• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    二氧化鈦負(fù)載的鎳氧化態(tài)對(duì)乙腈氣相加氫的影響

    2015-02-18 12:06:44夏龍飛上官文峰顧順超平野真一
    物理化學(xué)學(xué)報(bào) 2015年5期
    關(guān)鍵詞:平野龍飛化工學(xué)院

    夏龍飛 江 治 上官文峰,* 顧順超 平野真一

    (1上海交通大學(xué)機(jī)械與動(dòng)力工程學(xué)院,上海200240;2上海交通大學(xué)化學(xué)化工學(xué)院,上海200240;3上海交通大學(xué)平野創(chuàng)新研究所,上海200240)

    1 lntroduction

    Lower aliphatic amines are valuable products widely used in the manufacture of medicinal,agricultural,textile,rubber,and plastic chemicals.There are two main methods to prepare amines,one is the classical liquid-phase hydrogenation of nitriles,and the other one is the gas-phase hydrogenation of nitriles.But commercially the most commonly used procedure is the hydrogenation of nitriles.1-5An example is the hydrogenation of adiponitrile to produce hexamethylenediamine,a starting compound for nylon 6,6 production.6However,due to the high reactivity of partially hydrogenated reaction intermediates,i.e.imines or Schiff bases,a conventional hydrogenation process leads to a mixture of primary,secondary,and tertiary amines,7-9and the separation of these by-products is usually difficult due to their close boiling points.10

    The reaction selectivity is usually of crucial importance for industrial catalysis process.Verhaaket al.11have studied the selective of acetonitrile on alumina,magnesia,aluminosilicate,and aluminophosphate supported nickel catalysts.They claimed that the selectivity of the hydrogenation of acetonitrile is greatly influenced by the nature of the support used.The mechanism implied that the hydrogenation function of the catalyst is located on the metal,while the acid function,responsible for the condensation reactions,is located on the support.Zhaoet al.12have investigated Ni/MgAlO and K2CO3-Ni/MgAlO catalysts for the hydrogenation of acetonitrile to primary amine.They found that the presence of K2CO3weakened the strength of H―Ni and strengthened the bonding of CH3CN onto Ni by changing adsorptive states of CH3CN,which might be two main reasons for the decreased activity of Ni doped with K2CO3.The addition of K2CO3decreased adsorptive strength of monoethylamine on Ni,resulting in an increase in monoethylamine selectivity.Thus,the choice of the support and the active phase can greatly influence the reaction selectivity toward a particular amine.7,11,13-15

    Gluhoiet al.16have investigated nickel black and nickel deposited on MgO,Al2O3,Cr2O3,SiO2,TiO2,ZrO2,ThO2,and UO2,at ambient pressure and 70°C.They found that the selectivity to monoethylamine is the highest with nickel black,Ni/MgO,Ni/ThO2,and Ni/UO2catalysts(molar fraction>80%),while it is the lowest with Ni/TiO2catalysts(molar fraction<20%).But when the catalytic activity was normalized by the metal surface area unit,the most efficient support was TiO2.

    Thus,previous researches mainly focus on the reaction selectivity to monoethylamine,but few pay attention to the reaction conversion and the effect of state of Ni.The aim of this study is,therefore,to investigate the relationship between the oxidation states of Ni supported on TiO2and the activity for the gas phase hydrogenation of acetonitrile.The oxidation state of supported Ni is tailored by the temperature of reduction on the catalytic properties of Ni/TiO2,prepared by wetness impregnation.

    2 Experimental

    2.1 Catalyst preparation

    Ni/TiO2catalysts with Ni mass fraction of 3%,actual mass fraction of 2.8%tested by Inductive Coupled Plasma Emission Spectrometer(ICP),were prepared by wetness impregnation on TiO2support with nickel acetate(C4H6O4Ni?4H2O)in aqueous solution.Firstly,the TiO2support was calcined in air at 500°C for 4 h.After that,the nickel acetate aqueous solution was impregnated onto TiO2support under stirring at 80°C until dryness,and drying at 80°C for 12 h.Then solid products were calcined at 400 °C for 2 h(5 °C?min-1heating rate).The catalysts obtained were denoted as NiOx/TiO2.

    2.2 Characterization of catalysts

    The catalyst phase was identified using X-ray diffraction with CuKα(40 kV,20 mA)radiation(Rigaku D/max-2200/PC,Japan).Diffraction patterns were recorded from 20°to 80°at a rate of 6(°)?min-1.Average particle size and morphology were obtained by transmission electron microscopy(TEM,JEM-2100F,Japan).

    The chemical states of Ni,Ti,O,and C in the prepared NiOx/TiO2catalysts were determined using X-ray photoelectron spectroscopy(XPS).The XPS signals were collected using an AXIS UltraDLD X-ray source with an aluminum crystal,operating at an anode voltage of 12 kV and an emission current of 12 mA to generate the required AlKαradiation.Subsequently,curve fitting and background subtraction were performed using Casa XPS software.All the binding energy(EB)values were calibrated by using the standardEBvalue of contaminant carbon(EBof C 1sis 284.8 eV)as a reference.

    Temperature-programmed reduction(TPR)was performed using a quartz U-tube reactor loaded with about 20 mg of NiOx/TiO2.A mixture of N2and H2(5%H2by volume)was used,and the flow rate was maintained at 30 mL?min-1.The temperature wasraisedataprogrammedrateof 10 °C?min-1from100to600 °C.

