• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular dynamics study of the effects of tool geometric parameters on titanium nanometric cutting

    2015-02-24 07:40:00YingZHUYinchengZHANGJianyeGUOShunheQIZhiXIANG
    機(jī)床與液壓 2015年24期

    Ying ZHU,Yin-cheng ZHANG,Jian-ye GUO,Shun-he QI,Zhi XIANG

    (School of Mechanics Engineering,Shenyang Aerospace University,Shenyang 110136,China)

    1 Introduction

    As one of the most important structural material in 21 Century,titanium has a series of advantages such as high specific strength,low density,high temperature resistant and corrosion-resistant,and it has become one of the key support materials in modern aerospace and national defense industry.Its sophisticated and high-tech products applied in aerospace and defense has the performance of high stability and high reliability[1].With the development of aeronautical manufacturing technology,there has a higher requirement for the processing precision of titanium and its alloy products,which has already approached to nanometer scale[2].In the ultra-precision machining process of titanium and other metal or non-metallic materials,itneeds operate atoms in a spatial scale of 0.1-100 nm[3-4].Machining process is essentially a discrete discontinuous phenomenon at atomic level,so it has very demanding requirement to the resolution of detecting instrument,precision of ultra-precision machine tool and cutting conditions.It is extremely difficult to study the mechanism of nanometric cutting through the experimental method.At the same time,theoretically,workpiece material is removed with discrete atoms or atomic layer.So the traditional cutting theories of macro cutting process,based on continuum mechanics and shear theory,are difficult to explain the various phenomena and internal mechanism in nanometric cutting process.The mature development of molecular dynamics simulation(MDS)provides a way to study precision/ultra-precision processing technology.MDS is a micro method to analyze solid model from the atomic point of view,through statistical physics method to calculate the motion of each molecule in simulation model,it can obtain the macroscopic properties of material[5-7].In the field of nanofabrication,MDS provides a powerful tool and has been widely used for the study of micro nanometric cutting mechanism.Currently,typical research works include:with the MDS results,Yang et al.concluded that material removal mechanism in EDM can be explained in two ways:one by vaporization and the other by the bubble explosion of superheated metals.The forming mechanism of the bulge around discharge craters was also analyzed [8].Pen et al.and Sun et al.achieved a multi-scale simulation of nanometric cutting processwith quasi continuum method [9-10].Thiele and Melkote studied the influence of tool edge size and hardness on machined surface roughness and cutting force,and found the sharper the cutting edge,the more obvious the tool’s plowing action,which will increase the machined surface roughness and cutting force in each direction [11].Cai et al.proposed that in the plastic processing field of single crystal silicon,squeezing force is greater than cutting force.Tool cutting edge radius and cutting depth have a significant impact on the changes of material’s brittle-plastic transition[12].Komanduri et al.studied the effects of negative rake angle of tool for single crystal copper nanometric cutting process,found that when negative rake angle reaches -76°,there still have long continuous chips generated[13].

    In contrast,the results of MDS and articles of titanium are relatively fewer.The study on ultra-precision machining and nanofabrication mechanism of this kind of material is relatively lagging behind.Because the geometric parameters of tool have a significant effect on machined surface quality and tool’s life,it is necessary to study its changes of the effect on nanometric cutting process[14-16].At the same time,in view of the importance of titanium in the field of aerospace,this article,based on MD method,established the nanometric cutting model of titanium,mainly analyzed the effects of cutting edge radius and tool rake angle on the nanometric cutting process,and hope to provide some useful references for the future ultra-precision machining of titanium in aerospace manufacturing industry.

    2 Experiment

    2.1 Basic principle of MDS

    Molecular dynamics is a microscopic method to analyze the characteristics of atomic and molecular solid model from the atomic point of view,it has been widely used in physics,materials science and mechanical processing and other fields,and becomes a powerful computer simulation method for the connection of microscopic and macroscopic worlds.The basic principleof MDS is to establish a particle system for the simulation of micro phenomenon.Forces between particles areobtained by the derivation of quantum mechanics potential energy function.For a large number of particles in a system that obeys the classical Newtonian mechanics laws,motion equations of particles are establishedby using classical Newtonian mechanics.The motion and trajectory of each particle in phase space areobtained by numerical solving motion equations that have built.Through the trajectory it can make a reasonable explanation to the process of material removing and surface formation.Correspondingly,the macro dynamic and static characteristicsof material could be derived by the use of statistical physics principles.

    2.2 Simulation model

    As shown in Fig.1,cutting model is composed by titanium workpiece and diamond tool.Workpiece material is in turn divided into Newton layer,thermostatic layer and boundary layer.Material of workpiece used in this model is close-packed hexagonal(HCP)structure titanium,whose crystal lattice constants in theory area=0.295 nm,c=0.468 nm.Material of tool selects diamond.

