李潤娟,王登峰,郭 楠
(1.河南廣播電視大學(xué),河南 鄭州 450046;2.西安交通大學(xué),陜西 西安 710049)
板料焊接變形測(cè)量的數(shù)字圖像相關(guān)法應(yīng)用研究
李潤娟1,王登峰1,郭 楠2
(1.河南廣播電視大學(xué),河南 鄭州 450046;2.西安交通大學(xué),陜西 西安 710049)
針對(duì)板料焊接時(shí)溫度場(chǎng)的極不均勻性導(dǎo)致應(yīng)變場(chǎng)的復(fù)雜性,提出一種基于數(shù)字圖像相關(guān)法的全場(chǎng)、全過程分析板料焊接變形情況的方法。首先,對(duì)板料表面進(jìn)行預(yù)處理;然后,利用高速相機(jī)拍攝板料焊接及冷卻自由變形的全過程,通過數(shù)字圖像相關(guān)技術(shù)計(jì)算所有圖像中變形點(diǎn)的位移;最后,直觀地獲得板料焊接全場(chǎng)的變形規(guī)律。通過對(duì)Q235鋼板進(jìn)行氬弧堆焊實(shí)驗(yàn)表明,將一種新的3D-DIC技術(shù)應(yīng)用于在線焊接變形中,能得到試件表面在整個(gè)焊接過程的全場(chǎng)變形數(shù)據(jù),并且在高溫焊縫區(qū)獲得準(zhǔn)確的變形規(guī)律。該方法攻克長期以來不能實(shí)時(shí)測(cè)量高溫焊縫處應(yīng)變的難題,為數(shù)值模擬理論提供驗(yàn)證手段,對(duì)揭示焊接變形機(jī)理、解決矯正變形問題等具有重要意義。
數(shù)字圖像相關(guān)法;全場(chǎng);全過程;局部焊接區(qū)域;實(shí)時(shí)
板料焊接時(shí)焊縫處材料因集中受熱不均勻,導(dǎo)致板料在焊接過程中發(fā)生失穩(wěn)變形,嚴(yán)重影響構(gòu)件的質(zhì)量。因此迫切需要對(duì)焊接變形過程進(jìn)行有效測(cè)量,觀察其變形規(guī)律。
目前對(duì)全場(chǎng)全過程焊接變形的研究主要采用數(shù)值模擬和實(shí)驗(yàn)測(cè)量兩種方法。有限元理論的研究[1-5]主要基于熱彈塑性的數(shù)值模擬仿真結(jié)果和變形穩(wěn)定后的實(shí)驗(yàn)結(jié)果相對(duì)比,得到較好的準(zhǔn)確度,但是模擬理論仍然基于一定的假設(shè)和簡化,變形過程的仿真缺少準(zhǔn)確的實(shí)驗(yàn)驗(yàn)證手段。常用的實(shí)驗(yàn)測(cè)量方法有接觸和非接觸兩種。接觸測(cè)量方法主要采用熱電偶、高溫應(yīng)變片等進(jìn)行高溫變形測(cè)量[6],但是引伸計(jì)等接觸式測(cè)量方法在柔性材料、高溫環(huán)境使用時(shí)具有明顯的局限性[7-9]。光學(xué)測(cè)量方法屬于非接觸式測(cè)量,其中基于激光的測(cè)量方法和數(shù)字圖像相關(guān)法是目前材料變形測(cè)量最常用的方法。電子散斑干涉[10]技術(shù)利用兩束相干的激光構(gòu)建光路,產(chǎn)生干涉散斑場(chǎng)用相機(jī)記錄,對(duì)幅散斑圖進(jìn)行計(jì)算機(jī)數(shù)字化處理,實(shí)現(xiàn)變形、表面缺陷等多種測(cè)試。數(shù)字圖像相關(guān)法[11]是一種可以實(shí)現(xiàn)全場(chǎng)、非接觸、高準(zhǔn)確度位及應(yīng)變測(cè)量的新型光測(cè)技術(shù),具有操作方便、全場(chǎng)測(cè)量的優(yōu)點(diǎn),相對(duì)于激光測(cè)量方法,數(shù)字圖像相關(guān)法對(duì)環(huán)境要求更低,更適合于工業(yè)化的在線測(cè)量。
數(shù)字圖像相關(guān)法是利用工業(yè)CCD相機(jī)連續(xù)拍攝試件在受力情況下試件的變形行為,通過變形前后兩幅圖像的相關(guān)性計(jì)算得到位移場(chǎng)。數(shù)字圖像相關(guān)法是通過圖像匹配進(jìn)行相關(guān)性計(jì)算,圖像匹配的準(zhǔn)確度決定DIC方法的準(zhǔn)確度,本文提出的3D-DIC方法關(guān)鍵技術(shù)為圖像亞像素匹配。
如圖1所示,設(shè)A(xi,yi)為參考圖像子區(qū)中心點(diǎn),參考圖像中的子區(qū)通過映射函數(shù)和相關(guān)性函數(shù)搜索匹配圖像中的子區(qū)。當(dāng)待匹配圖像中的點(diǎn)滿足搜索關(guān)系時(shí),A′(xi′,yi′)就作為參考圖像和變形圖像對(duì)應(yīng)點(diǎn)。為了提高搜索準(zhǔn)確度,首先進(jìn)行整像素搜索,得到像素級(jí)別的位移分量u、ν,然后對(duì)整像素搜索結(jié)果進(jìn)行細(xì)化,就需要亞像素搜索,本文采用最小二乘迭代法進(jìn)行亞像素搜索。設(shè)f(x,y)和g(x′,y′)為點(diǎn)A、A′的灰度值,采用一階映射函數(shù)表示兩點(diǎn)的關(guān)系:
圖1 圖像子區(qū)匹配示意圖
其中:x′=x+u+uxΔx+uyΔy,y′=y+ν+νxΔx+νyΔy,e(x,y)為噪聲灰度。對(duì)g(x′,y′)進(jìn)行泰勒分解并去掉高于一階的項(xiàng):
設(shè)未知數(shù)的改正數(shù)向量為X,偏導(dǎo)數(shù)矩陣為A,觀察值向量(參考圖像與變形圖像像素灰度的差)為I,噪聲向量為v,設(shè)子區(qū)像素?cái)?shù)目為n,則對(duì)應(yīng)的誤差方程組為
式中,XT=[du,dux,duy,dν,dνx,dνy]。
利用最小二乘法求解方程可得:
其中P為權(quán)值,令P為單位矩陣,即所有的觀測(cè)權(quán)值相等,求得X之后,對(duì)未知數(shù)進(jìn)行更新,重復(fù)迭代,直到改正數(shù)X小于設(shè)定的閥值。
利用數(shù)字圖像相關(guān)法(DIC)測(cè)量板料焊接變形示意圖如圖2所示,兩個(gè)相機(jī)置于板料上方,焊接和圖像采集同時(shí)進(jìn)行,焊接完成后相機(jī)仍持續(xù)采集圖像,直到冷卻完畢。對(duì)所采集的圖像在DIC系統(tǒng)中同時(shí)進(jìn)行三維重建和散斑匹配,通過立體視覺技術(shù)和數(shù)字圖像相關(guān)技術(shù)計(jì)算全場(chǎng)位移值,本文擬采用Q235板料進(jìn)行堆焊實(shí)驗(yàn),板料尺寸為200mm×300mm×3mm,焊接速度5 mm/s,電流90 A,焊接時(shí)間60 s,冷卻時(shí)間420s,焊接過程中、焊接完成時(shí)、冷卻后板料全場(chǎng)變形分布情況如圖3所示。
板料焊縫沿水平Y(jié)向移動(dòng),從圖中可以直觀地看出,X方向:焊接過程中,X向的變形量以焊接點(diǎn)為中心向四周逐漸減小,離焊接點(diǎn)近處產(chǎn)生正向變形位移,沿焊縫方向的兩側(cè)邊緣處產(chǎn)生負(fù)向位移;焊接剛結(jié)束時(shí),X向位移均為正,板料右半部分,越靠近焊縫,變形量越大,最大值達(dá)到1.098mm,板料周邊區(qū)域從負(fù)向位移基本回歸到初始位置;冷卻結(jié)束后,X向位移出現(xiàn)明顯的馬鞍形狀,沿焊縫方向的邊緣區(qū)域位移為正值,靠近焊縫處達(dá)到最大值1.361mm,沿板料寬度方向的邊緣區(qū)域位移為負(fù)值,越靠近邊緣,沿負(fù)方向的變形量越大,負(fù)向最大值可達(dá)-0.629mm。
圖2 焊接檢測(cè)系統(tǒng)示意圖
圖3 焊接過程中、完成時(shí)、冷卻后板料全場(chǎng)變形分布圖
Y方向:焊接過程中,除了焊縫區(qū)變形較大以外,其余部分變形均勻,產(chǎn)生少量的正向位移,焊接結(jié)束后最大變形量為0.727 mm,但冷卻結(jié)束后變形稍有回升,變形量為0.61mm。在焊縫區(qū)域,整個(gè)焊接和冷卻過程中,焊縫上端產(chǎn)生負(fù)向位移,下端產(chǎn)生正向位移。冷卻結(jié)束后,板料上半部分小于下半部分變形量,但都變形均勻。
Z方向變形趨勢(shì)與X向基本一致,變形量以Z向?yàn)橹鲗?dǎo),冷卻后板料成“馬鞍”狀,冷卻結(jié)束后Z向最大變形量達(dá)到6.395mm。
論文介紹了利用數(shù)字圖像相關(guān)法實(shí)時(shí)全場(chǎng)測(cè)量焊接及冷卻的全過程變形,提出一種基于3D-DIC測(cè)量焊接變形的方案,解決了板料焊接變形中全場(chǎng)、全過程問題,不僅獲得板料全場(chǎng)所有點(diǎn)在整個(gè)焊接過程的變形規(guī)律,還得到高溫焊縫處的變形規(guī)律。通過對(duì)數(shù)字圖像相關(guān)法關(guān)鍵技術(shù)的介紹及實(shí)驗(yàn)數(shù)據(jù)分析可得出下列結(jié)論:
1)在線監(jiān)測(cè)板料全場(chǎng)全過程變形情況,能與產(chǎn)生的物理現(xiàn)象相對(duì)應(yīng),對(duì)揭示變形機(jī)理有重要的意義。
2)焊接過程中Y向除焊縫處變化較大外,其余位置位移變化量不大,而X、Z向則在全場(chǎng)都有較大變化,變化趨勢(shì)也較接近,Z向變形處于主導(dǎo)地位。
3)本文實(shí)驗(yàn)結(jié)果可為高溫環(huán)境下板料焊接全場(chǎng)非接觸變形測(cè)量提供變形修正依據(jù)。
[1]Deng D,Liang W,Murakawa H.Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J].J Mater Process Technol,2007(183):219-225.
