趙爽, 高福元, 賈佳, 李冠華, 夏敦勝, 靳鶴齡
1 蘭州大學西部環(huán)境教育部重點實驗室, 蘭州 730000 2 中國科學院寒區(qū)旱區(qū)環(huán)境與工程研究所沙漠與沙漠化重點實驗室, 蘭州 730000
?
毛烏素沙地風沙沉積物磁學特征及其古環(huán)境意義
趙爽1, 高福元1, 賈佳1, 李冠華1, 夏敦勝1, 靳鶴齡2
1 蘭州大學西部環(huán)境教育部重點實驗室, 蘭州 730000 2 中國科學院寒區(qū)旱區(qū)環(huán)境與工程研究所沙漠與沙漠化重點實驗室, 蘭州 730000
在沙漠沉積環(huán)境中,成土作用對磁化率的貢獻較小,往往被原生磁信號掩蓋,因此分離兩種磁組分對氣候和粉塵代用指標的提取至關(guān)重要. 本研究選取位于毛烏素沙地東緣的錦界風沙沉積剖面為研究對象,利用多變量一元線性回歸中的“平均值概念”進行磁化率的原生碎屑組分0和次生成土組分pedo的分離,并探討磁學參數(shù)所承載的氣候和環(huán)境意義. 結(jié)果顯示,磁學比值參數(shù)(如pedo/0、fd/HIRM、fd%和ARM/SIRM)彼此之間存在顯著線性或指數(shù)/對數(shù)相關(guān)關(guān)系,它們對成土強度指示明確,可以在一定程度上減小或避免磁性礦物背景值差異所產(chǎn)生的誤差,與磁化率相比更適宜用于該區(qū)的古降水量重建. HIRM主要由碎屑赤鐵礦含量控制,HIRM與0存在明顯正相關(guān)關(guān)系,表明碎屑赤鐵礦隨原生磁性礦物總體含量的增加(減少)而增加(減少),在粉塵成因磁性礦物中所占比例大致穩(wěn)定,從而HIRM可以指示源區(qū)粉塵通量的變化. 錦界剖面的原生和次生磁性礦物濃度均明顯低于黃土高原黃土,不同地層0和pedo在磁化率中所占的比例存在較大差異,因此磁化率的環(huán)境意義比較復雜,在使用其恢復古氣候古環(huán)境時需慎重.
0和pedo; 降水量; 粉塵通量; 環(huán)境磁學; 毛烏素沙地
風成沉積物中的磁性礦物可分為原生碎屑成因和次生成土成因(Liu et al., 2007a),在中國黃土高原地區(qū),由于原生磁性礦物含量較低且基本穩(wěn)定(0約為(15~20)×10-8m3·kg-1)(Liu et al., 2004a, 2004b, 2007a),次生磁性礦物含量相對較高且存在明顯波動,原生磁信號被成土磁信號所掩蓋,磁化率可以用于重建夏季風強度和古降水量(An et al., 1991; Heller et al., 1993; Han et al., 1996; 宋揚等, 2012). 與黃土高原地區(qū)較為成熟的環(huán)境磁學研究相比,目前對周邊沙漠地區(qū)的系統(tǒng)磁學研究較為匱乏(Xia et al., 2012; 李平原等, 2013; 趙爽等, 2013). 沙漠與黃土在地貌上屬于同源異相的“孿生沉積”,同時毛烏素沙地是黃土高原黃土的潛在物源區(qū)之一(Sun,2002; Stevens et al.,2013),毛烏素沙地風沙沉積物磁學特征的系統(tǒng)研究,不僅可以為該區(qū)的氣候變化和沙地演化研究提供氣候和環(huán)境替代指標,還將為更深入地理解風成堆積物磁學特征變化機制提供幫助.
黃土高原周邊沙漠地區(qū)相對較干旱,土壤發(fā)育較弱,因此成土成因的磁性礦物含量較低;同時由于毛烏素沙地沉積物以近源粗顆粒為主(Sun, 2000; Stevens et al., 2013),搬運過程中的物質(zhì)混合弱于遠源細顆粒,因而磁學性質(zhì)更容易受源區(qū)物質(zhì)的影響. 原生和次生磁信號的分離和提取,對明確沙漠地區(qū)風成沉積物磁學性質(zhì)與環(huán)境因子的關(guān)系非常重要. 目前,原生和次生磁組分的分離主要有檸檬酸鈉-碳酸氫鈉-連二亞硫酸鈉(citrate-bicarbonate-dithionite,簡稱CBD)溶解(Verosub et al., 1993)、等溫剩磁獲得曲線端元分析(Heslop and Dillon, 2007)和磁化率組分分離(Xia et al., 2014)等方法. 其中,CBD溶解應用最廣泛,但是其實驗方法較為復雜,且該方法是否選擇性溶解成土成因磁性礦物存在爭議(Liu et al., 1994; 呂鑌等, 2012);等溫剩磁獲得曲線端元分析方法可以區(qū)分不同成因組分的矯頑力譜,在區(qū)分來源復雜的混合物方面效果良好,對于兩種組分的簡單混合物計算過程略顯繁瑣,且該方法對不同端元的解釋存在一定的主觀性,并受靜磁相互作用產(chǎn)生的非線性累加效應的影響(Muxworthy et al., 2003; Carvallo et al., 2006). 未受飽水環(huán)境影響的風塵沉積物磁化率由兩部分貢獻,即粉塵源區(qū)搬運來的磁性顆粒和就地成土過程形成的磁性顆粒(Liu et al., 2007a),這兩種組分分別與源區(qū)粉塵沉降通量和降水量線性相關(guān)(Beer et al., 1993),因此可以用簡單的多變量一元線性回歸中的“平均值概念”進行區(qū)分. Zhou等(2007)詳細論證了該算法的數(shù)學原理,并用以提取珊瑚δ18O攜帶的海水鹽度信號和黃土10Be濃度攜帶的地磁場強度信號. Liu等(2004a, 2004b, 2007a)用類似的方法估算黃土磁化率中的原生組分平均值,Xia等(2014)用該方法估算黃土剖面pedo值,并用以重建古降水量. 本研究選取毛烏素沙地東緣的錦界風沙沉積剖面為研究對象,通過原生和次生磁化率組分的分離,探討磁學參數(shù)在該區(qū)的古環(huán)境意義,以期為應用磁學手段反演氣候和環(huán)境變遷奠定研究基礎(chǔ).
