劉 顧,汪劉應(yīng),程建良,王 煒,吳永發(fā)
(1 第二炮兵工程大學(xué),西安 710025; 2 第二炮兵裝備研究院,北京 100085; 3 第二炮兵駐7105軍代室,成都 610100)
?
碳納米管吸波材料研究進展
劉 顧1,汪劉應(yīng)1,程建良2,王 煒1,吳永發(fā)3
(1 第二炮兵工程大學(xué),西安 710025; 2 第二炮兵裝備研究院,北京 100085; 3 第二炮兵駐7105軍代室,成都 610100)
介紹了碳納米管的結(jié)構(gòu)和性能特點,歸納和分析了碳納米管吸波材料的最新進展,并提出了現(xiàn)有研究中存在的不足及進一步研究的方向。目前碳納米管吸波材料的研究主要集中在不同結(jié)構(gòu)碳納米管吸波材料、磁性金屬/碳納米管復(fù)合吸波材料、稀土/碳納米管復(fù)合吸波材料、鐵氧體/碳納米管復(fù)合吸波材料、聚合物/碳納米管復(fù)合吸波材料以及陶瓷/碳納米管復(fù)合吸波材料。對碳納米管進行形貌控制、結(jié)構(gòu)優(yōu)化、表面修飾、復(fù)合摻雜改性以及界面結(jié)合和耐溫性能的強化,是碳納米管吸波材料今后的發(fā)展方向。
碳納米管;吸波材料;復(fù)合材料
現(xiàn)代電子通訊和雷達探測技術(shù)的迅速發(fā)展,極大地提高了戰(zhàn)爭中目標(biāo)的搜索和跟蹤能力,武器裝備受到越來越嚴(yán)重的威脅。通過隱身技術(shù)可以減小目標(biāo)的雷達散射截面(Radar Cross Section,RCS)[1,2],減弱雷達回波強度,使探測系統(tǒng)不易發(fā)現(xiàn)或發(fā)現(xiàn)距離縮短,從而提高武器裝備的作戰(zhàn)生存和突防攻擊能力。與此同時,隨著電子技術(shù)的飛速發(fā)展,電磁波污染問題日益嚴(yán)重。研究具有吸波能力的材料有著迫切的實際需要。電磁波吸收材料作為當(dāng)前民用防護和提高軍事武器裝備的生存與攻擊能力的有效方法,近年來成為廣泛研究的熱點[3-5]。
新的電磁環(huán)境對吸波材料的“薄、輕、寬、強”提出了更高的要求。自1991年日本科學(xué)家Iijima通過石墨棒放電形成的陰極沉淀物進行電鏡研究,首次發(fā)現(xiàn)了直徑3~40nm,長度約為1μm的多層空心管狀物——碳納米管(Carbon Nanotubes,CNTs)后,對于碳納米管的基礎(chǔ)理論和應(yīng)用研究方興未艾[6]。碳納米管具有特殊的電磁特性、優(yōu)異的力學(xué)性能和穩(wěn)定的物化性質(zhì),同時具有頻帶寬、質(zhì)量輕、兼容性好等特點[7-9],是新一代最具發(fā)展?jié)摿Φ奈ú牧?。本文結(jié)合國內(nèi)外學(xué)者的研究情況,綜述了碳納米管吸波材料的最新研究進展,并提出了碳納米管吸波材料研究中存在的問題以及今后的研究方向。
碳納米管可看成由石墨片層繞著中心軸按照一定的螺旋度卷曲而成的管狀物,管壁由六邊形排列的碳原子組成,每個碳與周圍的三個碳原子相鄰,C—C間通過sp2和sp3雜化鍵結(jié)合[10]。按其石墨的層數(shù)碳納米管可以分為單壁碳納米管(Single-Walled Carbon Nanotubes,SWCNTs)和多壁碳納米管(Multi-Walled Carbon Nanotubes,MWCNTs),單壁碳納米管可看成是由石墨平面卷曲而成,并在其兩端罩上碳原子的封閉曲面。不同的卷曲方式,得到的單壁碳納米管的結(jié)構(gòu)也會不同。多壁碳納米管則是由若干個單層管同心套疊成,它的層片間距約為0.34nm,比石墨的層片間距(0.335nm)稍大。其結(jié)構(gòu)如圖1所示。
圖1 不同結(jié)構(gòu)碳納米管結(jié)構(gòu)示意圖及電鏡照片扶手型(a),鋸齒型(b),螺旋型(c)單壁碳納米管結(jié)構(gòu)示意圖; (d)螺旋單壁碳納米管隧道掃描電鏡照片;(e)多壁碳納米管隧道掃描透射電鏡照片[11]Fig.1 Schematic illustration and electron microscope images of the structures of carbon nanotubes armchair (a), zigzag (b), and chiral (c) SWCNTs schematic illustration;(d)tunneling electron microscope showing the helical structure of a chiral SWCNT; (e)transmission electron microscope image of a MWCNT[11]
碳納米管自1991年發(fā)現(xiàn)以來,因其優(yōu)良的力學(xué)性能[12-15],導(dǎo)電性能[16-19],導(dǎo)熱性能[20-23],光電性能[24-31]和其他特殊性能,在傳感器、增強復(fù)合材料、光學(xué)材料、場效應(yīng)晶體管、場發(fā)射器等領(lǐng)域引起了研究者的廣泛關(guān)注。同時碳納米管具有獨特的微結(jié)構(gòu)和幾何構(gòu)形,由于小尺寸效應(yīng)和高比表面積效應(yīng),具有較高的介電損耗角正切,依靠介質(zhì)的電子極化或界面極化衰減吸收電磁波;而且由于量子限域效應(yīng),電子在碳納米管中的運動是沿軸向的,碳納米管表現(xiàn)出金屬或半導(dǎo)體特性,有利于電磁波的衰減吸收[7]。
碳納米管作為一維納米材料,質(zhì)量輕,六邊形結(jié)構(gòu)連接完美,具有許多獨特的力學(xué)、熱學(xué)、光學(xué)和電學(xué)性能。
2.1 力學(xué)性能
2.2 熱學(xué)性能
