• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The research on aero-engine gas path fault diagnosis by genetic algorithm-BP neural network

    2015-02-24 07:37:50HongchunQUYuanqiangHUANG
    機(jī)床與液壓 2015年18期

    Hong-chun QU,Yuan-qiang HUANG

    (Aeronautical Engineering College of Civil Aviation University of China,Tianjin 300300,China)

    1 Introduction

    The fault diagnosis of aero-engine has very important significance for the airlines.If we can identify potential faults rapidly and accurately through analyzing the change of engine monitoring parameters,we can not only effectively avoid in-flight shut down and flight delays caused by the fault of the engine,but also make the maintenance plan better,shorten the troubleshooting time,reduce the maintenance cost,and increase the time on-wing of the engine,so as to improve the overall benefits of the airline.Recently,the common methods used for the aero-engine gas path fault diagnosis are based on the small deviations fault equation linear model,nonlinear steady-state model or artificial intelligence methods[1].

    Neural network has been considered as the most research potential diagnostic tool in artificial intelligence methods.The BP neural network has been widely applied in the field of fault diagnosis,which belongs to the gradient descent algorithm.The network initial connection weights and thresholds generally generate randomly,and the network structure and learning rate are mainly determined by experience.If the initial connection weights are valued improperly,the network can cause oscillation,misconvergence or too long in training time[2 -4],giving rise to the fault recognition result being not ideal.Besides,it is complicated in practical diagnosis problems of the aero-engine.All of these make BP network exist many deficiencies in application of the field[1].Genetic algorithm is a highly efficient parallel global search algorithm,which is developed from biological evolution theory.The algorithm has very good robustness and it succeeded in solving global optimization problems[5-6].

    Genetic algorithm not only can be used to design the neural network well,but also is benefit to obtain the global optimal solution and improve the generalization performance of neural network[2,7].Therefore,this article would take use of the genetic algorithm to optimize the initial weights and thresholds of BP neural network,and then retrain the results according to gradient descent algorithm and put the optimized network into the field of fault diagnosis of engine gas path.

    2 The brief introduction of BP neural networks and genetic algorithm

    Back-propagation network referred to as the BP network and is a multi-layer network which generalizes the W-H learning rules and makes weights training for nonlinear differentiable function.In the practical application of the artificial neural network,80%-90%of network models employ BP network or its modified forms,on behalf of the most essential part of the artificial neural network.

    Fig.1 The structure of BP network

    The BP network is a multi-layer forward feedback neural network and adjusts its weights by using back propagation learning algorithms.It consists of input layer,output layer,and a number of hidden layers,the data spread from the input layer to the output layer through hidden layers.When training the network weights,the data go along the direction of reducing error,which starts from the output layer then acrosses through the middle layers to correct the network connection weights forward and thresholds layer by layer.This process will be circled which begins from the former results until meets the network’s stable error[4,8].

    A classic three-layer BP network is shown in Fig.1.(p1,p2,…,pn)represents then-dimensional fault eigenvalue input.The number of the hidden layer neurons iss1;the transfer function isF1j(j=1,2,…,s1);the threshold isb1j.The number of the output layer neurons iss2;the transfer function isF1k(k=1,2,…,s2);the threshold isb2k.w1jirepresents the weight between thej-th hidden neuron and thei-th input neuron;w2kjrepresents the weight between thekth output neuron and thej-th hidden neuron.The output values of the hidden layery1jand of the output layery2kcan be calculated by formula(1)and formula(2).

    The target of each output neuron istk,so the total output errorEcan be calculated by formula(3).

    Utilizing the gradient descent algorithm and error back propagation to adjust the weights of output layer,the amount of change Δw2kjcan be shown as formula(4),where δ is the network learning rate.

    Similarly,the variable quantity of each layer’s weights and thresholds could be deduced,as shown in formula(5).

    The weights and thresholds can be adjusted in this way until the output results meet the convergence condition.