    Ammonia temperature programmed desorption(NH3-TPD)profiles of catalysts were obtained by placing 100 mg of NiOx/TiO2reducedin situin a tubular reactor.After cleaning with He(30 mL?min-1)from room temperature to 400 °C,and holding for 20 min,then cooling to 50°C,the adsorption of ammonia(5 min)at this temperature was performed.He flow(30 mL?min-1)was next passed to eliminate the physical absorption of ammonia.Temperature programmed desorption was then carried out by heating the samples from 50 to 500 °C,at a heating rate of 10 °C?min-1.

    2.3 Catalytic tests

    The hydrogenation reactions were performed in a quartz fixedbed reactor.The catalysts(NiOx/TiO2)were pelletized,crushed,and sieved to a fraction of size 0.25-0.38 mm.A sample of the catalyst(0.2 g)was placed in the middle of the vertical quartz reactor(inner diameter 5.6 mm).Then the catalyst was reduced in a flow of hydrogen at different temperatures for 4 h.For convenience,catalysts obtained were denoted as,R200(the catalyst reduced at 200 °C),R300(the catalyst reduced at 300 °C),and R400(the catalyst reduced at 400 °C).The hydrogen flow(60 mL?min-1)was subsequently saturated with acetonitrile by bubbling the gas stream through a saturator,held at-5°C by means of a cooled circulator,resulting in a volume concentration of 2.5%acetonitrile in the gas stream.The gas mixture was passed through the fixed catalyst bed that consisted of Ni/TiO2catalyst.The temperature was measured with a thermocouple.11,12

    Firstly the reactor temperature was raised from room temperature to 50°C and then the temperature of the catalyst bed was stabilized for 25 min.Following the stabilization,the bed temperature was raised to 180 °C at a step of 10 °C with a 25-min stabilization time between two measurements.

    Sampling of the reactant and product gases was performed with pneumatically controlled six-way valves and the gas samples were analyzed by means of gas chromatography(GC)using a gas chromatograph equipped with a flame ionization detector.Data points were collected every 30 min.

    The conversionCof acetonitrile is defined as equation(1).In the equation,Soutis the peak area of acetonitrile in the flame ionization detector when the reaction proceeded.AndSinis the peak area of acetonitrile in the flame ionization detector before the reaction.

    3 Results and discussion

    3.1 Reaction conversion activity

    The bare TiO2supports is reported to have no catalytic activity in acetonitrile hydrogenation,under the reaction conditions used in present study.16As shown in Fig.1,the conversion of acetonitrile is slightly higher than 0%at the beginning temperature point(50°C),and it further decreases to below 0%in the temperature range from 50 to 70°C,which can be ascribed to the adsorption and following desorption process of acetonitrile on Ni/TiO2catalyst during the initial heating process.The temperature for 100%conversion of acetonitrile is 100,120,and 110°C for R300,R200 and R400 respectively.And the R300 also have higher reaction conversion ratio in the lower temperature range.Thus,R300 shows the highest reaction activity for hydrogenation of acetonitrile.

    3.2 Yield of products

    Fig.1 Conversion of acetonitrile as a function of temperature with R200,R300,R400

    Monoethylamine(MEA),diethylamine(DEA),and triethylamine(TEA)are the main products for the hydrogenation of acetonitrile with Ni/TiO2catalysts.Yield(Y)of products is defined as equations(2)-(4).In equations,SMEA,SDEA,andSMEAare peak areas corrected for different response factors in the flame ionization detector and normalized to moles of product.

    As shown in Fig.2,TEAis produced at 70 and 80°C for R300 and R200 respectively,while TEA and DEA are produced simultaneously at 90°C for R400.Thus,TEA can be regarded as the initial product during the hydrogenation reaction for R300 and R200.And TEA and DEA are the initial hydrogenation products for R400 as shown in Fig.2,which may be due to the difficulty of the desorption of TEAbelow 90°C for R400.

    Fig.2 Yield of products as a function of temperature with(a)R200,(b)R300,(c)R400

    The selectivity in acetonitrile hydrogenation is determined by the production of the intermediate products,imine CH3―CH=NH,which can either accept two hydrogen atoms to form primary amine or can react with already-formed amine to obtain superior amines by condensation reactions17.These latter reactions can occur on both the metal site and acid sites of the support through a bifunctional mechanism.7,11,18Verhaak11and Cabello19et al.proposed that the secondary amine is obtainedviathe reaction of amine with imine,the tertiary amine is obtainedviathe reaction of secondary amine with imine.However,in this study,TEAis the only initial product.Thus,the initial reaction step in this system may not be the formation of TEA between the reaction of one secondary amine and one imine6,14as shown in equation(5).Meanwhile,Feng20has found that at 198 K the CH3CN molecule rehybridized and chemisorbed on metal catalysts by di-σ-bond with carbon and nitrogen atom paralleled to the surface,which means that CH3CN can be activated by metal catalysts.Thus it is proposed that the formation of TEA between the interactions of two imines with one nitrile as shown in equation(6)may be the initial step in this system.

    The maximum yield of products over Ni/TiO2catalysts are presented in Table 1.It suggests the increase of the maximum yield of TEA with the increase of the reduction temperature.However,the maximum yield of MEA only increases slightly while the maximum yield of DEA is almost identical which may be due to the appearance of the maximum yields of MEA and DEAat high temperature(>150 °C)range.