碳納米管良好的熱學(xué)性能主要表現(xiàn)在其比熱容和熱導(dǎo)率。碳納米管的比熱容與高度取向石墨相似,Yi等[34]通過實驗發(fā)現(xiàn)從10~300K,碳納米管的比熱容與溫度呈直線關(guān)系,這種線性關(guān)系與100K時計算得到的高度取向石墨一致,但比200~300K時計算值要低。碳納米管還具有優(yōu)良的熱傳導(dǎo)率,Berber等[35]通過平衡分子動力學(xué)模擬發(fā)現(xiàn)其熱導(dǎo)率在室溫可以達到6600W ·m-1·K-1,Che等[36]報道了單壁碳納米管在室溫時的熱導(dǎo)率為2980W ·m-1·K-1,Xie等[19]研究發(fā)現(xiàn)碳納米管的熱傳導(dǎo)率隨著其在增強材料中含量的增加以及溫度的升高而不斷增強。由于優(yōu)異的熱傳導(dǎo)率,碳納米管同時又是一種優(yōu)異的熱傳導(dǎo)增強復(fù)合材料。填充含量為1.0%(質(zhì)量分?jǐn)?shù),下同)時,碳納米管和炭纖維對環(huán)氧基復(fù)合材料進行熱導(dǎo)率增強,熱導(dǎo)率分別提高了125%和45%[37]。碳納米管能形成高的熱傳導(dǎo)通路,傳導(dǎo)通路越長,對熱導(dǎo)率的增強也就越大,高的長徑比可以提高其熱傳導(dǎo)通路,進而具有更大的熱傳導(dǎo)率[38]。
2.3 光學(xué)性能
從分子特性來看,電磁波矢量在碳納米管的環(huán)向被量子化,存在較多的范霍夫奇點,因此光學(xué)吸收峰多且強烈;固態(tài)碳納米管的波矢量在其軸向連續(xù),容易發(fā)生電子和聲子散射,因此從理論角度來推測,碳納米管的這兩種特性必然造成其具有獨特的光學(xué)性能。碳納米管在激光輻照下會產(chǎn)生發(fā)光效應(yīng),具有光致發(fā)光效應(yīng);在吸收一定電能后可以發(fā)出可見光,具有電致發(fā)光特性。不同結(jié)構(gòu)和表面狀態(tài)的碳納米管可以表現(xiàn)出不同的光學(xué)性能,并且在與稀土元素或有機物復(fù)合后,發(fā)光性能明顯增強[39,40]。2004年,清華大學(xué)韋進全等[41]提出碳納米管電燈泡概念,他們發(fā)現(xiàn),碳納米管具有比黑體輻射更高的發(fā)光效率,碳納米管電燈泡的發(fā)光可能具有冷光行為。同時,碳納米管燈泡還表現(xiàn)出發(fā)光閾值電壓低,在相同電壓下具有更高的照度,特別是電阻隨溫度變化不明顯等特點。
2.4 電學(xué)性能
碳納米管的碳原子之間是sp2雜化,每個碳原子有一個未成對電子位于垂直于層片的π軌道上,因此碳納米管與石墨一樣具有優(yōu)良的導(dǎo)電性能。Mintmire等[42]、Ebbesen等[43]的理論計算和實測結(jié)果表明,由于結(jié)構(gòu)不同,碳納米管可能是導(dǎo)體,也可能是半導(dǎo)體。碳納米管的導(dǎo)電性能取決于石墨層片卷曲形成管狀的直徑和螺旋角,導(dǎo)電性介于導(dǎo)體和半導(dǎo)體之間。當(dāng)碳納米管的結(jié)構(gòu)指數(shù)(n,m)滿足m-n=3q(q為整數(shù))時,碳納米管呈金屬性,不滿足此條件的碳納米管則呈半導(dǎo)體性。Dai等[44]發(fā)現(xiàn)碳納米管的徑向電阻大于軸向電阻,并且這種電阻的各向異性隨著溫度的降低而增大。Huang等[45]通過計算認(rèn)為直徑0.7nm的碳納米管具有超導(dǎo)性,在低溫時,碳納米管超導(dǎo)的性質(zhì)已經(jīng)被觀察到,1.4nm的單壁碳納米管的超導(dǎo)臨界溫度約為0.55K,而在分子篩中生長的0.5nm的單壁碳納米管,其超導(dǎo)臨界溫度為5K。Eom等[46]采用高能球磨法制備了碳納米管-硅復(fù)合材料,球磨后硅被碳納米管擠壓在一起,同時界面處生成的SiC使得硅顆粒和碳納米管具有更好的緊密接觸。與Li組裝后的Li/(SWCNT/Si)電池充放電效率和蓄電能力有很大提高。這主要是由于碳納米管提供了柔韌的導(dǎo)電基體,在電池充放電過程中避免了電池材料的松散,同時球磨過程可以減小硅和碳納米管的尺寸,進一步提高兩者之間的電接觸。
目前,國內(nèi)外對碳納米管吸波材料的研究主要集中在不同結(jié)構(gòu)碳納米管吸波材料、磁性金屬/碳納米管復(fù)合吸波材料、稀土/碳納米管復(fù)合吸波材料、鐵氧體/碳納米管復(fù)合吸波材料、碳納米管/聚合物復(fù)合吸波材料以及碳納米管/陶瓷復(fù)合吸波材料。
3.1 不同結(jié)構(gòu)碳納米管吸波材料
碳納米管按不同的結(jié)構(gòu)形態(tài)可以分為單壁碳納米管和多壁碳納米管;原生碳納米管和純化碳納米管;有缺陷碳納米管和無缺陷碳納米管;定向生長碳納米管和團聚態(tài)碳納米管。Micheli等[7]和Kim等[47]研究表明碳材料的結(jié)構(gòu)形態(tài)對其電磁特性以及吸波效果具有重要的影響,單壁碳納米管由于具有更小的管徑和更大的長徑比,相同含量下比多壁碳納米管具有更大的導(dǎo)電性,多數(shù)研究者將其用于電磁屏蔽[48-50]。
Paul等[51]研究發(fā)現(xiàn)有缺陷的碳納米管比石墨化的碳納米管導(dǎo)電性更好,碳納米管的開口以及缺陷有利于電子的發(fā)射,缺陷可以作為低能態(tài)的電子通道,從而導(dǎo)致有缺陷的碳納米管比石墨化的碳納米管導(dǎo)電性更好。Hsu等[52,53]制備了有較多晶格缺陷的碳納米管、晶格完整的碳納米管以及硼摻雜的碳納米管,研究了缺陷對多壁碳納米管介電常數(shù)的影響;測試了三種碳納米管與聚苯乙烯在X波段(8~12GHz)的復(fù)介電常數(shù),研究發(fā)現(xiàn)含有較多晶格缺陷的碳納米管的復(fù)介電常數(shù)實部遠(yuǎn)大于其他兩種碳納米管,而硼摻雜碳納米管的虛部最大。晶格缺陷可以起到極化中心的作用,從而提高碳納米管復(fù)介電常數(shù)的實部,即提高了儲存電磁場能量的能力。同時,摻雜硼后顯著提高了碳納米管自旋態(tài)密度,能隙寬度降到0.16meV,電子在外場中更易躍遷,從而提高了復(fù)介電常數(shù)的虛部,即損耗電磁波的能力。