毛烏素沙地(圖1)位于鄂爾多斯高原的南部和黃土高原的北部區(qū)域,介于37°27.5′N—39°22.5′N之間和107°20′E—110°30′E之間,總面積約32100 km2,海拔1200~1600 m. 毛烏素沙地流動、半固定和固定沙丘廣泛分布,沙物質(zhì)的來源主要是裸露基巖(白堊紀和侏羅紀砂巖)、晚第四紀河湖相類風積相沙、早第四紀河湖相沉積、沙質(zhì)黃土殘積沙(Wang et al., 2011). 毛烏素沙地處于現(xiàn)代東亞季風區(qū)西北緣,屬溫帶半干旱氣候區(qū),沙區(qū)年均溫6.0~8.5 ℃,年均降水250~440 mm,降水集中于7~9月,占全年的60%~75%(徐志偉等, 2013). 從土壤方面講,它處在栗鈣土亞地帶向棕鈣土亞地帶和黑壚土亞地帶的過渡帶;在植被方面,它是荒漠草原和森林草原的過渡帶(Wang et al., 2011).
3.1 研究剖面與采樣
錦界剖面(38°44.594′N, 110°10.044′E,海拔1159 m;圖1)位于毛烏素沙地東部邊緣,陜西省榆林市神木縣錦界開發(fā)區(qū). 剖面東北約30 km的神木縣氣象資料顯示,現(xiàn)代年平均氣溫約為8.9 ℃,年平均降水約為422.7 mm(吳勝勇, 2013). 剖面周圍主要為固定沙丘覆蓋,植被蓋度約為70%~80%,植被類型以油蒿(Artemisiaordosica)和沙柳(Salixpsammophila)為主. 剖面厚7.4 m,分別以2 cm和4 cm間隔自上而下進行樣品采集,共采集散樣324塊. 錦界剖面巖性為風成砂/古土壤互層沉積,各層位深度如下:0~0.2 m,生草層;0.2~0.4 m,弱發(fā)育古土壤;0.4~2.3 m,風成砂;2.3~3.2 m,古土壤;3.2~3.92 m,風成砂;3.92~4.24 m,古土壤;4.24~5.08 m,風成砂;5.08~7.02 m,古土壤;7.02~7.4 m,風成砂. 剖面5.04 m處的OSL測年結(jié)果為4.6±0.2 ka,6.7~6.75 m處的14C測年結(jié)果為7214±209 cal a BP,由此可推測,錦界剖面5.08~7.02 m發(fā)育的厚層古土壤與中全新世氣候適宜期該區(qū)普遍發(fā)育的古土壤層相對應(徐志偉等, 2013; Liu et al., 2014).
圖1 毛烏素沙地和錦界剖面地理位置(據(jù)徐志偉等(2013)修改)Fig.1 Geographic location of Mu Us Desert and Jinjie section (modified from Xu et al., 2013)
3.2 實驗方法
樣品在室內(nèi)自然風干后,輕磨至粉末狀,稱取適量樣品裝入方形磁學專用樣品盒,進行低頻磁化率(lf)、高頻磁化率(hf)、非磁滯剩磁(ARM)、等溫剩磁(IRM)等參數(shù)的測量.lf和hf使用Bartington MS2型磁化率儀測量,測量頻率分別為0.47 kHz和4.7 kHz,并分別計算頻率磁化率fd=lf-hf,和百分比頻率磁化率fd%=(lf-hf)/lf×100%. ARM使用DTECH LDA-4型交變退磁儀在0.1 mT的直流場疊加峰值為100 mT的交流場中獲得. IRM使用ASC IM-10-30型脈沖強磁儀獲得,外加磁場分別為1 T、-20 mT、-100 mT和-300 mT,定義在1 T磁場中所獲得的等溫剩磁為飽和等溫剩磁(SIRM). 所有剩磁參數(shù)均使用Molspin Minispin小旋轉(zhuǎn)磁力儀測量,并計算非磁滯剩磁磁化率ARM、“軟”等溫剩磁Soft=(SIRM-IRM-20 mT)/2、“硬”等溫剩磁HIRM=(SIRM+IRM-300 mT)/2和S-ratio=-IRM-300 mT/SIRM等參數(shù). 根據(jù)上述測量結(jié)果挑選典型樣品測量其磁滯回線(hysteresis loop)和熱磁曲線(J-T),所用儀器為MAGNETN MEASWREM VFTB. 磁滯回線和熱磁曲線在華東師范大學河口海岸學國家重點實驗室測試,其余實驗在蘭州大學西部環(huán)境教育部重點實驗室完成.