    3.3 Structure of catalysts

    As shown in Fig.3,nickel particles are homogenously distributed on the TiO2and the average size of nickel increases with the increase of the reduction temperature.As shown in Fig.4,typical X-ray diffraction peaks of P25,mixture of anatase and rutile,are observed.The peaks at 25.3°,37.0°,37.8°,38.6°,48.0°,52.0°,53.9°,55.1°,62.7°,68.8°,and 70.3°,correspond to the anatase crystalline phase[JCPDS 78-2486].While the other peaks at 27.4°,36.1°,41.2°,54.3°,and 56.6°,correspond to the rutile crystalline phase[JCPDS 21-1276].And these peaks are more intensive for NiOx/TiO2than for R200,R300,and R400,indicating that reducing in H2may change part of the anatase and/or rutile to amorphous titanium dioxide.However diffraction peaks of Ni and NiOxare not observed,indicating its high dispersion state in catalysts.

    Table 1 Results of maximum yields of products over different catalysts

    Fig.3 TEM images for(a)R200,(b)R300,(c)R400

    3.4 XPS analysis

    XPS studies are further performed to obtain the surface chemical states information of catalysts(Fig.5,Fig.6,Fig.7,and Fig.8).XPS results are fitted with Casa XPS software.

    Fig.4 XRD patterns for(a)NiOx/TiO2,(b)R200,(c)R300,(d)R400

    The XPS spectrum of Ni 2pis shown in Fig.5.It shows that the peak intensity of NiO decreases with the increase of the reduction temperature from 200 to 400°C,while Ni0peak appears when the reduction temperature reaches to 300°C,and peaks of Ni2O3exist in all temperature range.21,22The XPS spectrum of Ti 2pis shown in Fig.6.The peaks centered at 458.6 eV represent the Ti4+in TiO2.22-26The appearance of the strong peak at 455.7 eV for R200 suggests the existence of two kinds of Ti state on the surface of R200.As shown in Fig.7,the C 1score level includes four components;the peaks centered at 284.8 eV represent the pure carbon contribution,and the peaks at about 286 eV correspond to carbon linked to single oxygen species,the peaks at 288.3 eV correspond to carbon linked with an oxygen atom(C=O),26which should arise from surface contamination,the peaks centered at about 282 eV correspond to carbide species.26,27It is also worth mentioning that the appearance of the second Ti species as shown in Ti 2pspectrum and possible carbide species in C 1sspectrum for R200 may suggest the formation of Ti―C bond in this catalyst.As shown in Fig.8,the O 1sincludes three components;the peak centered at 529.1 eV corresponds to NiO,28the peaks centered at 529.7 eV represent TiO2,25,29and the peaks at about 531.0 eV correspond to Ni2O3,28which is corresponding to the Ni 2pXPS results as shown in Fig.5.

    Fig.5 XPS sperctra of Ni 2p for Ni/TiO2catalysts

    Fig.6 XPS sperctra of Ti 2p for Ni/TiO2catalysts

    Fig.7 XPS sperctra of C 1s for Ni/TiO2catalysts

    Fig.8 XPS sperctra of O 1s for Ni/TiO2catalysts

    Fig.9 TPR profiles for(a)TiO2calcined at 500°C for 4 h and(b)NiOx/TiO2

    3.5 H2-TPR

    H2-TPR has been employed to explore the states of nickel under different reduction temperatures.As shown in Fig.9,the TPR profile of TiO2shows a small peak at 550°C,which suggests the reduction of TiO2to Ti2O3at 550°C.The TPR profile of NiOx/TiO2shows four reduction peaks,centered at 271,308,394,and 550°C.Combining with the result of XPS,it indicates that the residue of carbon on the surface of catalysts reacts with oxide at 271°C;the reduction process of Ni2O3to NiO proceeds at 308°C;and the strongest peak centered at 394°C corespond to the process of NiO to Ni.Although only a little fraction of Ni2O3can be reduced to NiO,most of the NiO can be reduced to Ni metal as suggested by the peak area ratio shown in Fig.9.

    3.6 NH3-TPD

    NH3-TPD has been used to investigate the acidic and catalytic properties.As shown in Fig.10,the NH3-TPD profile for Ni metal is just a straight line,which suggests there is no desorption of NH3on Ni.A small peak centered at about 150°C appears on the profile of NiO,which corresponds to weak acid sites.Ni2O3showed abnormal desorption peak(not shown here),which may be due to the possible decomposition of Ni2O3in NH3-TPD circumstance.The NH3-TPD profile for TiO2support exhibits two desorption peaks,centered at 95 and 380°C.Compared with pure TiO2,two additional peaks centered at lower temperature,i.e.252 and 330°C,appear in NH3-TPD profiles of Ni/TiO2while the peak intensity centered at 380°C decreases.

    Considering the preferential condensation reaction under weak acidity conditions,the above results thus suggest the gradual appearance of Ni0in Ni/TiO2and corresponding decrease of intrinsic acidity of the Ni/TiO2catalyst with the increase of the reduction temperature,which may be responsible for the increase of the maximum yield of TEAwith the increases of the reduction temperature.