    Genetic algorithm is an advanced random method in global search,and which can simulate the selection of bio natural evolution,the process of mutation and natural selection through the computer programming.This kind of method employs the coding space instead of questioning space,and utilizes coding population as its evolutionary basis;the fitness function is its access judgment which can evaluate the selection of gene by the operation of individual gene bit string inside of the population.Thanks to the production of many initial points and the start of researching which is guided by the fitness function,the research owns extensive area and efficient operation.This result helps realize the automatic obtainment and accumulation of valuable information existed in research space and approaches to the best solution of the target function efficiently and adaptively[10-12].

    3 The theory of BP neural networks based on genetic algorithms

    3.1 Basic theory

    The basic thinking of optimizing the net work through Genetic Algorithm takes advantages of its global quick researching feature and does quick research according to the relations between input training samples and output targets.This process would find and optimize the BP network structural parameters to meet the acquirement of fitness function and improve not only the convergence speed but also the convergence accuracy of BP network.The calculating process is shown in Fig.2.

    Fig.2 The training process of BP network basis on genetic algorithm

    3.2 Algorithm steps

    The calculation steps of genetic algorithm to optimize BP neural network are as follows.

    Step 1:building up structure of the network:according to the actual problem to determine BP neural network layers,the number of neurons in each layer and transfer functions.

    Step 2:the input training samples and testing samples data are normalized to eliminate the effects of different dimension between the different parameters.

    Step 3:coding:The initial weights and thresholds of BP network are encoded by order based on binary code method,and connect them together to form a chromosome,namely an individual.The value of weights and thresholds ranges from-1 to 1.

    Step 4:the generation of initial population:individual gene code is generated randomly,and the initial populationis composed.

    Step 5:decoding:decode the gene bit string of every individual in initial population,and calculate the outputs of networky2kwith training samples.

    Step 6:calculating the fitness value of individuals:the fitness value size is the evaluation standard for genetic algorithm to evaluate the individual quality,and the individual with a higher fitness value has a greater probability to inherit by the next generation [5],where the reciprocal of the mean square error(MSE)is used as the fitness function.The calculation formula is shown as formula(6),so if the network output error is smaller,the fitness value is greater.

    Step 7:the genetic operation:to generate a higher fitness group including selection,crossover and mutation operation[5].

    Selection:the probability value of each individual to the next generation is equal to the ratio of its fitness value with the sum of all individuals by using roulette wheel method,and pick out new species group with the same population numbers.

    Crossover:according to the crossover probabilitypc,choicepc*Psizeindividuals randomly from the new group and make chromosomes one-point crossover randomly.

    Mutation:the individuals of new group make basic bit mutation operation with the set of mutation probabilitypm,to realize the small probability turning of the genetic code,namely 0 to 1 or 1 to 0.

    Step 8:the judgment of termination condition:if the maximum genetic algebra reaches or the mean square error(MSE)meets the requirements,the evolution is terminated.

    Step 9:the weights and thresholds are decoded by the best individual serve as the initial weights and thresholds of BP network,and make the second training.If they reach the required performance,the learning process end.

    Step 10:input test sample data and check the network diagnosis results.

    4 Fault diagnosis applications

    Take the deviation of the EGT(exhaust gas temperature),F(xiàn)F(fuel flow),N1(low pressure rotor speed)and N2(high pressure rotor speed)by four typical faults of PW4164(100 inch)engine as fault sample data and compile fault identification target vectors shown in table.1.These four faults are difficult to distinguish in practice because the characteristic parameter data are similar and susceptible to noise.

    Table1 The characteristic parameters data of four typical faults

    Compile the MATLAB program to build the threelayer BP neural network by using genetic algorithm,namely GA-BP network;design four input layer neuron,five hidden layer neuron,transfer function by adopting tansig function[4],and four output layer neuron and transfer function by applying purelin [4]function.Set learning rate as 0.1 and network training target MSE≦10-5.

    The parameters of genetic algorithm are set as follow,evolution generation is 50,population is 20,and crossover rate is 0.7.Use the method of one-point crossover and set mutation rate as 0.1.Use the reciprocal of the mean square error as the fitness function.Use forty groups of characteristic parameter data from four typical faults as the training data for GA-BP network,and another ten groups of data from table 2 to testify the GA-BP network,which were historical data recorded by the engine monitoring department of airline.