4.1 磁性礦物的種類
天然物質(zhì)的磁滯特征因成分的不同而出現(xiàn)明顯的差異,因此可以根據(jù)磁滯回線的形態(tài)判別樣品中磁性礦物的種類,如亞鐵磁性礦物(如磁鐵礦/磁赤鐵礦)產(chǎn)生的磁滯回線高而瘦,不完全反鐵磁性礦物(如赤鐵礦/針鐵礦)產(chǎn)生的磁滯回線則扁而胖(Thompson and Oldfield, 1986). 如圖2所示,錦界剖面典型樣品的磁滯回線形狀基本一致,均表現(xiàn)為瘦高形態(tài),在300 mT左右即趨于飽和,表明剖面中以低矯頑力的亞鐵磁性礦物為主. 樣品的矯頑力Bc在10 mT左右,大致與SD磁鐵礦相當(Thompson and Oldfield, 1986),且隨飽和磁化強度Ms的增加逐漸減小.
圖2 典型樣品的磁滯回線和熱磁曲線(綠色曲線為加熱曲線的一階導數(shù))Fig.2 Hysteresis loops and J-T curves of typical samples (Green curves denote first derivative of heating curves)
溫度對應著熱能,它可以擾動磁矩的定向排列,對磁性礦物的磁學性質(zhì)有直接的影響,因此可以通過磁化率和飽和磁化強度隨溫度變化的特征鑒別樣品中磁性礦物的種類(Thompson and Oldfield, 1986; Liu et al., 2005a, 2012). 隨著測量溫度升高到某一臨界溫度(鐵磁性礦物的居里溫度TC或反鐵磁性礦物的奈爾溫度TN),熱擾動能超過磁排序能,從而使磁性材料表現(xiàn)為順磁性,磁化率和飽和磁化強度急劇下降(Thompson and Oldfield, 1986; Liu et al., 2012). 錦界剖面典型J-T曲線(圖2)顯示,飽和磁化強度均在磁鐵礦的居里溫度580 ℃附近急劇下降,表明樣品中強磁性礦物以磁鐵礦為主. 冷卻曲線位于加熱曲線下方,表明加熱過程中存在強磁性礦物向弱磁性礦物的轉(zhuǎn)化(Liu et al., 2005a). 加熱曲線在300~450 ℃左右下降速度稍有加快,這一變化在其一階導數(shù)曲線中更為明顯,可能與熱不穩(wěn)定的磁赤鐵礦在此溫度段內(nèi)向赤鐵礦轉(zhuǎn)化有關(guān)(Liu et al., 2005a). 此外,磁化率較低的樣品在580 ℃附近J-T曲線的斜率明顯高于磁化率較高的樣品,表明隨著磁化率的增高磁性礦物的粒度有變細(由MD轉(zhuǎn)變?yōu)镾D)的趨勢(Thompson and Oldfield, 1986),這可能與土壤發(fā)育過程中細粒磁性礦物的生成有關(guān).
4.2 磁性礦物的含量
HIRM大致反映高矯頑力磁性礦物(赤鐵礦/針鐵礦)的濃度,S-ratio可用于判斷低矯頑力和高矯頑力礦物的相對豐度(Liu et al., 2007b, 2012). 如圖3所示,HIRM總體隨深度的增加逐漸減小,2.3~3.2 m、3.92~4.24 m和5.08~7.02 m的古土壤層略高于臨近的風成砂. HIRM常用于指示風成粉塵所攜帶的赤鐵礦含量(Nie et al., 2010),這說明在土壤發(fā)育過程中強磁性礦物大量生成的同時,粉塵成因的高矯頑力磁性礦物量通常也較高. 5.08~7.02 m的古土壤層S-ratio大致介于0.85~0.95之間,其他地層相對較低,變化于0.8~0.85之間,表明土壤發(fā)育過程中磁性變“軟”. 將Soft和HIRM分別與表征磁性礦物總體含量的參數(shù)SIRM和lf做散點分析(圖4)可知,Soft與SIRM和lf高度線性相關(guān),而HIRM與SIRM和lf的總體相關(guān)性較差,表明錦界剖面的主要載磁礦物為亞鐵磁性磁鐵礦/磁赤鐵礦,絕大多數(shù)樣品的S-ratio達到0.8以上也印證了這一點. 進一步分析發(fā)現(xiàn),在相同SIRM的情況下,5.08~7.02 m的古土壤層的Soft高于其他地層,且二者的差值隨磁性礦物濃度的增加逐漸增大,這可能與古土壤發(fā)育過程中軟磁性礦物的增加有關(guān). 5.08~7.02 m的古土壤層HIRM與SIRM和lf相關(guān)性較差,在其他地層則呈顯著正相關(guān)關(guān)系,這說明在土壤發(fā)育微弱或停滯階段,磁性礦物的濃度主要受粉塵攜帶的原生磁性礦物控制,隨著土壤發(fā)育的增強,次生磁性礦物含量逐漸增加,磁性礦物總體濃度(SIRM和lf)與粉塵成因硬磁性礦物濃度(HIRM)的相關(guān)性被打破.