    Fig.10 Ammosnia desorption profiles for(a)Ni,(b)NiO,(c)TiO2 calcined at 500°C for 4 h,(d)R200,(e)R300,(f)R400

    4 Conclusions

    The Ni/TiO2catalysts reduced at different temperatures exhibited different activities and yields of products in hydrogenation of acetonitrile.R300 achieved the highest conversion acitivity.TEA was the initial product produced during the hydrogenation of acetonitrile reaction in Ni/TiO2.Increase of the temperature from 200 to 300 and 400°C leads to the increase of the maximum yield of TEA.Characterization results showed the formation of dispersed Ni catalyst with different oxidation states when NiOx/TiO2was reduced at different temperatures,which further influenced the acid sites of Ni/TiO2and the formation of TEA during the initial stage of acetonitrile hydrogenation reaction.

    (1) Weissermel,K.;Arpe,H.J.Industrial Organic Chemistry;Verlag Chemie:Berlin,1978.

    (2) Grayson,M.Kirk-Othmer Encyclopedia of Chemical Technology,2nd ed.;Wiley:New York,1983;Vol.2,p 272.

    (3)Li,H.X.;Wu,Y.D.;Luo,H.S.;Wang,M.H.;Xu,Y.P.Journal of Catalysis2003,21,15.

    (4)Wang,M.H.;Li,H.X.;Wu,Y.D.;Zhang,J.Materials Letters2003,57,2954.doi:10.1016/S0167-577X(02)01404-0

    (5) Braos-García,P.;García-Sancho,C.;Infantes-Molina,A.;Rodríguez-Castellón,E.;Jiménez-López,A.Applied Catalysis A:General2010,381,132.doi:10.1016/j.apcata.2010.03.061

    (6) Medina,F.;Salagre,P.;Sueiras,J.E.;Fierro,J.L.G.Journal of Molecular Catalysis1991,68,L17.

    (7) Medina,F.;Dutartre,R.;Tichit,D.;Coq,B.;Dung,N.T.;Salagre,P.;Sueiras,J.E.Journal of Molecular Catalysis A:Chemical1997,119,201.doi:10.1016/S1381-1169(96)00484-0

    (8) Braos-García,P.;Maireles-Torres,P.;Rodríguez-Castellón,E.;Jiménez-López,A.Journal of Molecular Catalysis A:Chemical2003,193,185.doi:10.1016/S1381-1169(02)00454-5

    (9) Yang,P.F.;Jiang,Z.X.;Ying,P.L.;Li,C.Journal of Catalysis2008,253,66.doi:10.1016/j.jcat.2007.10.029

    (10) Gomez,S.;Peters,J.A.;Maschmeyer,T.Adv.Synth.Catal.2002,344,1037.

    (11) Verhaak,M.J.F.M.;Dillen,A.J.;Geus,J.W.Catalysis Letters1994,26,37.doi:10.1007/BF00824030

    (12) Zhao,J.;Chen,H.;Tian,X.C.;Zang,H.;Fu,Y.C.;Shen,J.Y.Journal of Catalysis2013,298,161.doi:10.1016/j.jcat.2012.11.010

    (13)Rode,C.V.;Arai,M.;Shirai,M.;Nishiyama,Y.Applied Catalysis A:General1997,148,405.doi:10.1016/S0926-860X(96)00238-4

    (14) Huang,Y.Y.;Sachtler,W.M.H.Journal of Catalysis1999,188,215.doi:10.1006/jcat.1999.2645

    (15) Huang,Y.Y.;Adeeva,V.;Sachtler,W.M.H.Applied Catalysis A:General2000,196,73.doi:10.1016/S0926-860X(99)00457-3

    (16) Gluhoi,A.C.;M?rginean,P.;St?nescu,U.Applied Catalysis A:General2005,294,208.doi:10.1016/j.apcata.2005.07.036

    (17) Cerveny,L.Catalytic Hydrogenation;Elsevier:Amsterdam,1986.

    (18) Coq,B.;Tichit,D.;Ribet,S.Journal of Catalysis2000,189,117.doi:10.1006/jcat.1999.2694

    (19) Cabello,F.M.;Tichit,D.;Coq,B.;Vaccari,A.;Dung,N.T.Journal of Catalysis1997,167,142.doi:10.1006/jcat.1997.1523

    (20) Feng,W.M.Acta Phys.-Chim.Sin.1992,8,313.[馮言貝民.物理化學(xué)學(xué)報(bào),1992,8,313.]doi:10.3866/PKU.WHXB19920307

    (21) Barr,T.L.J.Phys.Chem.1978,82,1801.doi:10.1021/j100505a006

    (22) Moulder,J.F.;Stickle,W.F.;Sobol,P.E.;Bomben,K.D.Handbook of X-ray Photoelectron Spectroscopy;Perkin Elmer Eden Prairie:Minnesota,MN,1992.

    (23)Ramqvist,L.;Hamrin,K.;Johansson,G.;Fahlman,A.;Nordling,C.Journal of Physics and Chemistry of Solids1969,30,1835.doi:10.1016/0022-3697(69)90252-2

    (24) Hopfeng?rtner,G.;Borgmann,D.;Rademacher,I.;Wedler,G.;Hums,E.;Spitznagel,G.Journal of Electron Spectroscopy and Related Phenomena1993,63,91.doi:10.1016/0368-2048(93)80042-K

    (25) Leinen,D.;Fernandez,A.;Espinos,J.;Holgado,J.;González-Elipe,A.Applied Surface Science1993,68,453.doi:10.1016/0169-4332(93)90226-2

    (26) Rats,D.;Vandenbulcke,L.;Herbin,R.;Benoit,R.;Erre,R.;Serin,V.;Sevely,J.Thin Solid Films1995,270,177.doi:10.1016/0040-6090(95)06913-5

    (27) Perry,S.S.;Ager,J.W.,III;Somorjai,G.A.;McClelland,R.J.;Drory,M.D.Journal of Applied Physics1993,74,7542.doi:10.1063/1.354980

    (28) Kim,K.S.;Davis,R.Journal of Electron Spectroscopy and Related Phenomena1973,1,251.