    The comparisons of fitness value between initial population and the population after evolution fifty generations by genetic algorithm optimization are indicated in Fig.3(a).It’s obvious that the fitness value of individual have significantly improved and more stabilized.The fitness value of the best individual in population increases rapidly with the evolution and after evolution twelve generation,it is not only closing to the best fitness value,but also each generation is gradually stabilized,as shown in Fig.3(b).

    Fig.3 Thecomparisonsof fitnessvaluebetween initial population and the population after evolution fifty generations by genetic algorithm optimization

    Diagnosis results of GA-BP network are showen in Table 3.Comparing to the diagnostic output results of common BP network under the same network structure,both methods correctly detecte all the faults and the results are consistent with the actual monitoring situation,and the output precision of GA-BP network is better than that of common BP network.The comparisons of diagnosis results’error value of those two kinds of method are indicated in Fig.4(a).And the comparison of convergence curve in Fig.4(b)shows that GA-BP network outputs are in smaller error,higher precision,converge faster and better.The BP network optimized by genetic algorithm is only trained 5 times to meet performance goals,while the common BP network needs to be trained 37 times to achieve the same performance targets.The process of the common BP network training is likely to fall into local optimum,and the performance convergence curve may not be smooth.

    Table3 Network outcomes comparison

    Fig.4 Comparison of two methods

    5 Conclusions

    This paper combines genetic algorithm and BP neural network,which forms an individual firstly from initial weights and thresholds coding of the BP neural network.Then optimizes its best solution in its range by using genetic algorithm,and finally reinvests the network with optimized weights and thresholds.This method can not only make full use of the better global searching ability and convergence speed of the genetic algorithm,but also overcome the shortcomings brought by the BP algorithm as the initial weights and thresholds are selected random.The fault diagnosis example of application on aero-engine indicates that the GA-BP network is better than common BP network in the network output precision,convergence speed and smoothness.This result provides a new idea and method for the study on the field of fault diagnosis of aero-engine,and is benefit to solve many problems in practical engineering such as when fault diagnosis result is not ideal and the network convergence speed is slow.

    [1]Qu Hongchun.Study on civil turbofan engine health intelligent monitoring technologies[D].Tianjin:Tianjin University,2010.

    [2]Liu Yongjian.Research on Modified Neural Network for Fault Diagnosis and Performance Prediction of Aeroengine[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2012.

    [3]Cui Zhiquan.Civil Aeroengine Gas Path Parameter Deviation Mining Method with Application[D].Harbin:Harbin Institute of Technology,2013.

    [4]Zhang Defeng.MATLAB Neural Network Design[M].Beijing:China Machine Press,2012.

    [5]Lei Yingjie,Zhang Shanwen,Li Xuwu.MATLAB Genetic algorithm toolbox and application[M].Xi’an:Xi’an University of Electronic Science and Technology Press,2005.

    [6]CHEN Guo,HAO Tengfei,CHENG Xiaoyong,et al.Sensitivity analysis of fault diagnosis of aero-engine rolling bearing based on vibration signal measured on casing[J].Journal of Aerospace Power,2014,29(12):2874-2884.

    [7]HE Chen,ZHANG Xiaodong,Patton R J.Robust fault diagnosis for aero-engine compressor sensor based on LMI and discrete model[J].Journal of Aerospace Power,2014,29(4):965-972.

    [8]Chen Ming.MATLAB Examples of neural network theory and refined analysis[M].Beijing:Tsinghua University Press,2013.

    [9]HUANG Yuanqiang,QU Hongchun,ZHAO Yuechao.Research on aero-engine performance ranking by principa components analysis[J].Aviation maintenance and engineering,2015,1:75-77.

    [10]Chen Guo.Rough Set-Genetic Algorithm-Neural Network Compositive Classifier and Its Application in Rotor Faults Diagnosis[J].Chinese Mechanical Engineering,2008,19(1):85-89.

    [11]Meng Dong,F(xiàn)an Zhongjun,Wang Jiazhen.An Improvement to the BP Neural Network Algorithm Based on the Chaos Genetic Algorithm[J].Mathematical Theory and Applications,2014,34(1):102-110.