張增富等[54]研究了單壁碳納米管、聚團狀多壁碳納米管、陣列狀多壁碳納米管以及純化與未純化碳納米管在2~18GHz的電磁特性,結(jié)果表明不同結(jié)構(gòu)狀態(tài)的碳納米管對電磁波的損耗因子及衰減常數(shù)順序為:陣列狀多壁碳納米管>原生聚團狀多壁碳納米管>純化聚團狀多壁碳納米管>原生單壁碳納米管>純化單壁碳納米管,以上表明多壁碳納米管具有較好的吸收效果。
3.2 碳納米管/磁性金屬復(fù)合吸波材料
由于其特殊結(jié)構(gòu)和介電性能,碳納米管表現(xiàn)出較強的寬頻帶微波吸收性能,同時兼具質(zhì)量輕、穩(wěn)定性好等一系列優(yōu)點,為了進一步對碳納米管的吸波性能進行改善或調(diào)控,目前研究中的常用方法是利用磁性金屬對碳納米管進行包覆或者填充,經(jīng)過碳管外磁性金屬包覆或管內(nèi)磁性材料的填充,可以利用磁損耗與電損耗多種機制來損耗電磁波能量。
Srivastava等[55]通過電化學(xué)沉積的方法在碳納米管表面沉積了一層納米鎳粒子,將鎳/碳納米管分散于聚苯乙烯中,研究了鎳/碳納米管/聚苯乙烯在2~4GHz的電磁波吸收性能,Ni/MWCNTs質(zhì)量分?jǐn)?shù)分別為0.5%和1.5%,厚度為6mm和4mm時,反射率峰值分別達到-33dB和-24dB,可以作為一種輕質(zhì)、柔韌且耐蝕的電磁波吸收材料。Sui等[56]采用熱分解的方法在碳納米管表面沉積了納米Co粒子,由于磁損耗和介電損耗的同時存在以及Co和CNTs之間的界面極化作用,Co/CNTs相比單一的Co和CNTs具有更佳的吸波性能。Che等[57]采用化學(xué)氣相沉積法制備了管內(nèi)填充單質(zhì)Fe的碳納米管,與環(huán)氧樹脂復(fù)合并測試反射率。他們發(fā)現(xiàn)當(dāng)填充的無定形鐵轉(zhuǎn)變?yōu)榫挺?Fe后,材料的反射率提高了2倍。通過測試晶型轉(zhuǎn)化前后的復(fù)介電常數(shù)和復(fù)磁導(dǎo)率,他們認(rèn)為α-Fe提高了碳納米管的復(fù)磁導(dǎo)率虛部,由此導(dǎo)致復(fù)合材料吸波性能的增強。與Che等的研究成果相似,Zhu等[58,59],Zhao等[60],Zou等[61],Lin等[62,63],Yi等[64]將Fe,Ni,Co,Sn等填充在碳納米管內(nèi),均得到了較好的吸波效果。另外還有研究者采用先對碳納米管進行填充,然后表面再進行包覆或者混合,進一步對碳納米管的吸波性能進行調(diào)節(jié)[65,66]。
3.3 碳納米管/鐵氧體復(fù)合吸波材料
Ghasemi[67]將多壁碳納米管分散于BaFe10Mg0.5-Co0.5ZrO19的前驅(qū)體溶液中,通過溶膠-凝膠工藝制備了Mg-Co-Zr取代的鋇鐵氧體負(fù)載的多壁碳納米管復(fù)合納米粒子,并研究了不同碳納米管含量時復(fù)合粒子的電磁特性。相比單一鋇鐵氧體和多壁碳納米管,該復(fù)合粒子具有優(yōu)異的吸波性能,在8~12GHz波段內(nèi)具有兩個吸收峰,反射率峰值隨著碳納米管含量的增加而降低,當(dāng)碳納米管體積分?jǐn)?shù)在8%時具有最佳吸波效果,反射率在8~12GHz波段內(nèi)小于-20dB。
Wang等[68]通過溶膠-凝膠法將SrFe12O19沉積在多壁碳納米管管壁,研究了不同碳納米管含量對SrFe12O19/MWCNTs復(fù)合材料的吸波性能的影響,碳納米管質(zhì)量分?jǐn)?shù)在6%時,SrFe12O19/MWCNTs復(fù)合材料具有最佳的吸波效果。Zhao等[69]采用化學(xué)沉淀法制備了Fe3O4/MWCNTs復(fù)合材料,并測試了它在2~18GHz的電磁性能。由于Fe3O4粒子的作用,F(xiàn)e3O4/MWCNTs復(fù)合材料不僅具有較大的介電損耗,同時具有磁損耗,3mm的Fe3O4/MWCNTs反射率達到-30dB以下。Zhan等[70]采用氯化鐵分解的方法將納米Fe3O4沉積在碳納米管管壁上,制備了CNTs/Fe3O4復(fù)合吸波材料,由于CNTs與Fe3O4之間的界面作用和Fe3O4的磁損耗,CNTs/Fe3O4復(fù)合材料具有較大的介電損耗和磁損耗。Cao等[71]制備了Fe3O4/MWCNTs以及聚苯胺包覆的PANI/Fe3O4/MWCNTs,研究了Fe3O4和PANI的界面作用對復(fù)合材料電磁性能的影響。碳納米管與異質(zhì)結(jié)構(gòu)之間的界面對復(fù)合材料的介電性能具有重要作用,影響其電磁波吸收以及吸收頻帶。
3.4 碳納米管/稀土復(fù)合吸波材料
稀土材料由于4f殼層不滿,具有特殊的電、光、磁性能[72],既有磁損耗,也有介電損耗。He等[73]研究發(fā)現(xiàn)稀土元素對碳納米管進行修飾后會表現(xiàn)出特殊的電磁性能。碳納米管是具有中空結(jié)構(gòu)的一維材料,在多壁碳納米管的內(nèi)部填充稀土氧化物是調(diào)整碳納米管電磁性能,優(yōu)化其吸波效果的一個重要途徑。
Zhang等[74]將Sm2O3填充在碳納米管內(nèi),研究了Sm2O3填充對碳納米管電磁參數(shù)和吸波性能的影響,結(jié)果發(fā)現(xiàn):Sm2O3填充可以提高碳納米管的磁損耗,電磁參數(shù)的變化可以改變其阻抗匹配,進一步影響其吸波性能。與未填充碳納米管相比,Sm2O3填充的碳納米管反射率峰值向高頻移動,同時頻帶有所拓寬。Zhang等[75]還采用濕化學(xué)法制備了稀土氧化物Er2O3填充碳納米管,Er2O3起到了與Sm2O3類似的作用,通過對碳納米管電磁參數(shù)的改變從而影響其吸波性能,2mm的Er2O3填充碳納米管與石蠟混合物的反射率峰值達到-27.96dB,小于-10dB的頻帶寬為2.30GHz。