    (29) Kuznetsov,M.;Zhuravlev,J.F.;Gubanov,V.Journal of Electron Spectroscopy and Related Phenomena1992,58,169.doi:10.1016/0368-2048(92)80016-2

    猜你喜歡
    平野龍飛化工學(xué)院
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    漫畫摘登
    老年人(2022年3期)2022-04-29 00:44:03
    國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    【鏈接】國家開放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    奇妙的大自然
    Orthonormality of Volkov Solutions and the Sufficient Condition?
    翼龍飛飛飛
    tokyo boy carm_67 平野紫耀(King&Prince)
    ViVi美眉(2018年5期)2018-09-18 22:36:07
    張強(qiáng)、肖龍飛招貼作品
    乒乓球亞錦賽平野美宇?yuàn)Z冠技戰(zhàn)術(shù)分析
    黑人猛操日本美女一级片| 最近手机中文字幕大全| 久久精品国产自在天天线| 波野结衣二区三区在线| 久久亚洲国产成人精品v| 麻豆精品久久久久久蜜桃| 精品第一国产精品| 亚洲情色 制服丝袜| 色婷婷久久久亚洲欧美| 精品国产一区二区三区四区第35| 日本黄色日本黄色录像| 18+在线观看网站| 亚洲精品第二区| 亚洲av福利一区| 免费在线观看黄色视频的| 日本-黄色视频高清免费观看| 天天操日日干夜夜撸| 18禁裸乳无遮挡动漫免费视频| 制服人妻中文乱码| 中文字幕人妻熟女乱码| 亚洲人成网站在线观看播放| 欧美日韩av久久| 校园人妻丝袜中文字幕| 国产亚洲欧美精品永久| 老司机影院成人| 久久久久久久国产电影| 在线观看免费高清a一片| 日韩人妻精品一区2区三区| 国产乱人偷精品视频| 少妇 在线观看| av不卡在线播放| 久久久久久久大尺度免费视频| 久久精品aⅴ一区二区三区四区 | 伊人亚洲综合成人网| 男女下面插进去视频免费观看 | 日本猛色少妇xxxxx猛交久久| 最近最新中文字幕免费大全7| 久久这里只有精品19| 日本av免费视频播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 啦啦啦视频在线资源免费观看| 91精品国产国语对白视频| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲熟女精品中文字幕| 欧美亚洲 丝袜 人妻 在线| 精品酒店卫生间| 亚洲三级黄色毛片| 全区人妻精品视频| 又粗又硬又长又爽又黄的视频| 国产亚洲精品久久久com| 黄色 视频免费看| 亚洲国产欧美日韩在线播放| 热99国产精品久久久久久7| 男女国产视频网站| 中文精品一卡2卡3卡4更新| 国产麻豆69| 亚洲美女黄色视频免费看| 永久免费av网站大全| 午夜av观看不卡| 久久人人爽av亚洲精品天堂| 在线观看www视频免费| 亚洲精华国产精华液的使用体验| 男女下面插进去视频免费观看 | 黄色毛片三级朝国网站| 2018国产大陆天天弄谢| 这个男人来自地球电影免费观看 | √禁漫天堂资源中文www| 精品国产国语对白av| 高清毛片免费看| 免费看光身美女| 国产白丝娇喘喷水9色精品| 国产高清三级在线| 精品99又大又爽又粗少妇毛片| 久久久久国产精品人妻一区二区| 最近2019中文字幕mv第一页| 国产在视频线精品| 精品亚洲成a人片在线观看| 久久精品国产亚洲av涩爱| 日韩熟女老妇一区二区性免费视频| 97人妻天天添夜夜摸| 精品卡一卡二卡四卡免费| a 毛片基地| 韩国精品一区二区三区 | 纵有疾风起免费观看全集完整版| 寂寞人妻少妇视频99o| 免费女性裸体啪啪无遮挡网站| 久久精品熟女亚洲av麻豆精品| 美女视频免费永久观看网站| 久久久久久久久久成人| 成人国产麻豆网| 精品卡一卡二卡四卡免费| 久久精品国产a三级三级三级| 国产毛片在线视频| 看十八女毛片水多多多| 18+在线观看网站| 国产精品麻豆人妻色哟哟久久| 国产乱来视频区| 日韩一区二区三区影片| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 看免费成人av毛片| 赤兔流量卡办理| 乱码一卡2卡4卡精品| 国产高清三级在线| 在线观看一区二区三区激情| 丝瓜视频免费看黄片| 久久久久久久大尺度免费视频| 午夜精品国产一区二区电影| 超碰97精品在线观看| 亚洲av免费高清在线观看| 在线 av 中文字幕| 在现免费观看毛片| 久久人人爽人人片av| 国产精品嫩草影院av在线观看| 97人妻天天添夜夜摸| 亚洲精品第二区| 女性被躁到高潮视频| 免费日韩欧美在线观看| videos熟女内射| 男女免费视频国产| 国产成人av激情在线播放| 国产精品国产三级国产专区5o| 又黄又爽又刺激的免费视频.