    [12]Yang Mei,Qing Xiaoxia,Wang Bo.Optimization of Neural Network Based on Improved Genetic Algorithm[J].Computer Simulation,2009,26(5):198-201.

    [13]Yan Taishan.Research on Neural Network Training Algorithm Based on Genetic Algorithm[J].Journal of Hunan Institute of Science and Technology(Natural Sciences),2007,20(1):31-34.

    国产亚洲5aaaaa淫片| 亚洲天堂国产精品一区在线| 亚洲婷婷狠狠爱综合网| 欧美一区二区亚洲| 免费观看a级毛片全部| h日本视频在线播放| 欧美区成人在线视频| 亚洲中文字幕一区二区三区有码在线看| 国产乱人视频| 自拍偷自拍亚洲精品老妇| 精品人妻偷拍中文字幕| 亚洲真实伦在线观看| 久久精品91蜜桃| 婷婷亚洲欧美| 国产极品精品免费视频能看的| 亚洲一区二区三区色噜噜| ponron亚洲| 免费看a级黄色片| 一区福利在线观看| 亚洲av.av天堂| 欧美精品国产亚洲| 床上黄色一级片| 欧美一区二区亚洲| 六月丁香七月| 成人av在线播放网站| 直男gayav资源| 国产精品.久久久| 毛片女人毛片| 亚洲精品国产av成人精品| 精品99又大又爽又粗少妇毛片| 两性午夜刺激爽爽歪歪视频在线观看| 一区福利在线观看| 国产精华一区二区三区| 中文字幕久久专区| 此物有八面人人有两片| 舔av片在线| 久久精品夜色国产| 伦精品一区二区三区| 亚洲精品日韩在线中文字幕 | 婷婷色av中文字幕| 欧美不卡视频在线免费观看| 国产蜜桃级精品一区二区三区| 丝袜美腿在线中文| 国产在视频线在精品| 三级男女做爰猛烈吃奶摸视频| 成人国产麻豆网| 丝袜美腿在线中文| 日本一本二区三区精品| 亚洲av中文av极速乱| 国产男人的电影天堂91| 美女xxoo啪啪120秒动态图| 色哟哟·www| 草草在线视频免费看| 国产精品久久久久久精品电影| 中文精品一卡2卡3卡4更新| 国产视频首页在线观看| 色哟哟·www| 丝袜美腿在线中文| 国模一区二区三区四区视频| 色播亚洲综合网| 亚洲va在线va天堂va国产| 国产麻豆成人av免费视频| 欧美3d第一页| 亚洲精品乱码久久久v下载方式| 日本在线视频免费播放| 亚洲精品乱码久久久v下载方式| 又黄又爽又刺激的免费视频.| 看片在线看免费视频| 免费无遮挡裸体视频| 亚洲一区二区三区色噜噜| 26uuu在线亚洲综合色| 亚洲自偷自拍三级| 乱人视频在线观看| 性插视频无遮挡在线免费观看| 国产精品久久久久久精品电影小说 | 成人高潮视频无遮挡免费网站| 99久久久亚洲精品蜜臀av| 亚洲国产欧美在线一区| 日韩 亚洲 欧美在线| 国产欧美日韩精品一区二区| 久久久午夜欧美精品| 国产精品爽爽va在线观看网站| 国产日本99.免费观看| 国产伦一二天堂av在线观看| 精品久久久久久久久亚洲| 69人妻影院| 国产91av在线免费观看| av在线蜜桃| 国产精品日韩av在线免费观看| 少妇熟女欧美另类| 久久久久国产网址| 亚洲18禁久久av| 1024手机看黄色片| 免费av观看视频| 久久人人精品亚洲av| 嫩草影院新地址| 九九爱精品视频在线观看| 精品不卡国产一区二区三区| 国产精品三级大全| 如何舔出高潮| 插逼视频在线观看| 长腿黑丝高跟| 免费看av在线观看网站| 熟妇人妻久久中文字幕3abv| 网址你懂的国产日韩在线| 老司机影院成人| 麻豆国产av国片精品| 国产精品一区www在线观看| 青春草国产在线视频 | 午夜精品国产一区二区电影 | 国产高清不卡午夜福利| ponron亚洲| 最新中文字幕久久久久| 亚洲av免费在线观看| 91在线精品国自产拍蜜月| 欧美成人a在线观看| 国产日本99.