圖3 錦界剖面地層及磁學參數(shù)隨深度的變化Fig.3 Variation of magnetic parameters and stratigraphy of Jinjie section
圖4 SIRM和lf與Soft和HIRM散點圖Fig.4 Scatter plots of SIRM (or lf) versus Soft (or HIRM)
圖5 King氏圖和Dearing氏圖Fig.5 King plots and Dearing plots
圖6 磁學參數(shù)散點圖Fig.6 Scatter plots of magnetic parameters
4.3 磁性礦物的粒度
在樣品中主要載磁礦物以亞鐵磁性礦物為主的前提下,King等(1982)用lf和ARM散點圖來估算磁性礦物的粒度,Dearing等(1997)用ARM/SIRM和fd%散點圖分析磁性礦物的磁疇狀態(tài),即所謂King plots和Dearing plots. King plots分析(圖5)顯示,錦界剖面中磁性礦物的粒度較細,絕大多數(shù)樣品的等效磁晶粒度介于0.1~1 μm之間,屬于SSD范疇,在磁性礦物濃度較高和較低段分別有少數(shù)樣品的等效磁晶粒度小于0.1 μm. 5.08~7.02 m的古土壤層樣品隨著磁性礦物濃度的增加磁晶粒度逐步變細,指示lf和ARM的增加與成土細顆粒的生成有關(guān);其他層位樣品隨著磁性礦物濃度的增加磁晶粒度逐漸變粗,暗示原生粗顆粒的貢獻. Dearing plots分析(圖5)顯示,磁性礦物處于粗粒SSD范疇,與King plots分析相吻合,fd%的分布范圍介于2%~11%之間,顯示SP顆粒的含量在地層中變化較大.ARM/SIRM和fd%存在良好的正相關(guān)關(guān)系,5.08~7.02 m的古土壤層樣品的磁晶粒度明顯較其他層位細,這與古土壤層中大量細粒SSD/超細粒SP磁性礦物的生成有關(guān).
5.1 原生和次生磁組分的分離
風成沉積物中的磁性礦物一部分為原生碎屑磁性礦物,另一部分為粉塵沉積后土壤發(fā)育過程中形成的次生磁性礦物(Liu et al., 2007a). 磁學參數(shù)的散點分析(圖6)發(fā)現(xiàn),5.08~7.02 m的古土壤層磁學參數(shù)之間的相關(guān)關(guān)系與其他地層明顯不同. 在SIRM值相同的情況下,古土壤層的fd和ARM明顯高于其他地層,且隨著SIRM的增加兩者的差別顯著增大,指示成土SP/SD磁性顆粒的貢獻. 與成土相關(guān)的fd(SP顆粒)和ARM(SD顆粒)則在整個剖面相關(guān)關(guān)系一致.fd%、ARM/SIRM和ARM/lf與lf的散點分析顯示,5.08~7.02 m的古土壤層樣品的lf隨磁晶粒度的變細而增加,其他地層樣品的lf隨磁晶粒度的變粗而增加;在5.08~7.02 m的古土壤層,隨lf的增大,ARM/lf增大的幅度明顯小于fd%和ARM/SIRM,這與SP顆粒增加對ARM/lf的影響有關(guān). 以上分析表明,古土壤層磁化率的增強主要受成土細粒/超細粒磁性礦物控制,其他地層主要受原生粗粒磁性礦物控制.
為進一步區(qū)分原生和次生磁組分對磁化率的貢獻,我們采用多變量一元線性回歸的“平均值概念”(Zhou et al., 2007)分離原生和次生磁化率. 風成沉積物的磁化率按成因可分為原生碎屑和次生成土兩個組分(Liu et al., 2007a),即lf=0+pedo. 研究表明,成土作用新生成的磁赤鐵礦粒度峰值稍大于SP/SD的閾值(約20 nm),呈對數(shù)正態(tài)分布,且其粒徑分布與成土作用強度幾乎不相關(guān)(Liu et al., 2005b),也就是說,成土作用的增強僅增加超細粒/細粒磁性礦物的濃度,而不改變其粒度分布. 因此,pedo可視為fd的回歸曲線經(jīng)過原點的線性相關(guān)函數(shù),即pedo=a×fd,其中a為比例系數(shù). 對lf和fd做一元線性回歸(圖7),得到方程(lf)e=8.199fd+ 7.663. 根據(jù)多變量線性回歸的“平均值概念”(Zhou et al., 2007),計算lf和fd的一元線性回歸,實際上是圍繞另一自變量0的平均值進行的:lf的估計值(lf)e為pedo的貢獻與0的平均值的恒量貢獻之和的恒定貢獻量隱含在回歸方程的截距項中.lf與(lf)e的差值即為由于0與其平均值的差值Δ0引起的lf的變化量Δlf.