| 80岁老熟妇乱子伦牲交| 日本91视频免费播放| 又黄又爽又刺激的免费视频.| 国产高清三级在线| 丝袜喷水一区| 亚洲丝袜综合中文字幕| 街头女战士在线观看网站| 免费观看性生交大片5| 精品一区二区三区视频在线| 亚洲精品国产av成人精品| 22中文网久久字幕| 国产永久视频网站| 日本色播在线视频| 少妇被粗大猛烈的视频| 成人国语在线视频| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 免费看不卡的av| 看免费成人av毛片| 高清视频免费观看一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美另类一区| 精品第一国产精品| 国产深夜福利视频在线观看| 成人亚洲欧美一区二区av| 一级,二级,三级黄色视频| 久久久久久久久久人人人人人人| 免费高清在线观看日韩| 男女免费视频国产| 日韩一本色道免费dvd| 香蕉国产在线看| 国产亚洲午夜精品一区二区久久| 成年av动漫网址| kizo精华| 久久久久久久久久人人人人人人| 亚洲欧美一区二区三区黑人 | 赤兔流量卡办理| 久久精品熟女亚洲av麻豆精品| av视频免费观看在线观看| 国产精品.久久久| 欧美精品一区二区大全| 国产精品秋霞免费鲁丝片| 国产成人a∨麻豆精品| 黄网站色视频无遮挡免费观看| 九九爱精品视频在线观看| 亚洲精品第二区| 日日啪夜夜爽| 少妇的逼水好多| 九草在线视频观看| 亚洲第一区二区三区不卡| 国产黄色免费在线视频| 国产极品粉嫩免费观看在线| 日本vs欧美在线观看视频| 亚洲av.av天堂| 欧美精品国产亚洲| 亚洲,一卡二卡三卡| 色婷婷久久久亚洲欧美| 免费黄色在线免费观看| 狠狠精品人妻久久久久久综合| 男人添女人高潮全过程视频| 亚洲精品美女久久久久99蜜臀 | 日韩电影二区| 在线天堂中文资源库| 免费女性裸体啪啪无遮挡网站| 日韩中字成人| 我的女老师完整版在线观看| 日韩大片免费观看网站| 男女边吃奶边做爰视频| 亚洲综合精品二区| 欧美丝袜亚洲另类| 涩涩av久久男人的天堂| 高清视频免费观看一区二区| 午夜福利网站1000一区二区三区| 丝袜人妻中文字幕| 免费播放大片免费观看视频在线观看| 黑人高潮一二区| 日本av手机在线免费观看| 少妇猛男粗大的猛烈进出视频| 建设人人有责人人尽责人人享有的| 欧美成人精品欧美一级黄| 成人综合一区亚洲| 精品人妻在线不人妻| 大香蕉久久网| 女性生殖器流出的白浆| 亚洲国产精品一区二区三区在线| 观看av在线不卡| 色吧在线观看| 人人澡人人妻人| 久久韩国三级中文字幕| 老司机亚洲免费影院| 久久久久国产精品人妻一区二区| 乱人伦中国视频| 18禁国产床啪视频网站| 边亲边吃奶的免费视频| 国产一区二区三区av在线| 黄片播放在线免费| 五月天丁香电影| 婷婷成人精品国产| 国产成人欧美| videos熟女内射| 欧美变态另类bdsm刘玥| 最近中文字幕2019免费版| av免费观看日本| 久久影院123| 欧美精品亚洲一区二区| 又黄又爽又刺激的免费视频.| 国产日韩欧美在线精品| 91精品三级在线观看| 在线天堂最新版资源| av.在线天堂| 日韩中字成人| 最近中文字幕高清免费大全6| 女人被躁到高潮嗷嗷叫费观| 2022亚洲国产成人精品| 欧美 亚洲 国产 日韩一| 免费看不卡的av| 亚洲国产av新网站| 99久久精品国产国产毛片| 成年av动漫网址| 少妇高潮的动态图| 日日爽夜夜爽网站| 性色avwww在线观看| 性色av一级| 亚洲欧美色中文字幕在线| 美女脱内裤让男人舔精品视频| 国产黄色免费在线视频| 亚洲欧洲国产日韩| 国产激情久久老熟女| 中文字幕亚洲精品专区| 国产精品无大码| 国产精品久久久久久精品电影小说| 久久精品人人爽人人爽视色| 久久精品久久精品一区二区三区| 亚洲少妇的诱惑av| 五月开心婷婷网| 最黄视频免费看| 桃花免费在线播放| 黑人欧美特级aaaaaa片| 99久久精品国产国产毛片| 如何舔出高潮| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99热这里只有是精品在线观看| 国产免费又黄又爽又色| 国产一区二区激情短视频 | 99热这里只有是精品在线观看| 大陆偷拍与自拍| 天堂8中文在线网| 久久久a久久爽久久v久久| 一级片免费观看大全| 精品久久蜜臀av无| av不卡在线播放| 中文字幕制服av| 考比视频在线观看| 久久久久久久久久人人人人人人| av免费观看日本| 搡老乐熟女国产| 国产日韩欧美视频二区| 国产在线视频一区二区| 