免费观看| 亚洲成a人片在线一区二区| 免费不卡的大黄色大毛片视频在线观看 | 黄色配什么色好看| 亚洲精品色激情综合| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 男人舔女人下体高潮全视频| 最后的刺客免费高清国语| 大又大粗又爽又黄少妇毛片口| 男女啪啪激烈高潮av片| 毛片一级片免费看久久久久| 国产伦精品一区二区三区四那| 亚洲乱码一区二区免费版| 一区二区三区四区激情视频 | 精品久久久久久久久av| 又爽又黄无遮挡网站| h日本视频在线播放| 国产精品人妻久久久影院| 熟女人妻精品中文字幕| 伦精品一区二区三区| 男女做爰动态图高潮gif福利片| 国产亚洲精品久久久com| 国产激情偷乱视频一区二区| 久久精品夜夜夜夜夜久久蜜豆| 春色校园在线视频观看| 国产亚洲91精品色在线| 日本撒尿小便嘘嘘汇集6| 黄色配什么色好看| 色哟哟·www| 成人二区视频| 我的老师免费观看完整版| 欧美性感艳星| 级片在线观看| 日产精品乱码卡一卡2卡三| 日日摸夜夜添夜夜爱| 国产单亲对白刺激| 麻豆成人av视频| 久久99蜜桃精品久久| 久久久久久久午夜电影| 日韩av在线大香蕉| 日韩 亚洲 欧美在线| 中文字幕人妻熟人妻熟丝袜美| 中文资源天堂在线| 国产爱豆传媒在线观看| 亚州av有码| 午夜福利在线观看吧| 亚洲成a人片在线一区二区| 国产欧美日韩精品一区二区| 日韩人妻高清精品专区| 久久久久久久午夜电影| 亚洲人与动物交配视频| 亚洲av成人精品一区久久| 波野结衣二区三区在线| 18禁黄网站禁片免费观看直播| 青春草亚洲视频在线观看| 国产人妻一区二区三区在| 又黄又爽又刺激的免费视频.| 变态另类成人亚洲欧美熟女| 美女大奶头视频| 黄色视频,在线免费观看| 亚洲成人久久爱视频| 日本一本二区三区精品| 人体艺术视频欧美日本| 在线观看一区二区三区| 日韩高清综合在线| 国产精品人妻久久久久久| 搡女人真爽免费视频火全软件| 久久久色成人| 欧美不卡视频在线免费观看| 国产亚洲91精品色在线| 日本三级黄在线观看| 悠悠久久av| 综合色丁香网| 美女被艹到高潮喷水动态| 欧美日韩精品成人综合77777| 久久国内精品自在自线图片| 久久鲁丝午夜福利片| 欧美精品国产亚洲| 色尼玛亚洲综合影院| 精品人妻偷拍中文字幕| 一区二区三区免费毛片| 色5月婷婷丁香| 99久久中文字幕三级久久日本| 在线免费观看不下载黄p国产| 老熟妇乱子伦视频在线观看| 深爱激情五月婷婷| 国产高清三级在线| 精品久久久久久久久亚洲| 麻豆国产av国片精品| 久久久久国产网址| 听说在线观看完整版免费高清| 国产av一区在线观看免费| 91午夜精品亚洲一区二区三区| 成人午夜高清在线视频| 久久这里有精品视频免费| 午夜a级毛片| 最近2019中文字幕mv第一页| 天堂中文最新版在线下载 | 国产又黄又爽又无遮挡在线| 国产不卡一卡二| 午夜爱爱视频在线播放| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 免费av观看视频| 久久久久久久久大av| 欧美色欧美亚洲另类二区| av福利片在线观看| 成人午夜高清在线视频| 91精品一卡2卡3卡4卡| 丰满的人妻完整版| 99久国产av精品| 永久网站在线| 一区二区三区免费毛片| 岛国毛片在线播放| 日韩强制内射视频| 麻豆精品久久久久久蜜桃| av专区在线播放| 亚洲第一区二区三区不卡| 在线免费观看的www视频| 亚洲四区av| 啦啦啦观看免费观看视频高清| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 