圖7 fd和lf線性回歸圖Fig.7 Linear regression between fd and lf
5.2 磁學比值參數(shù)對降水量的響應
母質(zhì)決定土壤中初始鐵離子含量,是磁性礦物形成的基礎(chǔ). 近年來,磁學比值參數(shù)被廣泛用于古氣候重建研究中,相比較單一磁學參數(shù)磁化率而言,可以在一定程度上剔除或減小由磁性礦物背景值(母質(zhì))差異所產(chǎn)生的重建誤差. 常用的磁學比值參數(shù)可分為兩類,一類表征不同矯頑力磁性礦物的比值,如Hm/Gt(Hm和Gt分別為赤鐵礦和針鐵礦濃度)(Balsam et al., 2004; Ji et al., 2004)、Hm/Mg(Mg為磁鐵礦濃度)(Liu et al.,2007a)、Hm/fd(Torrent et al., 2006)和fd/HIRM(Liu et al., 2013)等;另一類表征細粒/超細粒磁性礦物在磁性礦物總量中所占的比重,如fd%(宋揚等, 2012)和ARM/SIRM(Geiss et al., 2008; Nie et al., 2013, 2014).fd/HIRM反映成土亞鐵磁性礦物和赤鐵礦的比值,Liu等(2013)對陜西省多個現(xiàn)代土壤剖面的定量研究表明,此參數(shù)與成土過程緊密相關(guān),并且不受母質(zhì)的明顯影響,可以用于降水量的定量重建.pedo可以明確指示成土成因SP/SD邊界顆粒含量,為了減小原生粉塵磁性礦物輸入的影響,我們?nèi)edo/0用于指示成土強度. 研究發(fā)現(xiàn),pedo/0和fd/HIRM存在明顯的線性正相關(guān)關(guān)系(圖8、9),表明二者均可以大大減少或避免原生磁性礦物輸入量的影響,和表征磁性礦物濃度的參數(shù)(如磁化率)相比可以更明確地指示成土強度和降水量.
圖8 0、pedo、HIRM、pedo/0和fd/HIRM隨深度的變化Fig.8 Variations of 0,pedo, HIRM, pedo/0 and fd/HIRM
5.3 HIRM對風塵磁通量的指示
HIRM通常用于指示高矯頑力不完全反鐵磁性礦物(赤鐵礦/針鐵礦)的含量(Liu et al., 2007b, 2012),由于針鐵礦在外加磁場達到4~7 T才會達到飽和(France and Oldfield, 2000; Maher et al., 2004; Hu et al., 2013),其在1 T磁場中獲得的IRM僅為赤鐵礦的1/100(France and Oldfield, 2000),因此對HIRM貢獻較小,HIRM主要受控于赤鐵礦含量. 赤鐵礦是沉積物中重要的染色礦物,在大氣粉塵中普遍存在,其含量常用做粉塵通量的代用指標(Nie et al., 2010; Roberts et al., 2011);同時,在粉塵沉積后的就地成土過程中,磁赤鐵礦被氧化也可形成赤鐵礦(Barrón and Torrent, 2002; Liu et al., 2008). Nie等(2010)系統(tǒng)分析了黃土高原地區(qū)朝那黃土-紅粘土序列,認為沉積物中的赤鐵礦主要來源于源區(qū)粉塵,而不是就地成土,HIRM可以指示源區(qū)粉塵中赤鐵礦的含量. 靠近源區(qū)的洛川剖面比遠離源區(qū)的靈臺剖面有更高的赤鐵礦含量,也表明赤鐵礦主要是原生碎屑成因(Balsam et al., 2004). 另一方面,Hu等(2013)利用CBD動態(tài)溶解和剩磁獲得曲線分解方法,分析了黃土-古土壤中不同成因赤鐵礦的矯頑力譜,結(jié)果顯示,微米粒級碎屑赤鐵礦的中心矯頑力約為1.5 T,而納米粒級成土赤鐵礦的中心矯頑力僅為約130 mT. 由此可見,即使存在成土成因的赤鐵礦,其在-300 mT磁場中剩磁已基本完全反轉(zhuǎn),對HIRM的貢獻也十分有限,HIRM主要由碎屑赤鐵礦的含量控制. 在本研究中,HIRM和0存在明顯正相關(guān)關(guān)系(圖8),0反映沉積物中原生磁性礦物的總體含量,主要由粗粒碎屑亞鐵磁性礦物(磁鐵礦/磁赤鐵礦)含量控制,也包括碎屑成因赤鐵礦/針鐵礦的貢獻. HIRM和0的一致變化,表明風塵赤鐵礦隨原生磁性礦物總體含量的增加(減少)而增加(減少),在風塵磁性礦物中保持大致穩(wěn)定的比例. HIRM(赤鐵礦含量)在海洋沉積物中常作為陸源粉塵的替代指標(Roberts et al.,2011),本研究表明在風沙沉積環(huán)境中,HIRM在指示來自源區(qū)的粉塵磁性礦物通量方面同樣存在一定潛力. 結(jié)合HIRM、0和年代學結(jié)果,毛烏素地區(qū)粉塵成因磁性礦物通量在中全新世氣候適宜期略有增加,4.6 ka迅速減小,隨后有逐漸增加的趨勢.
本文通過對毛烏素沙地東緣的錦界剖面進行系統(tǒng)的環(huán)境磁學研究,明確了剖面的基本磁學性質(zhì),并利用多變量一元線性回歸中的“平均值概念”分離磁化率的原生和次生組分,在此基礎(chǔ)上探討磁學參數(shù)對降水量和粉塵的指示意義. 結(jié)果顯示:
(1) 錦界剖面的磁性礦物以亞鐵磁性礦物為主,兼有不完全反鐵磁性礦物;磁性礦物的粒度相對較細,等效磁晶粒度介于0.1~1 μm之間,磁疇狀態(tài)以粗粒SSD為主,SP顆粒含量變化范圍較大,磁性礦物的粒度總體上隨成土作用的增強而變細;磁性礦物含量總體較黃土高原地區(qū)偏低,lf介于(5.21~38.50)×10-8m3·kg-1之間,且砂質(zhì)古土壤略高于風成砂,中全新世氣候適宜期發(fā)育的古土壤層明顯高于其他層位.