3.5 碳納米管/聚合物復(fù)合吸波材料
碳納米管具有優(yōu)良的導(dǎo)電性能,主要依靠電損耗實現(xiàn)對電磁波的吸收,碳納米管的含量對吸波性能具有很大影響,過量的碳納米管會引起吸波涂層電導(dǎo)率的提高,電磁波輻射到其表面會出現(xiàn)明顯的趨膚效應(yīng),產(chǎn)生界面反射降低吸波性能,需要將其分散在其他基體材料中,目前研究的主要方向為碳納米管/聚合物復(fù)合吸波材料。
Liu等[76]制備了單壁碳納米管/聚亞安酯復(fù)合材料,研究了不同碳納米管含量復(fù)合材料的吸波性能。碳納米管質(zhì)量分?jǐn)?shù)為5%時,復(fù)合材料的吸波性能最佳,反射率峰值為-22dB。隨碳納米管含量增加,反射率吸收峰向低頻移動。曹茂盛等[77]研究了不同質(zhì)量分?jǐn)?shù)碳納米管/聚酯基復(fù)合材料的吸波性能。碳納米管質(zhì)量分?jǐn)?shù)為8%時,碳納米管/聚酯基復(fù)合材料在8~40GHz波段對電磁波有良好的吸收效果。厚度為1.40mm時,碳納米管/聚酯基復(fù)合吸波材料的反射率峰值達到-8.14dB;厚度為5.50mm時,反射率峰值減小為-13dB。Park等[78]制備了多壁碳納米管/聚氨酯復(fù)合材料,與混有炭黑的玻纖/環(huán)氧樹脂復(fù)合材料做成夾心結(jié)構(gòu),測試了復(fù)合涂層在8~12GHz頻率范圍內(nèi)吸波效果,最優(yōu)反射率峰值可以達到-30dB。Thomassin等[79]制備了多壁碳納米管/聚丙烯復(fù)合吸波材料,通過增溶劑的添加對碳納米管在聚丙烯中的分散性進行改善,碳納米管質(zhì)量分?jǐn)?shù)在2%時就具有較好的吸波效果.
3.6 碳納米管/陶瓷復(fù)合吸波材料
碳納米管/陶瓷復(fù)合吸波材料是吸波材料研究中的又一熱點。由于陶瓷材料具有耐高溫、耐腐蝕及抗氧化等特點,碳納米管具有優(yōu)異的電磁波吸收性能,因此,碳納米管/陶瓷復(fù)合材料可望在高溫吸波領(lǐng)域獲得應(yīng)用。
向長淑等[80]采用溶膠-凝膠法合成了碳納米管/石英復(fù)合粉體,經(jīng)熱壓燒結(jié)獲得致密的復(fù)合材料,其復(fù)介電常數(shù)隨著碳納米管含量的增加而大幅度提高,大的介電常數(shù)虛部說明該復(fù)合材料具有很大的介電損耗,碳納米管/石英復(fù)合材料在8.2~12.4GHz最大的反射損耗達到-8dB。劉學(xué)建等[81]利用反應(yīng)燒結(jié)工藝制備了CNTs/Si3N4復(fù)合材料,該復(fù)合材料具有較好的微波吸收性能,可用作微波吸收材料。Cao等[82]將單晶結(jié)構(gòu)ZnO包覆在MWCNTs表面,ZnO和MWCNTs形成一種電阻-電容網(wǎng)狀結(jié)構(gòu)形式,從而影響復(fù)合材料的介電性能和微波吸收性能,起到改善其吸收頻帶寬的作用。MWCNTs和SiO2構(gòu)成的導(dǎo)電網(wǎng)絡(luò)同樣會對組成的復(fù)合材料MWCNTs/SiO2的導(dǎo)電性能和介電性能產(chǎn)生影響,MWCNTs質(zhì)量分?jǐn)?shù)在5%~10%和15%~20%時,出現(xiàn)兩次滲透閾值[83]。
Cao等[84,85]采用燒結(jié)方法制備了MWCNTs/SiO2復(fù)合材料,研究了復(fù)合材料在X波段(8.2~12.4 GHz)不同溫度下(30~600℃)的介電常數(shù)和微波吸收性能。MWCNTs/SiO2復(fù)合材料的介電常數(shù)實部和虛部隨著溫度的升高而逐漸增大,介電常數(shù)實部的增加是因為電子極化的弛豫時間隨溫度的升高而縮短,介電常數(shù)虛部的增加主要由于溫度的升高導(dǎo)致復(fù)合體系的電導(dǎo)率增大,漏電損耗增強。圖2為溫度對MWCNTs/SiO2介電常數(shù)實部和虛部的影響[84]。不同頻率處材料的介電常數(shù)有所不同,同一溫度下隨著頻率的增加介電常數(shù)值下降,具有頻散現(xiàn)象。溫度由373K增加到873K,頻率為8.2GHz時,材料的復(fù)介電常數(shù)實部約由11.1增加到14.3,虛部由11.3增加到15.4;頻率增加到12.2GHz時,復(fù)介電常數(shù)實部約由8.2增加到9.2,虛部由7.4增加到9.3。電磁波反射率計算結(jié)果顯示,復(fù)合材料在研究的溫度范圍內(nèi)都具有良好的電磁衰減能力,且該能力隨溫度的升高有減弱的趨勢。
圖2 溫度對MWCNTs/SiO2介電常數(shù)的影響 (a)介電實部;(b)介電虛部[84]Fig.2 Complex permittivity of MWCNTs/SiO2 (a)the profile of dielectric constant vs temperature and frequency;(b)the profile of dielectric loss vs temperature and frequency[84]
本課題組利用Al2O3-TiO2陶瓷材料耐高溫、抗氧化、耐腐蝕等優(yōu)點,采用微弧等離子噴涂技術(shù)制備出以CNTs作為高溫吸波劑,Al2O3-TiO2陶瓷材料作為黏結(jié)劑的高溫復(fù)合吸波涂層[86,87]。制備出的高溫復(fù)合吸波涂層具有優(yōu)異的高溫吸波性能,300℃時復(fù)合涂層的反射率峰值減小為-12.88dB,小于-5dB頻帶寬增加到4.48GHz,500℃時復(fù)合涂層的反射率峰值為-15.63dB,隨溫度由25℃增加到500℃,復(fù)合涂層的高溫吸波性能逐漸增強。同時由于陶瓷材料對碳納米管高溫氧化的防護,復(fù)合涂層的高溫氧化性能也隨之提高。