国产av不卡久久| 成熟少妇高潮喷水视频| 久久精品人妻少妇| 亚洲高清免费不卡视频| 久久亚洲国产成人精品v| 亚州av有码| 精品日产1卡2卡| 中文字幕av成人在线电影| 好男人视频免费观看在线| 色5月婷婷丁香| 国产成人精品婷婷| 国产又黄又爽又无遮挡在线| 久久这里只有精品中国| 如何舔出高潮| 国产三级在线视频| 最近2019中文字幕mv第一页| 人妻夜夜爽99麻豆av| 欧美在线一区亚洲| 成人永久免费在线观看视频| 丰满乱子伦码专区| 联通29元200g的流量卡| 免费不卡的大黄色大毛片视频在线观看 | 欧美日本亚洲视频在线播放| 欧美性猛交黑人性爽| 亚洲国产精品合色在线| 男女下面进入的视频免费午夜| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 免费无遮挡裸体视频| 久久中文看片网| 天天躁日日操中文字幕| 国产精品麻豆人妻色哟哟久久 | 波多野结衣高清作品| 久久精品夜色国产| 岛国毛片在线播放| 色综合站精品国产| 精品99又大又爽又粗少妇毛片| 1000部很黄的大片| 欧美性猛交╳xxx乱大交人| 精品99又大又爽又粗少妇毛片| av福利片在线观看| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 久久久久免费精品人妻一区二区| 亚洲综合色惰| 色哟哟·www| 日本一二三区视频观看| 成人欧美大片| 精品人妻偷拍中文字幕| 岛国在线免费视频观看| 国产成人精品一,二区 | 日韩 亚洲 欧美在线| 成人永久免费在线观看视频| 搡女人真爽免费视频火全软件| 成人无遮挡网站| 亚洲在线自拍视频| 2021天堂中文幕一二区在线观| 性插视频无遮挡在线免费观看| 成人欧美大片| 久久99蜜桃精品久久| 色播亚洲综合网| 国产大屁股一区二区在线视频| 22中文网久久字幕| 淫秽高清视频在线观看| 99久国产av精品| 大香蕉久久网| 免费电影在线观看免费观看| 久99久视频精品免费| 国产成人freesex在线| 91aial.com中文字幕在线观看| a级毛片a级免费在线| 中出人妻视频一区二区| av在线蜜桃| 中国国产av一级| 欧美一级a爱片免费观看看| 国产 一区精品| 国模一区二区三区四区视频| 岛国毛片在线播放| 亚洲国产精品成人综合色| 内射极品少妇av片p| 青春草亚洲视频在线观看| 成人午夜精彩视频在线观看| 国产一区二区亚洲精品在线观看| 成人一区二区视频在线观看| 九色成人免费人妻av| 99热这里只有是精品50| 免费av毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 久久人人精品亚洲av| 韩国av在线不卡| 国产乱人视频| 一级黄片播放器| 一进一出抽搐gif免费好疼| 给我免费播放毛片高清在线观看| 国产成人精品久久久久久| 久久久久九九精品影院| 亚洲第一区二区三区不卡| 插阴视频在线观看视频| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 色哟哟哟哟哟哟| 99久久精品国产国产毛片| 插逼视频在线观看| 亚洲四区av| 欧美三级亚洲精品| 99在线视频只有这里精品首页| 精品熟女少妇av免费看| 给我免费播放毛片高清在线观看| 麻豆久久精品国产亚洲av| 男插女下体视频免费在线播放| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 国产高清不卡午夜福利| 亚洲欧美清纯卡通| 人妻夜夜爽99麻豆av| 亚洲欧美日韩高清专用| 不卡一级毛片| 乱系列少妇在线播放| ponron亚洲| 国产精品一区www在线观看| 