日韩精品有码人妻一区| 亚洲国产精品专区欧美| 国产精品无大码| av免费在线看不卡| 久久热在线av| 黄色 视频免费看| 国产探花极品一区二区| 免费高清在线观看视频在线观看| 国产亚洲欧美精品永久| 国产精品久久久久成人av| 亚洲国产成人一精品久久久| 久久毛片免费看一区二区三区| 亚洲精品aⅴ在线观看| 激情五月婷婷亚洲| h视频一区二区三区| 亚洲av男天堂| 亚洲少妇的诱惑av| 欧美精品一区二区免费开放| 人人澡人人妻人| 少妇猛男粗大的猛烈进出视频| 中文乱码字字幕精品一区二区三区| 久久久国产欧美日韩av| 亚洲中文av在线| av在线观看视频网站免费| 夫妻午夜视频| 久久精品国产鲁丝片午夜精品| 女人久久www免费人成看片| 国产一区二区在线观看日韩| xxx大片免费视频| 欧美日韩av久久| 又黄又爽又刺激的免费视频.| 国产av精品麻豆| 日韩中字成人| 在线观看美女被高潮喷水网站| 人妻系列 视频| 黄色一级大片看看| 最近中文字幕高清免费大全6| kizo精华| 亚洲国产精品一区三区| 免费少妇av软件| 亚洲精品,欧美精品| 亚洲av成人精品一二三区| 高清不卡的av网站| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 美女国产视频在线观看| 一本久久精品| 波野结衣二区三区在线| 王馨瑶露胸无遮挡在线观看| 欧美最新免费一区二区三区| 亚洲,一卡二卡三卡| 18+在线观看网站| 久久精品国产自在天天线| 国精品久久久久久国模美| 亚洲精品中文字幕在线视频| 午夜视频国产福利| 国产精品一国产av| 亚洲av电影在线观看一区二区三区| 丝袜脚勾引网站| 日日啪夜夜爽| 亚洲美女视频黄频| 97在线人人人人妻| 一级毛片 在线播放| 亚洲伊人色综图| 午夜av观看不卡| 国产精品久久久久成人av| 在线观看免费视频网站a站| 亚洲丝袜综合中文字幕| 国产又色又爽无遮挡免| 免费女性裸体啪啪无遮挡网站| 欧美日韩视频精品一区| 久久综合国产亚洲精品| 亚洲国产欧美日韩在线播放| 久久久久久久久久人人人人人人| 啦啦啦中文免费视频观看日本| 伦精品一区二区三区| 国产精品女同一区二区软件| 国产成人一区二区在线| av在线播放精品| 在线观看一区二区三区激情| 亚洲精品自拍成人| 激情五月婷婷亚洲| 国产乱来视频区| 捣出白浆h1v1| 中国三级夫妇交换| 精品少妇久久久久久888优播| 亚洲精品第二区| 欧美激情极品国产一区二区三区 | 热99久久久久精品小说推荐| 亚洲欧洲精品一区二区精品久久久 | 91精品伊人久久大香线蕉| 国产亚洲av片在线观看秒播厂| 男女免费视频国产| 激情五月婷婷亚洲| 韩国av在线不卡| 亚洲精品美女久久av网站| 国产欧美日韩综合在线一区二区| 91精品国产国语对白视频| 国产精品久久久av美女十八| 22中文网久久字幕| 黄色怎么调成土黄色| 两个人免费观看高清视频| 菩萨蛮人人尽说江南好唐韦庄| 精品久久久精品久久久| tube8黄色片| 大话2 男鬼变身卡| 黑人高潮一二区| 丝袜在线中文字幕| 男女啪啪激烈高潮av片| 一级毛片我不卡| 18+在线观看网站| 制服诱惑二区| 国产日韩一区二区三区精品不卡| 成年av动漫网址| 久久久久久久久久久久大奶| av又黄又爽大尺度在线免费看| 99久国产av精品国产电影| 欧美激情 高清一区二区三区| 十分钟在线观看高清视频www| 国产亚洲av片在线观看秒播厂| 少妇的丰满在线观看| 成人综合一区亚洲| 国产精品国产三级国产av玫瑰| 中文字幕亚洲精品专区| 国产精品 国内视频| 91精品伊人久久大香线蕉| 日韩电影二区| 制服诱惑二区| 美女福利国产在线| 午夜免费观看性视频| 国产极品天堂在线| 一区二区三区乱码不卡18| 捣出白浆h1v1| 亚洲伊人久久精品综合| 美女国产高潮福利片在线看| 大香蕉久久网| 国产高清国产精品国产三级| 亚洲三级黄色毛片| 国产高清国产精品国产三级| 国产欧美亚洲国产| 亚洲精品国产av成人精品| 男女免费视频国产| 人妻系列 视频| 亚洲美女黄色视频免费看| 一级黄片播放器| 亚洲欧美一区二区三区黑人 | 十分钟在线观看高清视频www| 精品一区二区三区视频在线| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av视频免费观看在线观看| 搡女人真爽免费视频火全软件| 在线亚洲精品国产二区图片欧美| 一级毛片 在线播放| 国产xxxxx性猛交| 精品久久国产蜜桃| 国产爽快片一区二区三区| 国产永久视频网站| 在线观看美女被高潮喷水网站| 日日啪夜夜爽| 午夜av观看不卡| 王馨瑶露胸无遮挡在线观看| 免费黄频网站在线观看国产| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 欧美精品高潮呻吟av久久| 成人国语在线视频| 国产av一区二区精品久久| 黄片播放在线免费| 夫妻性生交免费视频一级片| 