作為新一代最具發(fā)展?jié)摿Φ奈▌?,碳納米管已經(jīng)受到了廣泛的關(guān)注,在碳納米管的制備、結(jié)構(gòu)優(yōu)化、復(fù)合改性等方面均取得了顯著的進展,為了滿足吸波材料在“厚度薄、密度小、吸收強、頻段寬,耐高溫”等方面的要求,碳納米管吸波材料在以下方面有待進一步解決:
(1)碳納米管的工業(yè)化及可控性生產(chǎn)。碳納米管只有真正實現(xiàn)工業(yè)化和可控性生產(chǎn),才能在吸波材料領(lǐng)域得到廣泛的應(yīng)用,目前碳納米管在量化生產(chǎn)、生長機理探索、結(jié)構(gòu)控制等方面還存在很大的探索空間。
(2)碳納米管吸波材料的寬頻化研究。新的電磁條件對吸波材料的吸收頻帶提出了更高的要求,碳納米管作為電損耗型吸波材料,其吸波頻帶目前還無法滿足吸波寬頻化要求,進一步開展碳納米管復(fù)合吸波材料研究,進行有效的復(fù)合、改性,調(diào)整碳納米管復(fù)合材料的結(jié)構(gòu)組成、形貌以及電磁參數(shù),調(diào)控其阻抗匹配特性,對改善其吸波頻帶具有重要的意義。
(3)碳納米管吸波材料的分散與結(jié)合性能研究。碳納米管之間存在較強的范德華力作用,極易發(fā)生纏繞和團聚,與其他材料或基體的分散存在較大的困難,極大地影響了碳納米管吸波材料的吸波性能和力學(xué)性能,采取有效的表面改性手段或者復(fù)合材料的合成工藝,改善碳納米管的分散狀態(tài),提高碳納米管在復(fù)合材料或基體中界面結(jié)合力,是碳納米管工程化應(yīng)用中急需解決的問題。
(4)碳納米管吸波材料高溫性能研究。碳納米管是新一代最具發(fā)展?jié)摿Φ母邷匚▌?,但碳材料在氧化氣氛中的氧化,?yán)重影響其組織結(jié)構(gòu)和電磁性能,對其應(yīng)用帶來了較大的困擾。采用改性手段、多層吸波涂層設(shè)計以及采用合適的涂層制備技術(shù),有效降低其氧化,是碳納米管吸波材料高溫應(yīng)用的重要發(fā)展方向。
[1] RIUS J M, TERRANDO M,JOFRE L. High-frequency RCS of complex radar target in real target in real time[J]. IEEE Transactions on Antennas and Propagation, 1993, 41(9): 1308-1319.
[2] LIU R, LUN N, QI Y X, et al. Microwave absorption properties of TiN nanoparticles[J]. Journal of Alloys and Compounds, 2011, 509(41): 10032-10035.
[3] ZHEN L, GONG Y X, JIANG J T, et al. Synthesis of CoFe/Al2O3composite nanoparticles as the impedance matching layer of wideband multilayer absorber[J]. Journal of Applied Physics, 2011, 109(7): 07A332.
[4] DENG L W, DING L, ZHOU K S, et al. Electromagnetic properties and microwave absorption of W-type hexagonal ferrites doped with La3+[J]. Journal of Magnetism and Magnetic Materials, 2011, 323(14): 1895-1898.
[5] WANG C, LV R, HUANG Z H, et al. Synthesis and microwave absorbing properties of FeCo alloy particles/graphite nanoflake composites[J]. Journal of Alloys and Compounds, 2011, 509(2): 494-498.
[6] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[7] MICHELI D, APOLLO C, PASTORE R, et al. X-band microwave characterization of carbon-based nanocomposite material, absorption capability comparison and RAS design simulation[J]. Composites Science and Technology, 2010, 70(2): 400-409.
[8] LI N, HUANG Y, DU F, et al. Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites[J]. Nano Letters, 2006, 6(6): 1141-1145.
[9] LARRY L, SAJJAD H, DARIO P, et al. Size and mobility of excitons in (6,5) carbon nanotubes[J]. Nature Physics, 2009, 5(1): 54-58.
[10] CHA H G, KUMAR S. Materials science-making strong fibers[J]. Science, 2008, 319 (5865): 908-909.