国产高潮美女av| av女优亚洲男人天堂| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 欧美+亚洲+日韩+国产| 亚洲人与动物交配视频| 只有这里有精品99| 99久国产av精品| av国产免费在线观看| 夜夜夜夜夜久久久久| 国产三级在线视频| 国产精品蜜桃在线观看 | 一级毛片我不卡| 精品不卡国产一区二区三区| 久久国内精品自在自线图片| 国产高潮美女av| 国产精品一区www在线观看| 在线观看av片永久免费下载| 国产视频内射| 国产三级在线视频| 人妻久久中文字幕网| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 热99在线观看视频| 天堂影院成人在线观看| 深夜精品福利| 久久这里有精品视频免费| 国产精品日韩av在线免费观看| 波多野结衣巨乳人妻| 国产一区二区三区在线臀色熟女| 国产成人一区二区在线| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 久久国内精品自在自线图片| 国产爱豆传媒在线观看| 成年免费大片在线观看| eeuss影院久久| 精品久久久久久成人av| 色吧在线观看| 午夜精品一区二区三区免费看| 哪里可以看免费的av片| 午夜免费男女啪啪视频观看| 综合色丁香网| 人人妻人人澡人人爽人人夜夜 | 国产私拍福利视频在线观看| 啦啦啦观看免费观看视频高清| 国产一区二区在线av高清观看| 天堂av国产一区二区熟女人妻| 久久久精品欧美日韩精品| 亚洲成av人片在线播放无| 我要搜黄色片| 免费无遮挡裸体视频| 能在线免费看毛片的网站| 天堂中文最新版在线下载 | 九九在线视频观看精品| 老司机影院成人| 日韩人妻高清精品专区| 性欧美人与动物交配| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 亚洲av.av天堂| 午夜精品一区二区三区免费看| 亚洲欧洲日产国产| 特级一级黄色大片| 卡戴珊不雅视频在线播放| 在线观看免费视频日本深夜| 日韩亚洲欧美综合| 蜜臀久久99精品久久宅男| 性欧美人与动物交配| 最新中文字幕久久久久| 国产在线精品亚洲第一网站| a级毛片免费高清观看在线播放| 亚洲国产日韩欧美精品在线观看| 亚洲欧美日韩卡通动漫| 成人特级黄色片久久久久久久| 亚洲国产色片| 黄片无遮挡物在线观看| 亚洲精品乱码久久久v下载方式| 免费电影在线观看免费观看| a级一级毛片免费在线观看| 美女xxoo啪啪120秒动态图| 国内精品一区二区在线观看| 性色avwww在线观看| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| av免费观看日本| 亚洲精品乱码久久久v下载方式| 美女黄网站色视频| 中文字幕av在线有码专区| 日本免费a在线| 欧美不卡视频在线免费观看| 99久国产av精品国产电影| 午夜福利高清视频| 成人鲁丝片一二三区免费| 热99在线观看视频| 欧美最黄视频在线播放免费| 18禁在线播放成人免费| 三级经典国产精品| 1024手机看黄色片| 色哟哟哟哟哟哟| 亚洲欧美清纯卡通| 三级经典国产精品| 99国产精品一区二区蜜桃av| av在线亚洲专区| 日本爱情动作片www.在线观看| 欧美最新免费一区二区三区| 能在线免费观看的黄片| 日本色播在线视频| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 黄色一级大片看看| 亚洲四区av| av天堂在线播放| 国产精品久久电影中文字幕| av又黄又爽大尺度在线免费看 | 久久6这里有精品| 国产精品久久久久久久电影| 非洲黑人性xxxx精品又粗又长| 3wmmmm亚洲av在线观看| 国产日韩欧美在线精品| 免费看美女性在线毛片视频| 变态另类成人亚洲欧美熟女| 