    Fig.1 Nanometric cutting model of titanium MDS

    Cutting parameters of simulation model are decided by computer’s hardware and software.In the simulation process,in order to ensure the temperature of thermostatic region constant,there need every 20 steps conduct a speed calibration to the atoms in thermostatic layer.In order to ensure the lattice symmetry and reduce boundary effects,fixed boundary condition is used,where the atoms in boundary layer are always stationary.Through different time step test,this article selects constant time step 2fs.System temperature is set 300 K,and(0100)cutting direction is adopted in simulation.

    2.3 Potential function and interatomic force

    Potential function of Ti-Ti selects EAM.The expression of total energyEof atomiis:

    Where,F(xiàn)iis the embedding energy of atomiwhose electron density is ρi;ρiis the sum of electron cloud density produced by all other atoms’extra nuclear electron to atomi;φijis the potential energy of atomiand atomj;rijis the distance between atomiand atomj;fj(rij)is the electron density produced by atomj.

    The potential function of atoms between workpiece and tool chooses Morse potential function.

    Standard Morse potential function form for Ti-Ti and C-C are:

    The following similar Morse potential function is used to describe the interaction potential between Ti-C:

    Where,φ(rij)is Morse potential function,α is gradient coefficient of potential energy curve andDis binding energy coefficient.

    D,α and r between Ti,C and Ti-C have the following relationships:

    Table 1 shows the Morse potential parameters between atoms.

    Table1 Morse potential parameters

    Since diamond tool is much harder than titanium,it can be seen as a rigid body whose positions of atoms are considered to be fixed.So the potential function of C-C need not to be specified.

    Interaction forces between atoms can be obtained by the derivation to atomic distance in potential function,according to the formula:

    Where,F(xiàn)(rij)is the force between atom i and atomj,u(rij)is potential function between atomiand atomj.u(rij)is substituted into formula(9)in the form of Morse potential.ThenF(rij)can be expressed as:

    So atomic force of atomiis:

    2.4 Relaxation process analysis

    Potential energy curve are obtained after 5 000 time step relaxation formodel.During the relaxation process,speed of atoms are calibrated every 20 time steps,and output every 100 time steps.Through the calculation results of speed and position for atoms,interatomic force and system potential energy could be obtained.From Fig.2,it can be seen that,system energy tends to a stable value from 4 000 step to 5 000 step,this indicates that system has entered a steady state and relaxation has completed at this time.After system reached dynamic balance,the potential energy of the system is calculated to be about-10 150 eV,which divided by 2 035,the total number of atomsin the system,then the average potential energy of each titanium atom could be obtained,which is - 4.98 eV.The value is basically the same as ideal crystal binding energy value of metal titanium,which is 5.256 3 eV.So the accuracy of the present model could be verified.

    Fig.2 Relaxation process of system potential energy

    Relationship between temperature and kinetic ener-gy could be expressed by the following formula:

    3 Results and discussion

    3.1 Effects of cutting edge radius

    In traditional machining process,cutting thickness is much greaterthan tool edge radius,while in nano machining,cutting thickness is only a few nanometers.So the influence of tool edge radius cannot be ignored in nanofabrication.This section selects 3 groups of cutting edge radius for MDS to study the effects on cutting mechanism of metal titanium.Concrete cutting conditions are shown in Table 2.

    Table2 Cutting conditions of titanium nanometric cutting model

    Fig.3 is the instantaneous images of atomic positions under different cutting edge radius in simulation process.It can be observed that,when the tool’s position is constant,with the increase of cutting edge radius,the number of amorphous atoms piled in front of tool and the volume of chips get decreased,while the number of deformed atoms near the tool nose gets increased.Due to the increasing number of squeezed titanium atoms near tool’s rear face,the thickness of metamorphic layer at machined surface increases,thus increase the surface roughness and decreasethe machined surface quality.

    Fig.3 Instantaneous atomic positions under different cutting edge radius

    Fig.4 and Fig.5 are the effects of different cutting edge radius on system potential energy and cutting force,respectively.It can be seen that with the increase of cutting edge radius,system potential energy and cutting forces show a trend of decrease.Reasons could be explained as follows:with the increase of cutting edge radius,the number of atomic lattices thatneed to be broken and the binding forces need to be overcome get decreased in the nanometric cutting process,which lead the decrease of system potential energy and cutting force.At the same time,squeezing action of tool’s rear facemakes the potential energy of some workpiece atoms storedin the deformed lattices,which will gradually restore theoriginal lattice structure when the tool goes by.That also contributed to the reduction of system potential energy.Fluctuations in change curve have a closerelationship with lattice reconstruction,lattice deformation and amorphous atoms’formation.Meanwhile,the generation of chips also causes fluctuations to the cutting force.