精品国产国语对白av| 久久久久精品人妻al黑| 在线观看美女被高潮喷水网站| 欧美成人精品欧美一级黄| av在线观看视频网站免费| 在线 av 中文字幕| 国产欧美亚洲国产| 国产精品三级大全| 乱码一卡2卡4卡精品| 汤姆久久久久久久影院中文字幕| 日日摸夜夜添夜夜爱| 精品一区二区三卡| 亚洲av.av天堂| 久久久久久久大尺度免费视频| 国产精品偷伦视频观看了| 一二三四在线观看免费中文在 | 国产成人a∨麻豆精品| www.av在线官网国产| 久久午夜综合久久蜜桃| 国产爽快片一区二区三区| 国产成人精品久久久久久| 天美传媒精品一区二区| 免费黄频网站在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片 在线播放| 亚洲国产精品国产精品| 国产高清不卡午夜福利| 一级a做视频免费观看| 深夜精品福利| 一级a做视频免费观看| av在线老鸭窝| 中文欧美无线码| 大香蕉97超碰在线| 久久久国产精品麻豆| 精品久久蜜臀av无| 九色亚洲精品在线播放| www.av在线官网国产| 伦理电影免费视频| 亚洲第一av免费看| 日韩精品有码人妻一区| 国产亚洲一区二区精品| 狠狠婷婷综合久久久久久88av| 精品国产一区二区久久| 国产成人a∨麻豆精品| 久久精品aⅴ一区二区三区四区 | 成人国语在线视频| 国产淫语在线视频| 夫妻午夜视频| 另类亚洲欧美激情| 一边亲一边摸免费视频| 免费看av在线观看网站| 亚洲国产精品一区二区三区在线| 校园人妻丝袜中文字幕| 亚洲精华国产精华液的使用体验| xxx大片免费视频| 久久久久久人人人人人| 成人黄色视频免费在线看| 美女国产高潮福利片在线看| 精品熟女少妇av免费看| 中文乱码字字幕精品一区二区三区| 1024视频免费在线观看| 水蜜桃什么品种好| 伊人亚洲综合成人网| 在线观看免费高清a一片| 成人综合一区亚洲| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区国产| 在线看a的网站| 国产精品熟女久久久久浪| 国产色爽女视频免费观看| 亚洲国产av影院在线观看| 内地一区二区视频在线| 亚洲精品,欧美精品| 亚洲欧美一区二区三区国产| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| √禁漫天堂资源中文www| 97在线人人人人妻| 最新中文字幕久久久久| 国产69精品久久久久777片| 亚洲精品视频女| a 毛片基地| 国产极品粉嫩免费观看在线| 久久精品aⅴ一区二区三区四区 | 久久国产亚洲av麻豆专区| 久久久久久久久久人人人人人人| 亚洲精品国产av成人精品| 国产女主播在线喷水免费视频网站| 亚洲四区av| 成人亚洲精品一区在线观看| 一区二区三区四区激情视频| 丝袜喷水一区| 精品久久久久久电影网| 欧美成人午夜免费资源| 亚洲色图 男人天堂 中文字幕 | 夜夜爽夜夜爽视频| 黑人高潮一二区| 久久毛片免费看一区二区三区| 美女内射精品一级片tv| 国产av精品麻豆| 美国免费a级毛片| 久久久国产精品麻豆| 9色porny在线观看| 精品一品国产午夜福利视频| 国产激情久久老熟女| 国产亚洲av片在线观看秒播厂| 亚洲av男天堂| 国产高清三级在线| 一本色道久久久久久精品综合| 91成人精品电影| 视频区图区小说| 亚洲av在线观看美女高潮| 亚洲国产精品专区欧美| 十八禁高潮呻吟视频| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂| 国产精品国产三级国产av玫瑰| 丝袜喷水一区| 99久久中文字幕三级久久日本| 亚洲少妇的诱惑av| 成人国产av品久久久| 男女免费视频国产| 日韩 亚洲 欧美在线| 久久久亚洲精品成人影院| 亚洲四区av| 寂寞人妻少妇视频99o| 国产精品熟女久久久久浪| 在线看a的网站| 国产精品久久久久久精品电影小说| 制服丝袜香蕉在线| 亚洲欧美中文字幕日韩二区| 最近最新中文字幕大全免费视频 | 国产 精品1| 日产精品乱码卡一卡2卡三| 国产乱来视频区| 亚洲av中文av极速乱| 一级黄片播放器| 免费高清在线观看视频在线观看| 亚洲精品中文字幕在线视频| 国产国语露脸激情在线看| 久久久久久久大尺度免费视频| 草草在线视频免费看| 丝袜喷水一区| 国产一区亚洲一区在线观看| 久久精品熟女亚洲av麻豆精品| 男女国产视频网站| 久久精品国产亚洲av涩爱| 精品少妇内射三级| 最近中文字幕2019免费版| 一本大道久久a久久精品| 免费观看在线日韩| 97人妻天天添夜夜摸| 18在线观看网站| 香蕉精品网在线| 精品一区二区免费观看| 亚洲欧美成人精品一区二区| www日本在线高清视频| 亚洲一区二区三区欧美精品| 亚洲国产欧美日韩在线播放| 日本vs欧美在线观看视频| 日韩精品免费视频一区二区三区 | 国产成人a∨麻豆精品| 一级毛片黄色毛片免费观看视频|