[11] YU M F, LOURIE O, DYER M J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640.
[12] COLEMAN J N, KHAN U, GUN'KO Y K. Mechanical reinforcement of polymers using carbon nanotubes[J]. Advanced Materials, 2006, 18(6): 689-706.
[13] AHMAD I, CAO H Z, CHEN H H, et al. Carbon nanotube toughened aluminium oxide nanocomposite[J]. Journal of the European Chemical Society, 2009, 30(4): 865-873.
[14] DENG F, ITO M, NOGUCHI T, et al. Elucidation of the reinforcing mechanism in carbon nanotube/rubber nanocomposites[J]. ACS Nano, 2011, 5(5): 3858-3866.
[15] INAM F, YAN H X, JAYASEELAN D D, et al. Electrically conductive alumina-carbon nanocomposites prepared by spark plasma sintering[J]. Journal of the European Ceramic Society, 2010, 30(2): 153-157.
[16] ZHAN G D, KUNTZ J D, WAN J L, et al. Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites[J]. Nature Materials, 2003, 2(1): 38-42.
[17] LIAO Y Z, ZHANG C, ZHANG Y, et al. Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors[J]. Nano Letters, 2011, 11(3): 954-959.
[18] AHMAD K, PAN W, SHI S L. Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites[J]. Applied Physics Letters, 2006, 89(13): 133122.
[19] XIE H Q, CHEN L F. Review on the preparation and thermal performances of carbon nanotube contained nanofluids[J]. Journal of Chemical and Engineering Data, 2011, 56(4): 1030-1041.
[20] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano Letters, 2006, 6(1): 96-100.
[21] CHOI T Y, POULIKAKOS D, THARIAN J, et al. Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-omega method[J]. Nano Letters, 2006, 6(8): 1589-1593.
[22] KIM P, SHI L, MAJUMDAR A, et al. Thermal transport measurements of individual multiwalled nanotubes[J]. Physics Review Letters, 2001, 87 (21): 4-8.
[23] O′CONNELL M J, BACHILO S M, HUFFMAN C B, et al. Band gap fluorescence from individual single-walled carbon nanotubes[J]. Science, 2002, 297(5581): 593-596.
[24] 徐志偉, 郭啟微, 王曉生, 等. 電子束輻照對碳納米管結(jié)構(gòu)及性能的影響[J]. 材料工程, 2010, (12): 92-97.
XU Zhi-wei, GUO Qi-wei, WANG Xiao-sheng, et al. Effect of electron-beam irradiation on structure and properties of CNTs[J]. Journal of Materials Engineering, 2010, (12): 92-97.
[25] MISEWICH J A, MARTEL R, AVOURIS P, et al. Electrically induced optical EMISSION from a carbon nanotube FET[J]. Science, 2003, 300(5620): 783-786.
[26] WANG Q H, CORRIGAN T D, DAI J Y, et al. Field emission from nanotube bundle emitters at low fields[J]. Applied Physics Letters, 1997, 70(24): 3308-3310.
[27] YUGE R, MIYAWAKI J, ICHIHASHI T, et al. Highly efficient field emission from carbon nanotube-nanohorn hybrids prepared by chemical vapor deposition[J]. ACS Nano, 2010, 4(12): 7337-7343.
[28] GARRETT D J, BROOKSBY P A, RAWSON F J, et al. Reproducible fabrication of robust, renewable vertically aligned multiwalled carbon nanotube/epoxy composite electrodes[J]. Analytical Chemistry, 2011, 83(21):8347-8351.
[29] BINDL D J, WU M Y, PREHN F C, et al. Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films[J]. Nano Letters, 2011, 11(2): 455-460.
[30] ST-ANTOINE B C, MéNARD D, MARTEL R. Single-walled carbon nanotube thermopile for broadband light detection[J]. Nano Letters, 2011, 11(2): 609-613.
[31] ODOM T W, HUANG J L, KIM P, et al. Atomic structure and electronic properties of single-walled carbon nanotubes[J]. Nature, 1998, 319: 62-64.
[32] LU J P. Elastic properties of carbon nanotubes and nanoropes[J]. Physics Review Letters, 1997, 79(7): 1297-1300.
[33] ZHOU O, FLEMING R M, MURPHY D W, et a1. Defects in carbon nano-structures[J]. Science, 1994, 263(5154): 1744-1747.
[34] YI W, LU L, ZHANG D L, et al. Linear specific hear of carbon nanotubes[J]. Physical Review B, 1999, 59: R9015-R9018.
[35] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physics Review Letters, 2000, 84(20): 4613-4616.
[36] CHE J, CAGIN T, GODDARD W A. Thermal conductivity of carbon nanotubes[J]. Nanotechnology, 2000, 11: 65-69.
[37] BIERCUK M J, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied Physics Letters, 2002, 80(15): 2767-2769.
[38] JIANG W T, DING G L, PENG H. Measurement and model on thermal conductivities of carbon nanotube nanorefrigerants[J]. International Journal of Thermal Sciences, 2009, 48(6): 1108-1115.
[39] BACHILO S M, STRANO M S, KITTRELL C, et al. Structure-assigned optical spectra of single-walled carbon nanotubes[J]. Science, 2002, 298(5602): 2361-2366.
[40] SUN W X, HUANG Z P, ZHANG L, et al. Luminescence from multi-walled carbon nanotubes and the Eu(Ⅲ)/multi-walled carbon nanotube composite[J]. Carbon, 2003, 41(8): 1685-1687.
[41] WEI J Q, ZHU H W, WU D H, et al. Carbon nanotubes filaments in household light bulbs[J]. Applied Physics Letters, 2004, 84(24): 4869-4871.
[42] MINTMIRE J W, DUNLAP B I, WHITE C T. Are fullerene tubules metallic[J]. Physical Review Letters, 1992, 68(5): 631-634.
[43] EBBESEN T W, LEZEC H J, HIURA H, et al. Electrical conductivity of individual carbon nanotubes[J]. Nature, 1996, 382(6586): 54-56.
[44] DAI H J, WONG E W, LIEBER C M. Probing electrical transport in nanomaterials:conductivity of individual carbon nanotubes[J]. Science, 1996, 272(526): 523-526.