    Fig.6 is the effect of different cutting edge radius on workpiece temperature.As shown in the change curves,with the increase of cutting edge radius,temperature of workpiece decreases,which are similar with the variation of potential energy between titanium atoms.This is because the increase of cutting edge radius will reduce the number of deformed latticesand the energy released by them.As a result,the cutting temperature gets decreased.The cause of slight fluctuations in change curve is that thedeformation and reconstruction of atomic lattices are dynamic equilibrium process.The fluctuation rangegets decreased with the increase of distance,which is related to the squeezing extent of tool’s rear face.

    Fig.4 Change curves of system potential energy under different cutting edge radius

    Fig.5 Change curves of cutting force under different cutting edge radius

    Fig.6 Change curves of workpiece temperature under different cutting edge radius

    Simulation results show that,although the cutting edge radius are different,the process of removing material and surface formation are similar in the cutting process.This phenomenon indicates that cutting edge radius have no significant effects on the cutting mechanism.Meanwhile,the large cutting edge radius can reducecutting force and cutting temperature,and lead to poor quality of machined surface.

    3.2 Effects of tool rake angle

    Tool rake angle is a key factor in the geometry shape of tool,the changes of size will inevitably cause the changes of cutting force and morphology of workpiece,which will ultimately affect the quality of machined surface.This section selects three different rake angles to do the simulation.Concrete cutting conditions are shown in Table 3.

    Table3 Simulation parametersunder thecondition of different tool rake angles

    Fig.7 is a set of images of instantaneous atomic positions under different tool rake angles in nanometric cutting process.Image of -20°rake angle shows that atoms in deformation region are mainly affected by the squeezing action,which cause metamorphic layer beneath the tool become thicker.Although the machined surface canproduce more elastic recovery due to the greater thickness of metamorphic layer,the final roughness of machined surface becomes greater.In addition,atoms in front of tool are mainly affected by squeezingaction,so the formation of chips is more difficult than the other two angles’,and the volume of chips is small.Image of 20°rake angle shows that atoms in deformation region are mainly affected by shear action,so the thickness of metamorphic layer below the tool becomessmaller.Since the machined surface can generate less elastic and plastic deformation,coupled with thesmaller thickness of metamorphic layer,the machined surface is smoothand the roughness is low.Accordingly,due to the atoms of workpiece ahead of the tool mainly affected by shear action,the formation of chips becomes easier than that of the other two angles,and thevolume of chips becomes relatively greater.Image of 0°rake angle shows atoms in deformation region are affected by squeezing and shear action so that the thickness of metamorphic layer and the volume of chips lie between the first two angles’.

    Fig.7 Instantaneous atomic positions under different cutting edge radius

    From the comparison of the simulation results,it could be found that tool rake angle has a greater impact onthe deformation of machined surface during nanometric cuttingprocess.With the increase of tool rake angle,the volume of chips gradually increases,so do the dislocations.While the deformation area of workpiece below the tool gets reduced,and the same as the roughness of machined surface.The greater the tool rake angle,the sharper the cutting edges of the tool and the easier the cutting process.

    From Fig.8,it can be found that,when tool rake angle gets increased,tangential force and normal force will be decreased significantly.When tool cutting with a negative rake angle,the guiding role of tool’s rake face makes most of workpiece atoms gather below the tool,causing the intense extrusion of atoms between tool and machined surface.At this time,normal force plays a main role;when tool cutting the material with an equal or greater than zero rake angle,atoms near the rake face are affected by shear action obviously,so the tangential force plays a main role.It also can be observed that,with the increase of tool rake angle,normal force declining faster than tangential force,it could be explained that the guiding role of tool’s rake face makes the normal motion of chips move more briskly than its tangential motion,so the squeezing action in normal directionwill decline faster.

    Fig.8 Change curves of cutting force under different tool rake angles

    4 Conclusions

    Combined with the ultra-precision machining background of metal titanium in aerospace field,this paper,based on the theoretical foundation of MD method,established MDS nanometric cutting model of metal titanium,and analyzedeffects of different geometric parameters of tool on cutting process,system potential energy,cutting force and cutting temperature.Main conclusions could be drawn as follows.

    1)In the process of titanium nanometric cutting,a greatertool edge radius can make the number of squeezing titanium atoms increase near tool’s rear face,which lead a thicker deteriorative layer and lower machined surface quality.Meanwhile,bond energy between atoms can be more difficult to destroy,so the number of lattice deformation atoms gets decreased,which cause reduction ofpotential energy,cutting force and cutting temperature accordingly.

    2)When cutting with negative rake angle,atoms in deformation region are mainly affected by squeezing action,and itwill eventually formthicker metamorphic layer.When cutting with positive rake angle,work-piece atoms are mainly suffered byshear stress in deformation zone,so the cutting process can be carried out more easily and obtain a better quality of machined surface.With the increase of tool rake angle from negative to positive,the sizes of tangential force and normal force have a decrease tendency.The leading role of normal force will be replaced by tangential force gradually.