小蜜桃在线观看免费完整版高清| 亚洲在线自拍视频| 免费看a级黄色片| 国产黄色视频一区二区在线观看 | 日韩在线高清观看一区二区三区| 欧美精品国产亚洲| 国产精品麻豆人妻色哟哟久久 | 成人一区二区视频在线观看| 久久久久久伊人网av| 国产精品蜜桃在线观看 | 一级二级三级毛片免费看| 久久久久久久久中文| 男女边吃奶边做爰视频| 精品国内亚洲2022精品成人| 国产av不卡久久| 亚洲av成人精品一区久久| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| avwww免费| 亚洲欧美精品综合久久99| 国产一区二区在线观看日韩| 欧美色欧美亚洲另类二区| 亚洲av中文av极速乱| 欧美xxxx性猛交bbbb| 色哟哟哟哟哟哟| 免费人成视频x8x8入口观看| 伊人久久精品亚洲午夜| 欧美在线一区亚洲| ponron亚洲| 午夜精品国产一区二区电影 | 成熟少妇高潮喷水视频| 久久精品影院6| 不卡视频在线观看欧美| 精品欧美国产一区二区三| 精品人妻视频免费看| 国产精品麻豆人妻色哟哟久久 | 亚洲精品粉嫩美女一区| 国产精品一区二区三区四区免费观看| 国产淫片久久久久久久久| av免费观看日本| 黄色欧美视频在线观看| 狠狠狠狠99中文字幕| 人妻夜夜爽99麻豆av| 99久国产av精品| 亚洲av成人av| 欧美激情久久久久久爽电影| 能在线免费观看的黄片| 热99在线观看视频| 国产午夜精品一二区理论片| 中国美女看黄片| 男女啪啪激烈高潮av片| 色尼玛亚洲综合影院| 综合色av麻豆| 在线a可以看的网站| 非洲黑人性xxxx精品又粗又长| 久久婷婷人人爽人人干人人爱| 久久这里有精品视频免费| 夜夜爽天天搞| 久久欧美精品欧美久久欧美| 国产在视频线在精品| 黄色视频,在线免费观看| 亚洲人成网站在线播放欧美日韩| 色视频www国产| 亚州av有码| 日本熟妇午夜| 人妻少妇偷人精品九色| 亚洲欧美成人综合另类久久久 | 亚洲精品亚洲一区二区| 级片在线观看| 免费观看人在逋| 麻豆久久精品国产亚洲av| 成人亚洲精品av一区二区| 国产一区二区在线av高清观看| 成年版毛片免费区| 99热6这里只有精品| 国产私拍福利视频在线观看| 欧美激情国产日韩精品一区| 1024手机看黄色片| 亚洲欧洲国产日韩| 看黄色毛片网站| 亚洲va在线va天堂va国产| 国产精品无大码| 亚洲在线观看片| 日日摸夜夜添夜夜爱| 日韩人妻高清精品专区| 日韩欧美国产在线观看| 国产黄色小视频在线观看| 亚洲成人久久性| 高清毛片免费看| 乱人视频在线观看| 永久网站在线| 99热这里只有精品一区| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| av天堂中文字幕网| 又爽又黄无遮挡网站| 一边亲一边摸免费视频| 久久久久久久久久久免费av| 欧美色欧美亚洲另类二区| 国产成年人精品一区二区| 少妇高潮的动态图| 久久人人爽人人片av| av又黄又爽大尺度在线免费看 | 我的老师免费观看完整版| 蜜桃久久精品国产亚洲av| 中国国产av一级| 色哟哟哟哟哟哟| 国产久久久一区二区三区| 偷拍熟女少妇极品色| 亚洲成人久久性| 久久精品国产鲁丝片午夜精品| 一级毛片久久久久久久久女| 一进一出抽搐gif免费好疼| 尤物成人国产欧美一区二区三区| 日本免费a在线| 精品人妻偷拍中文字幕| 国产又黄又爽又无遮挡在线| 狠狠狠狠99中文字幕| 欧美日韩综合久久久久久| 国产人妻一区二区三区在| 国产一区二区三区av在线 | 美女国产视频在线观看| 亚洲丝袜综合中文字幕| 一夜夜www| 亚洲中文字幕一区二区三区有码在线看| 秋霞在线观看毛片| 草草在线视频免费看| a级一级毛片免费在线观看| 国产黄片视频在线免费观看| 欧美日韩一区二区视频在线观看视频在线 |