[45] HUANG Y, OKADA M, TANAKA K, et a1. Estimation of superconducting transition temperature in metallic carbon nanotubes[J]. Physics Review B, 1996, 53(9): 5129.
[46] EOM J Y, KWON H S. Preparation of single-walled carbon nanotube/silicon composites and their lithium storage properties[J]. ACS Applied Materials & Interfaces, 2011, 3(4):1015-1021.
[47] KIM J B, LEE S K, KIM C G. Comparison study on the effect of carbon nano materials for single-layer microwave absorbers in X-band[J]. Composites Science and Technology, 2008, 68(14): 2909-2916.
[48] YANG Y L, MOOL C G, KENNETH D L, et al. Novel carbon nanotube-polystyrene foam composites for electromagnetic interference shielding[J]. Nano Letters, 2005, 5(11): 2131-2134.
[49] HUANG Y, LI N, MA Y F, et al. The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites[J]. Carbon, 2007, 45(8): 1614-1621.
[50] LIU Z F, BAI G, HUANG Y, et al. Reflection and absorption contributions to the electromagnetic interference shielding of single-walled carbon nanotube/polyurethane composites[J]. Carbon, 2007, 45(4): 821-827.
[51] WATTS P C P, WEN K H, HAROLD W K, et al. Are bulk defective carbon nanotubes less electrically conducting?[J]. Nano Letters, 2003, 3(4): 549-553.
[52] WATTS P C P, HSU W K, BARNES A, et al. High permittivity from defective multiwalled carbon nanotubes in the X-band[J]. Advanced Materials, 2003, 15(7-8): 600-603.
[53] HSU W K, NAKALIMA T. Electrically conducting boron-doped multi-walled carbon nanotube bundles[J]. Carbon, 2002, 40(3): 462-464.
[54] 張增富,羅國華,范壯軍,等.不同結(jié)構(gòu)碳納米管的電磁波吸收性能研究[J].物理化學(xué)學(xué)報,2006, 22(3): 296-300.
ZHANG Zeng-fu, LUO Guo-hua, FAN Zhuang-jun, et al. Complex permittivity and permeability spectra of different kinds of carbon nanotubes[J]. Acta Physico-Chimica Sinica, 2006, 22(3): 296-300.
[55] SRIVASTAVA R K, NARAYANAN T N, MARY A P, et al. Ni filled flexible multi-walled carbon nanotube-polystyrene composite films as efficient microwave absorbers[J]. Applied Physics Letters, 2011, 99(11): 113116.
[56] SUI J H, ZHANG C, LI J, et al. Microwave absorption and catalytic activity of carbon nanotubes decorated with cobalt nanoparticles[J]. Materials Letters, 2012, 75(5): 158-160.
[57] CHE R C, PENG L M, DUAN X F. Microwave absorption enhancement and complex permittivity permeability of Fe encapsulated within carbon nanotubes[J]. Advanced Materials, 2004, 16(5): 401-405.
[58] ZHU H, LIN H Y, GUO H F, et al. Microwave absorbing property of Fe-filled carbon nanotubes synthesized by a practical route[J]. Materials Science and Engineering: B, 2007, 138(1): 101-104.
[59] ZHU H, ZHANG L, ZHANG L Z, et al. Electromagnetic absorption properties of Sn-filled multi-walled carbon nanotubes synthesized by pyrolyzing[J]. Materials Letters, 2010, 64(3): 227-230.
[60] ZHAO D L, LI X, SHEN Z M. Preparation and electromagnetic and microwave absorbing properties of Fe-filled carbon nanotubes[J]. Journal of Alloys and Compounds, 2009, 471(1-2): 457-460.
[61] ZOU T C, LI H P, ZHAO N Q, et al. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes filled with Ni nanowire[J]. Journal of Alloys and Compounds, 2010, 496(1-2): L22-L24.
[62] LIN H Y, ZHU H, GUO H F, et al. Microwave-absorbing properties of Co-filled carbon nanotubes[J]. Materials Research Bulletin, 2008, 43(10): 2697-2702.
[63] LIN H Y, ZHU H, GUO H F, et al. Investigation of the microwave-absorbing properties of Fe-filled carbon nanotubes[J]. Materials Letters, 2007, 61(16): 3547-3550.
[64] YI H B, WEN F S, QIAO L, et al. Microwave electromagnetic properties of multiwalled carbon nanotubes filled with Co nanoparticles[J].Journal of Applied Physics, 2009, 106(10): 103922.
[65] GUI X C, YE W, WEI J Q, et al. Optimization of electromagnetic matching of Fe-filled carbon nanotubes /ferrite composites for microwave absorption[J]. Journal of Physics D: Applied Physics, 2009, 42(7): 075002.
[66] WANG C, RUITAO L, KANG F Y, et al. Synthesis and application of iron-filled carbon nanotubes coated with FeCo alloy nanoparticles[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(13): 1924-1927.
[67] GHASEMI A. Enhanced reflection loss and permittivity of self assembled Mg-Co-Zr substituted barium ferrite dot array on carbon nanotubes[J]. Journal of Magnetism and Magnetic Materials, 2012, 324(6): 1080-1083.
[68] WANG W T, LI Q L, CHANG C B. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites[J]. Synthetic Metals, 2011, 161(1-2): 44-50.
[69] ZHAO C Y, ZHANG A B, ZHENG Y P, et al. Electromagnetic and microwave-absorbing properties of magnetite decorated multiwalled carbon nanotubes prepared with poly(N-vinyl-2-pyrrolidone)[J]. Materials Research Bulletin, 2012, 47(2): 217-221.
[70] ZHAN Y Q, ZHAO R, LEI Y J, et al. Preparation, characterization and electromagnetic properties of carbon nanotubes/Fe3O4inorganic hybrid material[J]. Applied Surface Science, 2011, 257(9): 4524-4528.
[71] CAO M S, YANG J, SONG W L,et al. Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwa ve absorption[J].ACS Applied Materials Interfaces, 2012, 4(12): 6949-6956.
[72] KUANG Q, LIN Z W, LIAN W, et al. Syntheses of rare-earth metal oxide nanotubes by the sol-gel method assisted with porous anodic aluminum oxide temp1ates[J]. Journal of Solid State Chemistry,2007, 180(4): 1236-1242.