致謝 感謝劉冰博士在野外工作和數(shù)據(jù)分析中給予的幫助. 感謝兩位審稿專家提出的寶貴建議.
An Z S, Kukla G J, Porter S C, et al. 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130000 years.Quat.Res., 36(1): 29-36.
Balsam W, Ji J F, Chen J. 2004. Climatic interpretation of the Luochuan and Lingtai loess sections, China, based on changing iron oxide mineralogy and magnetic susceptibility.EarthPlanet.Sci.Lett., 223(3-4): 335-348.
Barrón V, Torrent J. 2002. Evidence for a simple pathway to maghemite in Earth and Mars soils.Geochim.Cosmochim.Acta, 66(15): 2801-2806.
Beer J, Shen C D, Heller F, et al. 1993.10Be and magnetic susceptibility in Chinese loess.Geophys.Res.Lett., 20(1): 57-60.
Carvallo C, Muxworthy A R, Dunlop D J. 2006. First-order reversal curve (FORC) diagrams of magnetic mixtures: Micromagnetic models and measurements.Phys.EarthPlanet.Inter., 154(3-4): 308-322.Dearing J A, Bird P M, Dann R J L, et al. 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation.Geophys.J.Int., 130(3): 727-736.
France D E, Oldfield F. 2000. Identifying goethite and hematite from rock magnetic measurements of soils and sediments.J.Geophys.Res., 105(B2): 2781-2795.
Geiss C E, Egli R, Zanner C W. 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils.J.Geophys.Res.,113: B11102, doi: 10.1029/2008JB005669.Han J M, Lü H Y, Wu N Q, et al. 1996. The magnetic susceptibility of modern soils in China and its use for paleoclimate reconstruction.Stud.Geophys.Geod., 40(3): 262-275.
Heller F, Shen C D, Beer J, et al. 1993. Quantitative estimates of pedogenic ferromagnetic mineral formation in Chinese loess and palaeoclimatic implications.EarthPlanet.Sci.Lett., 114(2-3): 385-390.
Heslop D, Dillon M. 2007. Unmixing magnetic remanence curves without a priori knowledge.Geophys.J.Int., 170(2): 556-566.
Hu P X, Liu Q S, Torrent J, et al. 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis.EarthPlanet.Sci.Lett., 369-370: 271-283.
Ji J F, Chen J, Balsam W, et al. 2004. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle: Rapid climatic response of the East Asian Monsoon to the tropical Pacific.Geophys.Res.Lett., 31(3): L03207, doi: 10.1029/2003GL018975.
King J, Banerjee S K, Marvin J, et al. 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments.EarthPlanet.Sci.Lett., 59(2): 404-419.
Li P Y, Liu X M, Guo X L, et al. 2013. The magnetic susceptibility properties of top soil′s in Gobi-Loess Plateau, Northwest China.Quat.Sci. (in Chinese), 33(2): 360-367.
Liu B, Jin H L, Sun L Y, et al. 2014. Holocene moisture change revealed by the Rb/Sr ratio of aeolian deposits in the southeastern Mu Us Desert, China.AeolianRes., 13: 109-119.
Liu Q S, Banerjee S K, Jackson M J, et al. 2003. An integrated study of the grain-size-dependent magnetic mineralogy of the Chinese loess/paleosol and its environmental significance.J.Geophys.Res., 108(B9): 2437, doi: 10.1029/2002JB002264. Liu Q S, Banerjee S K, Jackson M J, et al. 2004a. Grain sizes of susceptibility and anhysteretic remanent magnetization carriers in Chinese loess/paleosol sequences.J.Geophys.Res., 109: B03101, doi: 10.1029/2003JB002747.
Liu Q S, Jackson M J, Yu Y, et al. 2004b. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols.Geophys.Res.Lett., 31: L22603, doi: 10.1029/2004GL021090. Liu Q S, Deng C L, Yu Y, et al. 2005a. Temperature dependence of magnetic susceptibility in an argon environment: Implications for pedogenesis of Chinese loess/palaeosols.Geophys.J.Int., 161(1): 102-112. Liu Q S, Torrent J, Maher B A, et al. 2005b. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis.J.Geophys.Res., 110: B11102, doi: 10.1029/2005JB003726.
Liu Q S, Deng C L, Torrent J, et al. 2007a. Review of recent developments in mineral magnetism of the Chinese loess.Quat.Sci.Rev., 26(3-4): 368-385.
Liu Q S, Roberts A P, Torrent J, et al. 2007b. What do the HIRM and S-ratio really measure in environmental magnetism?Geochem.Geophy.Geosy., 8(9): Q09011, doi: 10.1029/2007GC001717.
Liu Q S, Barrón V, Torrent J, et al. 2008. Magnetism of intermediate hydromaghemite in the transformation of 2-line ferrihydrite into hematite and its paleoenvironmental implications.J.Geophys.Res., 113: B01103, doi: 10.1029/2007JB005207.