[2]AkbariMousavi S A A, Miresmaeili R.Experimental and numerical analyses of residual stress distributions in TIG welding process for 304L stainless steel[J].J Mater Process Technol,2008(208):383-394.
[3]Deng D.FEM prediction of welding residual stress and distortion in carbon steel considering phase transformation effects[J].Mater Des,2009(30):359-366.
[4]Wang J C,Rashed S,Murakawa H,et al.Investigation of buckling deformation of thin plate welded structures[J].Proceedings of International Society of Ocean and Polar Engineering Maui,2011:125-131.
[5]Tajiama Y,Okumoto Y,Katayama Y,et al.Prediction of welding distortion and panel buckling of car carrier decks using database generated by FEA[J].Transactions of JWRI,2007,36(1):65-71.
[6]Steindler R.High-temperature strain-gage behavior on carbon materials[J].Experimental Mechanics,1988:244-246.
[7]Huang Y H,Liu L,Sham F C.Optical strain gauge vs traditional strain gauges for concrete elasticity modu lus determination original research[J].International Journal for Light and Electron Optics,2010,121(18):1635-1641.
[8]Heckmann U,Bandorf R,Gerdes H.New materials for sputtered strain gauges[J].Procedia Chemistry,2009,1(1):64-67.
[9]Gafitanua M,Barsanescub P D,Poterasu V F.Measurement errors resulting from the strain gauge integration effect[J].International Journal of Pressure Vessels and Piping,1990,41(2):127-139.
[10]Dudescu C,Naumann J,Stockmann M,et al.Characterisation of thermal expansion coefficient of anisotropic mate-rials by electronic speckle pattern interferometry[J]. Strain,2006,42(3):197-205.
[11]Sutton M A,Ke X,Lessner S M,et al.Strain field measurements on mouse carotid arteries using micr oscopic three-dimensional digital image correlation[J].J Biomed Mater Res,2008(84):178-190.
Application and research of digital image correlation method for sheet metal welding deformation measurement
LI Runjuan1,WANG Dengfeng1,GUO Nan2
(1.Henan Radio&Television University,Zhengzhou 450046,China;2.Xi’an Jiaotong University,Xi’an 710049,China)
As the high temperature in the welding process,it always leads to a extreme inhomogeneous deformation in local welding area.So it is hard to measure deformation of welding real-time.A method is presented for obtain full-field and full-process deformation regularity of TIG welding based on DIC(digital image correlation)method.First of all,preprocess the sheet metal surface.Then,use two cameras to record the whole process of sheet metal welding and free deformation during cooling,and the displacements of all deforming points are all caculated by 3D digital image correlation technology.Finally,the deformation regularity of whole field of sheet metal and weld zone can be obtained intuitively.The TIG welding experiment of Q235 steel plate shows that a new 3D DIC technique applying in real-time welding deformation.This method can get the deformation curve at any point of the whole welding process and obtain the accurate deformation curve in high-temperature weld area.This method not only overcomes the problem that the deformation cannot be measured real-time in high-temperature weld area,but also provides a validation method for the numerical simulation theory.It has important significance in revealing the welding deformation mechanism and providing predict of correcting deformation.
digital image correlation method;full-field;full-process;local welding area;real-time
A
:1674-5124(2015)07-0033-04
10.11857/j.issn.1674-5124.2015.07.008
2014-11-08;
:2015-01-07
李潤娟(1979-),女,河南三門峽市人,講師,碩士,研究方向?yàn)闄C(jī)械設(shè)計(jì)及制造。