[73] HE B J, SUN W L, WANG M, et al. New magnetic phenomena of rare earth ions-modified carbon nanotubes[J]. Materials Chemistry and Physics, 2006, 9(2-3): 202-205.
[74] ZHANG L, ZHU H. Dielectric, magnetic, and microwave absorbing properties of multi-walled carbon nanotubes filled with Sm2O3nanoparticles[J]. Materials Letters, 2009, 63(2): 272-274.
[75] ZHANG L, ZHU H, SONG Y, et al. The electromagnetic characteristics and absorbing properties of multi-walled carbon nanotubes filled with Er2O3nanoparticles as microwave absorbers[J]. Materials Science and Engineering: B, 2008, 153(1-3): 78-82.
[76] LIU Z F, BAI G, HUANG Y, et al. Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites[J]. Journal of Physical Chemistry C, 2007, 111(37): 13696-13700.
[77] 曹茂盛, 高正娟, 朱靜. CNTs/Polyester復(fù)合材料的微波吸收特性研究[J]. 材料工程, 2003, (2): 34-36.
CAO Mao-sheng, GAO Zheng-juan, ZHU Jing. Research on microwave absorbability towards CNTs/polyester composites[J]. Journal of Materials Engineering, 2003, (2): 34-36.
[78] PARK K Y, LEE S E,KIM C G, et al.Fabrication and electromagnetic characteristics of electromagnetic wave absorbing sandwich structures[J]. Composites Science and Technology, 2006, 66(3-4): 576-584.
[79] THOMASSIN J M, HUYNEN I, ROBERT J, et al. Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials[J]. Polymer, 2010, 51(1): 115-121.
[80] 向長淑, 楊炯, 朱勇, 等. 碳納米管/石英復(fù)合材料的電磁波吸收性能[J]. 無機材料學(xué)報, 2007, 22(1): 101-105.
XIANG Chang-shu, YANG Jiong, ZHU Yong, et al. Electromagnetic wave absorbing properties of carbon nanotube-fused silica composites[J]. Journal of Inorganic Materials, 2007, 22(1): 101-105.
[81] 劉學(xué)建, 黃智勇, 向長淑, 等. 反應(yīng)燒結(jié)工藝制備碳納米管/氮化硅陶瓷基復(fù)合材料[J]. 硅酸鹽學(xué)報, 2006, 34(2): 133-136.
LIU Xue-jian, HUANG Zhi-yong, XIANG Chang-shu, et al. Carbon nanotubes/silicon nitride ceramic matric composites fabricated by reaction-bonded process[J]. Journal of the Chinese Ceramic Society, 2006, 34(2): 133-136.
[82] SONG W L, CAO M S, WEN B, et al. Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption[J]. Materials Research Bulletin, 2012, 47(7): 1747-1754.
[83] LU M M, YUAN J, WEN B, et al. Carbon materials with quasi-graphene layers: the dielectric, percolation properties and the electronic transport mechanism[J]. Chinese Physics B, 2013, 22(3): 037701.
[84] SONG W L, CAO M S, HOU Z L, et al. High dielectric loss and its monotonic dependence of conducting-dominated multiwalled carbon nanotubes/silica nanocomposite on temperature ranging from 373 to 873K in X-band[J]. Applied Physics Letters, 2009, 94(23): 233110.
[85] SONG W L, CAO M S, HOU Z L, et al. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite[J]. Scripta Materialia, 2009, 61(2): 201-204.
[86] 華紹春, 王漢功, 汪劉應(yīng), 等. 微弧等離子噴涂碳納米管/納米Al2O3-TiO2復(fù)合涂層的吸波性能研究[J]. 物理學(xué)報, 2009, 58(9): 6534-6541.
HUA Shao-chun, WANG Han-gong, WANG Liu-ying, et al. Absorption properties of micro-plasma sprayed carbon nanotube-nanostructure A12O3-TiO2composite coatings[J]. Acta Physica Sinica, 2009, 58(9): 6534-6541.
[87] 汪劉應(yīng),徐卓,華紹春, 等. 微弧等離子噴涂碳納米管/納米Al2O3-TiO2復(fù)合涂層高溫性能研究[J]. 無機材料學(xué)報, 2011, 26(3): 239-243.
WANG Liu-ying, XU Zhuo, HUA Shao-chun, et al. High temperature performance of micro-plasma sprayed CNTs/A12O3-TiO2composite coating[J]. Journal of Inorganic Materials, 2011, 26(3): 239-243.
Progress in Research on Carbon NanotubesMicrowave Absorbers
LIU Gu1,WANG Liu-ying1,CHENG Jian-liang2,WANG Wei1,WU Yong-fa3
(1 The Second Artillery Engineering University,Xi’an 710025,China; 2 Equipment Institute of the Second Artillery,Beijing 100085,China; 3 Military Representative Office of Second Artillery in 7105,Chengdu 610100,China)
The physical structure, performance and recent advances of carbon nanotubes microwave absorbers were reviewed and summarized. The approaches for further researches were also suggested. Recent researches on carbon nanotubes microwave absorbers are mainly focused on carbon nanotubes microwave absorbers with different structures, magnetic metal/carbon nanotubes microwave absorbers, rare earth/carbon nanotubes microwave absorbers, ferrite/carbon nanotubes microwave absorbers, polymer/carbon nanotubes microwave absorbers and ceramic/carbon nanotubes microwave absorbers. For the broad application of carbon nanotubes as electromagnetic wave absorbers, further investigations should focus on aspect control, structure optimization, surface decoration, composite doping modification, interface bonding and oxidation protection of carbon nanotubes.
carbon nanotubes;microwave absorber;composite
10.11868/j.issn.1001-4381.2015.01.018
TB34
A
1001-4381(2015)01-0104-09
國家自然科學(xué)基金資助項目(50845039,51102278);新世紀(jì)優(yōu)秀人才支持計劃資助項目(NCET-11-0868)
2013-06-13;
2014-11-06
汪劉應(yīng)(1971-),男,教授,博士研究生導(dǎo)師,主要從事功能材料與涂層技術(shù)研究,聯(lián)系地址:陜西省西安市灞橋區(qū)同心路2號3503分隊(710025),E-mail:wangliuying1971@163.com