Liu Q S, Roberts A P, Larrasoaa J C, et al. 2012. Environmental magnetism: Principles and applications.Rev.Geophys., 50(4): RG4002, doi: 10.1029/2012RG000393.
Liu X M, Bloemendal J, Rolph T. 1994. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences: comments and reply.Geology, 22(9): 857-860.
Liu Z F, Liu Q S, Torrent J, et al. 2013. Testing the magnetic proxyFD/HIRM for quantifying paleoprecipitation in modern soil profiles from Shaanxi Province, China.GlobalPlanet.Change, 110: 368-378.
Lü B, Liu X M, Chen Q, et al. 2012. Effects of CBD treatment on magnetic minerals of natural samples.ChineseJ.Geophys. (in Chinese), 55(9): 3077-3087, doi: 10.6038/j.issn.0001-5733.2012.09.025.
Lu H Y, Yi S W, Liu Z Y, et al. 2013. Variation of East Asian monsoon precipitation during the past 21 k. y. and potential CO2forcing.Geology, 41(9): 1023-1026.
Maher B A, Karloukovski V V, Mutch T J. 2004. High-field remanence properties of synthetic and natural submicrometre haematites and goethites: significance for environmental contexts.EarthPlanet.Sci.Lett., 226(3-4): 491-505. Muxworthy A R, Williams W, Virdee D. 2003. Effect of magnetostatic interactions on the hysteresis parameters of single-domain and pseudo-single-domain grains.J.Geophys.Res., 108(B11): 2517, doi: 10.1029/2003JB002588.
Nie J S, Song Y G, King J W, et al. 2010. HIRM variations in the Chinese red-clay sequence: Insights into pedogenesis in the dust source area.J.AsianEarthSci., 38(3-4): 96-104.
Nie J S, Song Y G, King J W, et al. 2013. Six million years of magnetic grain-size records reveal that temperature and precipitation were decoupled on the Chinese Loess Plateau during ~4.5-2.6 Ma.Quat.Res., 79(3): 465-470.
Nie J S, Stevens T, Song Y G, et al. 2014. Pacific freshening drives Pliocene cooling and Asian monsoon intensification.Sci.Rep., 4: 5457, doi: 10.1038/srep05474.
Peters C, Dekkers M J. 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size.Phys.Chem.Earth, 28(16-19): 659-667.
Roberts A P, Rohling E J, Grant K M, et al. 2011. Atmospheric dust variability from Arabia and China over the last 500, 000 years.Quat.Sci.Rev., 30(25-26): 3537-3541.
Song Y, Hao Q Z, Ge J Y, et al. 2012. Quantitative relationships between modern soil magnetic susceptibility and climatic variables of the Chinese Loess Plateau.Quat.Sci. (in Chinese), 32(4): 679-689.Stevens T, Carter A, Watson T P, et al. 2013. Genetic linkage between the Yellow River, the Mu Us desert and the Chinese Loess Plateau.Quat.Sci.Rev., 78: 355-368.
Sun J M. 2000. Origin of eolian sand mobilization during the past 2300 years in the Mu Us desert, China.Quat.Res., 53(1): 78-88.
Sun J M. 2002. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau.EarthPlanet.Sci.
Lett., 203(3-4): 845-859.
Thompson R, Oldfield F. 1986. Environmental Magnetism. London: Allen & Unwin, 1-227.
Torrent J, Barrón V, Liu Q S. 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil.Geophys.Res.Lett., 33(2): L02401, doi: 10.1029/2005GL024818.Verosub K L, Fine P, Singer M J, et al. 1993. Pedogenesis and paleoclimate: Interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences.Geology, 21(11): 1011-1014.
Wang T, et al. 2011. Deserts and Aeolian Desertification in China. Beijing: Science Press, 476-492.
Worm H U. 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility.Geophys.J.Int., 133(1): 201-206.Wu S Y. 2013. Climatic characteristic and variation analyses of Shenmu County over the past 55 years.J.ShaanxiMeteor. (in Chinese), (2): 20-23.
Xia D S, Jia J, Wei H T, et al. 2012. Magnetic properties of surface soils in the Chinese Loess Plateau and the adjacent Gobi areas, and their implication for climatic studies.J.AridEnviron., 78: 73-79.
Xia D S, Jia J, Li G H, et al. 2014. Out-of-phase evolution between summer and winter East Asian monsoons during the Holocene as recorded by Chinese loess deposits.Quat.Res., 81(3): 500-507.
Xu Z W, Lu H Y, Yi S W, et al. 2013. Spatial variations of the Mu Us dune field (north central China) during the Last Glacial Maximum and Holocene Optimum.Quat.Sci. (in Chinese), 33(2): 218-227.
Zhao S, Xia D S, Jin H L, et al. 2013. Magnetic characteristics of aeolian sand sediments in Horqin sandy land, Northeastern China, and its paleoenvironmental significance: A preliminary exploration.J.DesertRes. (in Chinese), 33(2): 334-342.
Zhou W J, Chen M B, Xian F, et al. 2007. The mean value concept in mono-linear regression of multi-variables and its application to trace studies in geosciences.Sci.ChinaSer.D:EarthSci., 50(12): 1828-1834.
附中文參考文獻
李平原, 劉秀銘, 郭雪蓮等. 2013. 西北戈壁沙漠-黃土高原區(qū)表土磁化率特征及其意義. 第四紀研究, 33(2): 360-367.