    [1]Luo G Z,Zhou L,Den J.R & D of titanium in China[J].Rare Metal Materialsand Engineering,1997,26(5):1-6.

    [2]Pramanik A.Problems and solutions in machining of titanium alloys[J].International Journal of Advanced Manufacturing Technology,2014,70(5-8):919-928.

    [3]Zhang Q.Molecular dynamics simulation of tension on titanium[J].Development and Application of Materials,2011,26(3):4-7.

    [4]Wang M H,Liu Z H,Wang H J,et al.Study on finite element simulation of surface residual stresses for precision machining titanium alloy TC4[J].Manufacturing Automation,2010,32(11):68-71.

    [5]Uezaki K,Shimizu J,Zhou L B.Development of metal cutting process accompanied by a localized compressivehydrostatic stress field formation:Examination by molecular dynamics simulation[J]. PrecisionEngineering,2014,38(2):371-378.

    [6]Tanaka H,Shimada S.Atomic scale analyses of material behavior based on molecular dynamics simulation[J].Journal of the Japan Society of Precision Engineering,2010,76(9):1011-1014.

    [7]Lin Z C,Chen Z D,Huang J C.Establishment of a cutting force model and study of the stress-strain distribution in nanoscale coppermaterial orthogonal cutting[J].International Journal of Advanced Manufacturing Technology,2007,33(5-6):425-435.

    [8]Yang X D,Guo J W,Chen X F,et al.Molecular dynamics simulation of the material removal mechanism in micro-EDM[J].Precision Engineering,2011,35(1):51-57.

    [9]Pen H M,Bai Q S,Liang Y C,et al.Multiscale simulation of nanometric cutting of single crystal copper-effect of different cutting speeds[J].ActaMetallurgicaSinica(English Letters),2009,22(6):440-446.

    [10]Sun X Z,Chen S J,Cheng K,et al.Multiscale simulation on nanometric cutting of single crystal copper[J].Proceedingsofthe Institutionof Mechanical Engineers Part B-Journalof Engineering Manufacture,2006,220(7):1217-1222.

    [11]Thiele J D,N Melkote S.Effect of cutting edge geometry and workpiece hardness on surface generation in the finish hard turning of AISI52100 steel[J].Journalof Materials Processing Technology,1999,94(2):216-226.

    [12]Cai M B,Li X P,Rahman M.Study of the mechanism of nanoscale ductile mode cutting of silicon using molecular dynamics simulation[J].International Journal of Machine Tools and Manufacture,2007,47(1):75-80.

    [13]Komanduri R,Chandrasekaran N,Raff LM.Some aspects of machining with negative-rake tools simulating grinding:a moleculardynamics simulation approach[J].Philosophical Magazine B,1999,79(7):955-968.

    [14]Muhammad A,Osamu O,Hiromichi O.Advanced burrfree hole machining using newly developed micro compound tool[J].International Journal of Precision Engineering and Manufacturing,2012,13(6):947-953.

    [15]Zheng G M,Zhao J,Zhou Y H,et al.Performance of graded nano-composite ceramic tools in ultra-high-speed milling ofinconel 718[J].International Journal of Advanced Manufacturing Technology,2013,67(9-12):2799-2810.

    [16]Ku T W,Kang B S.Tool design and experimental verification for multi-stage cold forging process of the outer race[J].International Journal of Precision Engineering and Manufacturing,2014,15(9):1995-2004.

