, 84(1): 87-98.
[13] 張知彬, 王祖望. 農(nóng)業(yè)重要害鼠的生態(tài)學及控制對策. 北京: 海洋出版社, 1998: 1-286.
[14] Zhao Z J, Cao J, Meng X L, Li Y B. Seasonal variations in metabolism and thermoregulation in the striped hamster (Cricetulusbarabensis). Journal of Thermal Biology, 2010, 35(1): 52-57.
[15] 趙志軍. 食物限制對黑線倉鼠能量代謝和產(chǎn)熱的影響. 獸類學報, 2012, 32(4): 297-305.
[16] de Bellocq J G, Krasnov B R, Khokhlova I S, Pinshow B. Temporal dynamics of a T-cell mediated immune response in desert rodents. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2006, 145(4): 554-559.
[17] Xu D L, Wang D H. Fasting suppresses T cell-mediated immunity in female Mongolian gerbils (Merionesunguiculatus). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2010, 155(1): 25-33.
[18] Demas G E, Drazen D L, Nelson R J. Reductions in total body fat decrease humoral immunity. Proceedings of the Royal Society B: Biological Sciences, 2003, 270(1518): 905-911.
[19] 楊秀平. 動物生理學實驗. 北京: 高等教育出版社, 2004: 91-94.
[20] Trayhurn P. Endocrine and signalling role of adipose tissue: new perspectives on fat. Acta Physiologica Scandinavica, 2005, 184(4): 285-293.
[21] Sch?ffler A, Sch?lmerich J, Salzberger B. Adipose tissue as an immunological organ: Toll-like receptors, C1q/TNFs and CTRPs. Trends in Immunology, 2007, 28(9): 393-399.
[22] Houston A I, McNamara J M, Barta Z, Klasing K C. The effect of energy reserves and food availability on optimal immune defence. Proceedings of the Royal Society B: Biological Sciences, 2007, 274(1627): 2835-2842.
[23] Demas G E, Chefer V, Talan M I, Nelson R J. Metabolic costs of mounting an antigen-stimulated immune response in adult and aged C57BL/6J mice. American Journal of Physiology Regulatory Integrative and Comparative Physiology, 1997, 273: R1631-R1637.
[24] Moret Y, Schmid-Hempel P. Survival for immunity: the price of immune system activation for bumblebee workers. Science, 2000, 290(5494): 1166-1168.
[25] Zhang Y Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouseobesegene and its human homologue. Nature, 1994, 372(6505): 425-432.
[26] Ahima R S, Flier J S. Adipose tissue as an endocrine organ. Trends in Endocrinology and Metabolism, 2000, 11(8): 327-332.
[27] Fantuzzi G, Faggioni R. Leptin in the regulation of immunity, inflammation, and hematopoiesis. Journal of Leukocyte Biology, 2000, 68(4): 437-446.
[28] Matarase G, Moschos S, Mantzoros C S. Leptin in immunology. Journal of Immunology, 2005, 174(6): 3137-3142.
[29] Lam Q L K, Lu L W. Role of leptin in immunity. Cellular and Molecular Immunology, 2007, 4(1): 1-13.
[30] Lord G M, Matarese G, Howard J K, Baker R J, Bloom S R, Lechler R I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 1998, 394(6696): 897-901.
[31] Flier J S. Lowered leptin slims immune response. Nature Medicine, 1998, 4(10): 1124-1125.
[32] Sapolsky R M, Romero L M, Munck A U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 2000, 21(1): 55-89.
[33] Marketon J I W, Glaser R. Stress hormones and immune function. Cellular Immunology, 2008, 252(1/2): 16-26.
Effect of food restriction on immune function in the striped hamster (Cricetulusbarabensis)
XU Deli, XU Laixiang*
CollegeofLifeSciences,QufuNormalUniversity,Qufu273165,China
The immune system protects animals against environmental pathogens, and hence it plays an important role in their survival and fitness. However, immune function is influenced by many factors including food availability. Small mammals in the temperate zone often face fluctuations in food availability, which is important to their survival. Changes in food availability may have a great influence on an animals′ immunity. Some investigators have examined the effect of reduced food availability (i.e., food restriction) on the immune function in small rodents, but their results are often inconsistent. Food restriction could depress, enhance or have no effect on immunity in different species. In order to clarify the discrepancy between results, the striped hamster (Cricetulusbarabensis) was used to examine the effect of food restriction on its immune function. The striped hamster is a major pest rodent in northern China. It is granivorous, nocturnal and feeds mainly on plant stems and leaves during summer and forages crop seeds in winter. The climate is arid and characterized by warm and dry summers and cold winters. Thus, the species experiences great seasonal fluctuations in temperature, photoperiod as well as food quality and availability. The question we focused on in the present study was how the immune function would vary in the face of reduced food availability for hamsters. Nineteen adult male hamsters were randomly divided into the fedadlibitumgroup (Fed,n=9) and food restricted group (FR,n=10) (90% of baseline food intake). The course of food restriction was 21 days. Hamsters were injected with phytohaemagglutinin (PHA) and keyhole limpet haemocyanin (KLH) solution to assess cellular and humoral immunity, respectively. Our goal was to test whether food restriction would suppress cellular and humoral immunity in striped hamsters. Body mass in the FR group decreased significantly after 21 days of food restriction, whereas body mass in the Fed group did not change significantly. Body mass in the FR group was significantly lower than that of the Fed group after 10 days of food restriction. Food restriction significantly reduced perirenal fat, perirenal fat content, retroperitoneal fat, total body fat, and wet spleen mass in the FR group compared with the Fed group. However, it had no significant effect on the wet thymus mass or white blood cells. Immunoglobulin (Ig) G and IgM concentrations were reduced significantly in the food restricted hamsters in contrast with the Fed control group, which indicated the suppressive role of food restriction on humoral immunity. PHA response did not differ between the two groups, suggesting cellular immunity was not influenced by food restriction. Food restricted hamsters had significantly lower serum leptin levels than that of the control group, while corticosterone levels were not affected by food restriction. Taken together, our results suggest that different components of the immune system respond differently to food restriction in striped hamsters. Humoral immunity was suppressed in food restricted hamsters, which might be due to their lower body fat mass and lower leptin levels. In the face of food shortage, striped hamsters might be more prone to extracellular pathogens and their survival capability would decrease.
food restriction; humoral immunity; striped hamsters (Cricetulusbarabensis); phytohaemagglutinin (PHA) response
國家自然科學基金(31070332, 31370427); 山東省自然科學基金 (ZR2013CM019); 曲阜師范大學博士啟動基金 (bsqd20100204)
2013-05-24;
日期:2014-04-25
10.5846/stxb201305241171
*通訊作者Corresponding author.E-mail: xulxxu@126.com
徐德立,徐來祥.食物限制對黑線倉鼠免疫功能的影響.生態(tài)學報,2015,35(6):1882-1890.
Xu D L, Xu L X.Effect of food restriction on immune function in the striped hamster (Cricetulusbarabensis).Acta Ecologica Sinica,2015,35(6):1882-1890.