呂鑌, 劉秀銘, 陳渠等. 2012. CBD方法對天然樣品磁性礦物影響. 地球物理學報, 55(9): 3077-3087, doi: 10.6038/j.issn.0001-5733.2012.09.025.
宋揚, 郝青振, 葛俊逸等. 2012. 黃土高原表土磁化率與氣候要素的定量關(guān)系研究. 第四紀研究, 32(4): 679-689.
吳勝勇. 2013. 神木縣近55年氣候特征及變化分析. 陜西氣象, (2): 20-23.
徐志偉, 鹿化煜, 弋雙文等. 2013. 末次盛冰期和全新世大暖期毛烏素沙地的空間變化. 第四紀研究, 33(2): 218-227.
趙爽, 夏敦勝, 靳鶴齡等. 2013. 科爾沁沙地風沙沉積物磁學特征及其古環(huán)境意義初探. 中國沙漠, 33(2): 334-342.
(本文編輯 何燕)
Magnetic properties of eolian sand sediments in the Mu Us Desert and their paleoenvironmental significance
ZHAO Shuang1, GAO Fu-Yuan1, JIA Jia1, LI Guan-Hua1, XIA Dun-Sheng1, JIN He-Ling2
1KeyLaboratoryofWesternChina′sEnvironmentalSystems(MinistryofEducation),LanzhouUniversity,Lanzhou730000,China2KeyLaboratoryofDesertandDesertification,ColdandAridRegionsEnvironmentalandEngineeringResearchInstitute,ChineseAcademyofSciences,Lanzhou730000,China
In arid deserts, magnetic susceptibility enhancement caused by pedogenesis is limited and usually disturbed by lithogenic magnetic signals. Separation of these two magnetic components is essential for selecting the precise proxy for climate and dust variation. This paper presents detailed magnetic investigation of eolian sand sediments from the Jinjie section at the east edge of Mu Us Desert to explore the relationship between the magnetic parameters and sedimentary environment.Hysteresis loops and temperature dependence of magnetization (J-Tcurves) were measured to identify the types of magnetic minerals. Environmental magnetic measurements, such as low-frequency magnetic susceptibility (lf), frequency-dependent magnetic susceptibility (fd), susceptibility of anhysteretic remanent magnetization (ARM), saturation isothermal remanent magnetization (SIRM) and “hard” isothermal remanent magnetization (HIRM) were carried out to determine the content of magnetic minerals in different types and domains. Magnetic ratio parameters, including percentage of frequency-dependent magnetic susceptibility (fd%),ARM/SIRM andARM/lf, were calculated to estimate the grain-size of magnetic minerals. The “mean value concept” in a mono-linear regression of multi-variables was used to separate lithogenic and pedogenic magnetic susceptibility components (0andpedo).The results show that magnetic minerals of the Jinjie section are dominated by ferromagnetic minerals with a few antiferromagnetic minerals mixed. Magnetic grain-size is quite fine compared with the adjacent loess deposits, mainly coarse stable single domain (SSD) and superparamagnetic (SP) particles. The equivalent magnetic grain-size is 0.1~1 μm with more fine/ultrafine particles appearing in paleosol layers. Both lithogenic and pedogenic magnetic mineral contents of the Jinjie section are less than eolian depositions on the Chinese Loess Plateau.lfvalues range (5.21~38.50)×10-8m3·kg-1, with the average0value 7.663×10-8m3·kg-1. The proportion of0andpedooccupied in the mass magnetic susceptibility is widely fluctuant in the section, thus paleoenvironmental significance of magnetic susceptibility is complicated, and great attention should be paid when magnetic susceptibility is used as a paleoprecipitation indicator.The ratios of magnetic parameters, i.e.pedo/0,fd/HIRM,fd% andARM/SIRM, possess significant linear or logarithmic/exponential correlation between each other. All these ratios can reduce or refrain the effect from lithogenic magnetic signals, and thus can accurately indicate pedogenesis intensity and precipitation. We consider that HIRM mainly reflects detrital hematite content, which is derived from the dust source region. The prominent positive correlation between HIRM and0indicates that detrital hematite possesses a roughly constant proportion in the mass eolian magnetic minerals, thus HIRM can be used as a proxy for dust flux in the Mu Us Desert.
0andpedo; Precipitation; Dust flux; Environmental magnetism; Mu Us Desert
10.6038/cjg20151022.
Zhao S, Gao F Y, Jia J, et al. 2015. Magnetic properties of eolian sand sediments in the Mu Us Desert and their paleoenvironmental significance.ChineseJ.Geophys. (in Chinese),58(10):3706-3718,doi:10.6038/cjg20151022.
中國科學院重點部署項目(KZZD-EW-04-04),蘭州大學中央高?;究蒲袠I(yè)務費專項資金(lzujbky-2014-270)和國家自然科學基金項目(41271215)共同資助.
趙爽,男,1989年生,博士研究生,主要從事環(huán)境磁學與干旱區(qū)環(huán)境演化研究.E-mail:zhaosh13@lzu.edu.cn
10.6038/cjg20151022
P318
2014-11-28,2015-08-21收修定稿
趙爽, 高福元, 賈佳等. 2015. 毛烏素沙地風沙沉積物磁學特征及其古環(huán)境意義.地球物理學報,58(10):3706-3718,