    悠悠久久av| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 国产成人av教育| 免费在线观看黄色视频的| 中文字幕人妻丝袜制服| 热99久久久久精品小说推荐| av天堂在线播放| 中文乱码字字幕精品一区二区三区| 亚洲欧洲精品一区二区精品久久久| 嫁个100分男人电影在线观看 | 人人妻人人澡人人爽人人夜夜| 午夜福利,免费看| 亚洲图色成人| 中文乱码字字幕精品一区二区三区| 久久久精品国产亚洲av高清涩受| 色网站视频免费| 国产精品一区二区在线观看99| 成年人免费黄色播放视频| 国产成人一区二区在线| 尾随美女入室| 男女午夜视频在线观看| av线在线观看网站| 免费在线观看影片大全网站 | 日韩免费高清中文字幕av| 50天的宝宝边吃奶边哭怎么回事| 欧美精品av麻豆av| 99香蕉大伊视频| 色网站视频免费| 最近中文字幕2019免费版| 成人免费观看视频高清| 精品少妇黑人巨大在线播放| 亚洲成人国产一区在线观看 | 啦啦啦在线观看免费高清www| 女人久久www免费人成看片| 久久鲁丝午夜福利片| 精品国产一区二区三区久久久樱花| 国产有黄有色有爽视频| 国产精品av久久久久免费| 亚洲精品美女久久av网站| 国产不卡av网站在线观看| 国产又爽黄色视频| 日韩 欧美 亚洲 中文字幕| 日本91视频免费播放| 亚洲av成人不卡在线观看播放网 | 天堂俺去俺来也www色官网| 欧美性长视频在线观看| 亚洲精品国产av成人精品| 国精品久久久久久国模美| 91老司机精品| 久久久精品94久久精品| 亚洲国产中文字幕在线视频| 爱豆传媒免费全集在线观看| 成人国产av品久久久| 日韩制服骚丝袜av| 青草久久国产| 亚洲av日韩在线播放| 国产男女超爽视频在线观看| 人人妻人人爽人人添夜夜欢视频| 精品亚洲成a人片在线观看| 免费看av在线观看网站| 美女视频免费永久观看网站| 十八禁高潮呻吟视频| 天天躁日日躁夜夜躁夜夜| 国产成人一区二区三区免费视频网站 | 97人妻天天添夜夜摸| 50天的宝宝边吃奶边哭怎么回事| 成年人午夜在线观看视频| 晚上一个人看的免费电影| 无遮挡黄片免费观看| 久久久久精品人妻al黑| 日韩精品免费视频一区二区三区| 日本91视频免费播放| 精品亚洲乱码少妇综合久久| 欧美+亚洲+日韩+国产| 国产视频一区二区在线看| 成年人午夜在线观看视频| 亚洲精品成人av观看孕妇| 9热在线视频观看99| 亚洲欧美清纯卡通| 日本欧美国产在线视频| 午夜福利影视在线免费观看| 黑人欧美特级aaaaaa片| 婷婷丁香在线五月| 久久久久国产一级毛片高清牌| 亚洲av男天堂| 亚洲伊人久久精品综合| 欧美精品一区二区免费开放| 免费观看a级毛片全部| 亚洲欧洲国产日韩| 久久久国产一区二区| 2018国产大陆天天弄谢| 在线观看免费午夜福利视频| 午夜av观看不卡| 久9热在线精品视频| 色婷婷av一区二区三区视频| 多毛熟女@视频| 伦理电影免费视频| 国产一区二区 视频在线| 大片免费播放器 马上看| 国产成人精品久久二区二区免费| 国产精品免费大片| 中文欧美无线码| 亚洲天堂av无毛| 女警被强在线播放| 国产免费福利视频在线观看| 欧美老熟妇乱子伦牲交| 欧美+亚洲+日韩+国产| 亚洲国产成人一精品久久久| 乱人伦中国视频| 在线观看人妻少妇| 午夜视频精品福利| 纯流量卡能插随身wifi吗| av天堂在线播放| 每晚都被弄得嗷嗷叫到高潮| 另类精品久久| 亚洲精品中文字幕在线视频| 一级黄色大片毛片| 国产精品熟女久久久久浪| 热re99久久国产66热| 久久ye,这里只有精品| 校园人妻丝袜中文字幕| 最近手机中文字幕大全| 国产精品熟女久久久久浪| 亚洲自偷自拍图片 自拍| 色婷婷久久久亚洲欧美| 亚洲精品成人av观看孕妇| 欧美精品亚洲一区二区| 99热全是精品| 另类精品久久| 国产成人欧美| 韩国高清视频一区二区三区| 飞空精品影院首页| 欧美精品亚洲一区二区| 亚洲中文字幕日韩| 一个人免费看片子| 欧美av亚洲av综合av国产av| 久久久国产欧美日韩av| 精品亚洲成a人片在线观看| 国产淫语在线视频| 宅男免费午夜| 男人添女人高潮全过程视频| 国产不卡av网站在线观看| 成人免费观看视频高清| 免费观看av网站的网址| 视频在线观看一区二区三区| 欧美日韩视频精品一区| bbb黄色大片| 2018国产大陆天天弄谢| xxxhd国产人妻xxx| 日日夜夜操网爽| 丰满少妇做爰视频| 下体分泌物呈黄色| 老司机在亚洲福利影院| 999精品在线视频| 一个人免费看片子| 亚洲久久久国产精品| 99精国产麻豆久久婷婷| 麻豆av在线久日| 一区二区av电影网| 日韩av免费高清视频| 一级毛片女人18水好多 | 手机成人av网站| 亚洲第一av免费看| 你懂的网址亚洲精品在线观看| e午夜精品久久久久久久| 精品高清国产在线一区| 悠悠久久av| 久久精品国产亚洲av涩爱| 国产色视频综合| 亚洲av电影在线观看一区二区三区| 亚洲欧美激情在线| 久久精品国产亚洲av涩爱| 男人操女人黄网站| 日本av手机在线免费观看| 国产精品久久久久久精品古装| 欧美黑人欧美精品刺激| 制服诱惑二区| 欧美日韩视频高清一区二区三区二| 亚洲av片天天在线观看| 亚洲欧美中文字幕日韩二区| 国产深夜福利视频在线观看| 国产又色又爽无遮挡免| 性高湖久久久久久久久免费观看| 天天操日日干夜夜撸| 午夜av观看不卡| 亚洲成国产人片在线观看| 欧美日韩视频高清一区二区三区二| 久久 成人 亚洲| 亚洲精品日本国产第一区| 又紧又爽又黄一区二区| 亚洲 国产 在线| 国产又色又爽无遮挡免| 国产精品.久久久| 黄频高清免费视频| 制服诱惑二区| av国产精品久久久久影院| 99国产精品一区二区三区| 建设人人有责人人尽责人人享有的| 久久久久久久大尺度免费视频| 涩涩av久久男人的天堂| 国产主播在线观看一区二区 | 91麻豆av在线| 日本欧美国产在线视频| 欧美变态另类bdsm刘玥| 亚洲精品一二三| 午夜av观看不卡| 国产免费视频播放在线视频| 久久久久久久大尺度免费视频| 国产免费现黄频在线看| 欧美成狂野欧美在线观看| 午夜久久久在线观看| netflix在线观看网站| 蜜桃国产av成人99| videos熟女内射| 亚洲少妇的诱惑av| 十八禁网站网址无遮挡| 日本色播在线视频| 熟女少妇亚洲综合色aaa.| 99九九在线精品视频| 免费黄频网站在线观看国产| 99国产综合亚洲精品| 99久久精品国产亚洲精品| 欧美日韩国产mv在线观看视频| 97在线人人人人妻| 90打野战视频偷拍视频| 午夜老司机福利片| 亚洲欧美日韩高清在线视频 | 日本黄色日本黄色录像| 交换朋友夫妻互换小说| 久9热在线精品视频| 少妇的丰满在线观看| av一本久久久久| 在线观看免费高清a一片| 一本大道久久a久久精品| 一级黄片播放器| 黄色 视频免费看| 在线观看一区二区三区激情| 亚洲欧美色中文字幕在线| 中文字幕人妻丝袜一区二区| 黑丝袜美女国产一区| 男女免费视频国产| 国产精品一国产av| 日本vs欧美在线观看视频| 亚洲精品久久午夜乱码| 丝袜脚勾引网站| 十八禁高潮呻吟视频| 久久av网站| 天天躁夜夜躁狠狠久久av| 午夜老司机福利片| 国产亚洲午夜精品一区二区久久| 欧美国产精品va在线观看不卡| 999精品在线视频| 精品少妇黑人巨大在线播放| 大话2 男鬼变身卡| 女人精品久久久久毛片| 亚洲中文日韩欧美视频| 欧美日韩亚洲高清精品| 尾随美女入室| 国产黄频视频在线观看| 制服人妻中文乱码| 免费在线观看视频国产中文字幕亚洲 | 汤姆久久久久久久影院中文字幕| 一级毛片 在线播放| 又黄又粗又硬又大视频| 免费在线观看影片大全网站 | 亚洲男人天堂网一区| 你懂的网址亚洲精品在线观看| 精品一区二区三区四区五区乱码 | 色视频在线一区二区三区| 欧美日韩精品网址| 精品一区二区三区四区五区乱码 | 青青草视频在线视频观看| 精品福利观看| 日本五十路高清| 午夜福利,免费看| 黑丝袜美女国产一区| 国产精品偷伦视频观看了| 中文字幕色久视频| 午夜福利视频精品| 中文字幕亚洲精品专区| 久久中文字幕一级| 91国产中文字幕| 久久久精品国产亚洲av高清涩受| 久久久精品94久久精品| 国产成人a∨麻豆精品| 亚洲五月色婷婷综合| 丁香六月天网| 女人久久www免费人成看片| 久久精品亚洲av国产电影网| 最新在线观看一区二区三区 | 国产片特级美女逼逼视频| 嫩草影视91久久| 人妻一区二区av| 永久免费av网站大全| 少妇人妻久久综合中文| 青春草亚洲视频在线观看| 亚洲国产最新在线播放| 黄网站色视频无遮挡免费观看| 新久久久久国产一级毛片| 国产在线视频一区二区| 欧美精品人与动牲交sv欧美| 女警被强在线播放| 亚洲欧洲日产国产| 9191精品国产免费久久| 悠悠久久av| 1024香蕉在线观看| 成在线人永久免费视频| 亚洲五月婷婷丁香| xxx大片免费视频| 亚洲中文日韩欧美视频| 另类精品久久| 日韩电影二区| 人人妻人人澡人人爽人人夜夜| 黑丝袜美女国产一区| 欧美精品一区二区大全| 婷婷色综合大香蕉| 青春草亚洲视频在线观看| 国产精品欧美亚洲77777| 国产1区2区3区精品| 国精品久久久久久国模美| 免费日韩欧美在线观看| 亚洲精品国产av蜜桃| 高清视频免费观看一区二区| 国产成人精品久久久久久| 99热国产这里只有精品6| av天堂久久9| 在线 av 中文字幕| 久久久国产欧美日韩av| 亚洲中文av在线| 久9热在线精品视频| 天堂8中文在线网| 久久人人爽人人片av| 丝袜喷水一区| 午夜福利在线免费观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 久久 成人 亚洲| 欧美+亚洲+日韩+国产| 一级,二级,三级黄色视频| 亚洲欧美日韩高清在线视频 | 成人三级做爰电影| 美女国产高潮福利片在线看| 亚洲男人天堂网一区| 爱豆传媒免费全集在线观看| 久久精品久久久久久久性| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 国产亚洲av高清不卡| 久久人妻福利社区极品人妻图片 | 精品国产一区二区三区四区第35| 免费人妻精品一区二区三区视频| 免费在线观看日本一区| 日韩 欧美 亚洲 中文字幕| 18禁黄网站禁片午夜丰满| 欧美国产精品va在线观看不卡| 在线天堂中文资源库| 久久99精品国语久久久| svipshipincom国产片| 在线 av 中文字幕| 午夜免费成人在线视频| 久久久国产精品麻豆| av福利片在线| 啦啦啦中文免费视频观看日本| 亚洲成人免费电影在线观看 | 日本午夜av视频| 91老司机精品| 性色av一级| 国产精品二区激情视频| 国产一区二区三区av在线| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 国产男女超爽视频在线观看| 老司机午夜十八禁免费视频| 亚洲中文日韩欧美视频| 国产亚洲av片在线观看秒播厂| 亚洲欧美一区二区三区黑人| www.精华液| 国产精品一二三区在线看| 久久精品国产亚洲av涩爱| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 亚洲激情五月婷婷啪啪| 50天的宝宝边吃奶边哭怎么回事| 日韩制服丝袜自拍偷拍| 在线看a的网站| 免费av中文字幕在线| 国产无遮挡羞羞视频在线观看| 在线天堂中文资源库| 两人在一起打扑克的视频| av视频免费观看在线观看| av片东京热男人的天堂| 亚洲国产成人一精品久久久| 免费高清在线观看视频在线观看| 久久久久网色| 人体艺术视频欧美日本| 久久精品久久精品一区二区三区| 赤兔流量卡办理| 中文字幕色久视频| 自线自在国产av| 波多野结衣一区麻豆| 亚洲精品成人av观看孕妇| 大型av网站在线播放| 99九九在线精品视频| 国产一区二区激情短视频 | 啦啦啦视频在线资源免费观看| 免费在线观看完整版高清| av网站在线播放免费| 亚洲欧美激情在线| 性高湖久久久久久久久免费观看| 成人国产av品久久久| 一区二区日韩欧美中文字幕| 久久精品亚洲av国产电影网| 日日爽夜夜爽网站| 国产亚洲av片在线观看秒播厂| 母亲3免费完整高清在线观看| 精品第一国产精品| 成人国产一区最新在线观看 | 亚洲国产欧美网| 一区福利在线观看| 人人妻人人澡人人看| 天堂俺去俺来也www色官网| 免费观看av网站的网址| 欧美日韩视频高清一区二区三区二| 日韩电影二区| 久久久久久亚洲精品国产蜜桃av| 免费看av在线观看网站| 这个男人来自地球电影免费观看| 成年人午夜在线观看视频| 国产一区二区三区综合在线观看| 熟女少妇亚洲综合色aaa.| 18禁观看日本| 天堂中文最新版在线下载| 久久ye,这里只有精品| 韩国精品一区二区三区| 最新的欧美精品一区二区| 欧美日韩av久久| 免费女性裸体啪啪无遮挡网站| 人人澡人人妻人| 97在线人人人人妻| 只有这里有精品99| 欧美乱码精品一区二区三区| 久久毛片免费看一区二区三区| 日本一区二区免费在线视频| 欧美日韩av久久| 90打野战视频偷拍视频| 欧美精品av麻豆av| 中文字幕制服av| 交换朋友夫妻互换小说| 国精品久久久久久国模美| 男人添女人高潮全过程视频| 精品国产乱码久久久久久小说| 国产片特级美女逼逼视频| 欧美日本中文国产一区发布| 亚洲精品国产色婷婷电影| 国产成人系列免费观看| 人妻一区二区av| 夫妻午夜视频| 天天影视国产精品| 精品一区二区三区四区五区乱码 | 男人舔女人的私密视频| 亚洲一区二区三区欧美精品| 欧美性长视频在线观看| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 国产精品久久久av美女十八| 婷婷色综合大香蕉| 亚洲欧美精品综合一区二区三区| 纵有疾风起免费观看全集完整版| 高清欧美精品videossex| 国产高清不卡午夜福利| 国产1区2区3区精品| 在线精品无人区一区二区三| 亚洲av成人精品一二三区| 国产爽快片一区二区三区| 久久天躁狠狠躁夜夜2o2o | 午夜福利在线免费观看网站| 校园人妻丝袜中文字幕| 热99久久久久精品小说推荐| 成人国语在线视频| 嫩草影视91久久| 青草久久国产| 久久久久国产精品人妻一区二区| 大陆偷拍与自拍| 国精品久久久久久国模美| 尾随美女入室| 男女高潮啪啪啪动态图| 欧美97在线视频| 777米奇影视久久| 亚洲国产毛片av蜜桃av| 日韩伦理黄色片| 国产精品久久久久久精品古装| 男女免费视频国产| 午夜福利视频精品| 亚洲精品美女久久久久99蜜臀 | 无限看片的www在线观看| 午夜福利免费观看在线| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 自拍欧美九色日韩亚洲蝌蚪91| 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频 | 日本五十路高清| 精品国产乱码久久久久久小说| 在线观看www视频免费| 精品福利永久在线观看| 久久这里只有精品19| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 一本综合久久免费| 五月开心婷婷网| 精品少妇久久久久久888优播| 亚洲成人国产一区在线观看 | 成年动漫av网址| 国产精品亚洲av一区麻豆| 亚洲av在线观看美女高潮| 日本wwww免费看| 成年av动漫网址| 美女主播在线视频| 每晚都被弄得嗷嗷叫到高潮| 后天国语完整版免费观看| 亚洲成人免费电影在线观看 | 欧美成人午夜精品| 狠狠婷婷综合久久久久久88av| 精品卡一卡二卡四卡免费| 性高湖久久久久久久久免费观看| 黄色a级毛片大全视频| 亚洲av美国av| 青青草视频在线视频观看| 91成人精品电影| 久久这里只有精品19| 少妇粗大呻吟视频| 欧美日韩一级在线毛片| 激情视频va一区二区三区| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 久久久久久久久久久久大奶| 亚洲午夜精品一区,二区,三区| 亚洲七黄色美女视频| 一本久久精品| 成人亚洲精品一区在线观看| 久久青草综合色| 欧美黑人欧美精品刺激| 亚洲精品国产色婷婷电影| 欧美在线黄色| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 精品熟女少妇八av免费久了| 激情视频va一区二区三区| 两性夫妻黄色片| 亚洲精品在线美女| 一区在线观看完整版| 国产高清视频在线播放一区 | 久久九九热精品免费| 妹子高潮喷水视频| 香蕉国产在线看| 另类精品久久| 69精品国产乱码久久久| 飞空精品影院首页| 国产极品粉嫩免费观看在线| 晚上一个人看的免费电影| 香蕉国产在线看| 黄色 视频免费看| 婷婷色综合大香蕉| 在线亚洲精品国产二区图片欧美| av福利片在线| 欧美日韩亚洲高清精品| 婷婷色综合大香蕉| 欧美日韩黄片免| 国产精品一国产av| 伊人久久大香线蕉亚洲五| 桃花免费在线播放| 久久久精品免费免费高清| 国产精品 欧美亚洲| h视频一区二区三区| 国产激情久久老熟女| 男女无遮挡免费网站观看| 国产精品一区二区在线不卡| 亚洲成av片中文字幕在线观看| av国产精品久久久久影院| 五月开心婷婷网| 日韩免费高清中文字幕av| 你懂的网址亚洲精品在线观看| 欧美国产精品va在线观看不卡| 欧美精品一区二区大全| 国产精品免费视频内射| 欧美亚洲 丝袜 人妻 在线| 亚洲国产欧美日韩在线播放| 亚洲色图 男人天堂 中文字幕| 欧美 日韩 精品 国产| 99精品久久久久人妻精品| 好男人电影高清在线观看| 免费不卡黄色视频| 搡老岳熟女国产| 国产成人啪精品午夜网站| 亚洲成人国产一区在线观看 | 日韩电影二区| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀 | 亚洲中文av在线| 咕卡用的链子| 天堂中文最新版在线下载| 日韩 亚洲 欧美在线| 免费观看a级毛片全部| 好男人电影高清在线观看| 日韩制服骚丝袜av| 亚洲av在线观看美女高潮| 国产97色在线日韩免费| 国产免费又黄又爽又色| 亚洲精品国产色婷婷电影| 国产av一区二区精品久久| 黄色a级毛片大全视频| 国产成人精品在线电影| 丝袜美足系列| 精品国产一区二区三区久久久樱花|