• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of temperature and strain rate on compressive response of extruded magnesium nano-composite

    2015-02-16 01:44:15SelvamMarimuthuNarayanasamySenthilkumarTunGupta
    Journal of Magnesium and Alloys 2015年3期

    B.Selvam*,P.Marimuthu,R.Narayanasamy,V.Senthilkumar,K.S.Tun,M.Gupta

    aDepartment of Mechanical Engineering,Mookambigai College of Engineering,Pudukkottai,Tamilnadu 622502,India

    bSyed Ammal Engineering College,Ramanathapuram,Tamilnadu 623502,India

    cDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli,Tamilnadu 620015,India

    dDepartment of Mechanical Engineering,National University of Singapore,9 Engineering Drive 1,Singapore 117576,Singapore

    Effect of temperature and strain rate on compressive response of extruded magnesium nano-composite

    B.Selvama,*,P.Marimuthub,R.Narayanasamyc,V.Senthilkumarc,K.S.Tund,M.Guptad

    aDepartment of Mechanical Engineering,Mookambigai College of Engineering,Pudukkottai,Tamilnadu 622502,India

    bSyed Ammal Engineering College,Ramanathapuram,Tamilnadu 623502,India

    cDepartment of Production Engineering,National Institute of Technology,Tiruchirappalli,Tamilnadu 620015,India

    dDepartment of Mechanical Engineering,National University of Singapore,9 Engineering Drive 1,Singapore 117576,Singapore

    The hot deformation behaviour of extruded magnesium-zinc oxide nano composite has been studied using hot compression test.The test was conducted in the temperature range of 250–400°C and in the strain rate range of 0.01 to 1.5 s?1.The processing map was obtained using the power dissipation effciency with the functions of temperature and strain rate.The workability and instability domains were observed in the processing map for a nano composite.The optical microscopy(OM),scanning electron microscopy(SEM)and transmission electron microscopy(TEM) images were used to confrm the formation of dynamic recrystallization(DRX),dynamic recovery(DRY)and instability regions.The workability region of the composite was identifed at a working temperature of 400°C and the strain rate of 0.01 s?1from the processing map.The instability regions were observed at higher strain rates(>0.1 s?1)and temperatures(250–400°C).

    Metal matrix composites;Powder metallurgy;Processing map;Strain rate;Instability;Nano-composite

    1.Introduction

    Magnesium and its alloys are used in aerospace,automobile and electronics applications due to their properties such as light weight and high damping capacity[1,2].Magnesium-based composites are the most suitable for modern industrial applications in which weight is a critical problem due to its excellent specifc strength and dimensional stability[3].But magnesium and its alloys are having poor formability at room temperature because of its hexagonal close-packed crystal(HCP)structure. These types of materials are found most suitable for hot working to get the desired shape and size[4].

    The mechanical properties of metals and alloys such as fow stress,workability etc.are reformed due to the changes in microstructure under the hot deformation[5].The understanding of relationship between hardening and softening mechanism of metals and alloys under the hot deformation processes is the prime requirement to establish the optimum working parameters[6].Many researchers[7–10]have proved these mechanisms and their infuences in the mechanical properties for several metals,alloys and composite materials.The manifestation of dynamic recrystallization(DRX)occurred during the hot working processes under the high temperature with low strain rate in several metals and alloys.In recent years,many researchers have worked and provided hot working data for magnesium composites using processing map through microstructural study[1,11,12].

    The mechanical properties of pure magnesium/alloys are enhanced by the addition nano-particulates,such as aluminium oxide,zinc oxide etc.,at low volume fractions as reinforcements[13–15].An Mg composite reinforced with 0.5 vol.%of nano-ZnO has a higher compressive yield strength than an Mg composite reinforced with 1.0 and 1.5 vol.%of nano-ZnO[16]. Based on the yield strength,the Mg composite containing 0.5vol.%of nano-zinc oxide was used to study the hot deformation behaviour.

    Processing maps,which are developed based on dynamic materials modelling(DMM),are widely used to study the workability of different materials[17–19].The microstructurechanges of a composite during hot working has revealed the dissipation power,which is expressed with the effciency of power dissipation term(η)[20],as shown in equation(1):

    where m is the strain rate sensitivity,which can be calculated by plotting the double logarithmic fow stress and strain rates[21]:

    The aim of the present study is to investigate the effect of temperature and strain rate(hot deformation behaviour)of an Mg-0.5%vol.ZnO nano-composite and analyse the deformation mechanism through processing maps.The developed processing map has been used to extract the data regarding workability and instability domains.

    2.Hot workability

    The power dissipation effciency map was constructed using the temperature and strain rate which shows the domains that may be associated with a specifc microstructure.The hot working suitability of metals was identifed using the domain of dynamic recrystallization,which has a microstructure free from defects and instability with good workability.The processing map was prepared by superimposing the power dissipation and instability maps[14].The continuum criterion for the evidence of fow instabilities is explained in terms of a dimensionless parameter by using the maximum irreversible thermodynamics extremum principle.The dimensionless parameter of microstructural instability is given below in equation(3)as discussed elsewhere[15]:

    The strain rate sensitivity(m)was calculated using the slope values derived from the log(ε′)and log(σ)curves.The power dissipation effciency and instability parameter were obtained using equations(1)and(3)for a strain(ε)of 0.5 at different temperatures and strain rates.Processing map was developed by superimposing power dissipation effciency map and instability map.

    3.Experimental procedure

    The zinc oxide particulate-reinforced magnesium nanocomposite was fabricated via powder metallurgy.Magnesium powder having a purity of 98.5% and particle size of 60–300μm(Merck,Germany)and zinc oxide powder with a particle size of 50–200 nm(Nanostructured and Amorphous Materials,Inc.,USA)were blended in a high-energy ball mill at 200 revolutions per minute for a period of 1 hour.Composite green compacts of 35 mm in diameter and 40 mm in height were produced by applying 510 MPa pressure in a 1000 KN press at atmospheric temperature.The hybrid microwave technique was used to sinter the green compacts at 640°C for 14 minutes.The 10-mm diameter zinc oxide-reinforced rods were produced from the sintered compacts with an extrusion process at 350°C and an extrusion ratio of 13:1.The mechanical properties of zinc oxide-reinforced magnesium composites are described elsewhere[16].

    The hot deformation study was carried out on composite samples that were 8 mm in diameter and 12 mm in height.The surfaces of the sample specimens were smoothened and maintained fat to obtain a uniform load distribution.A 0.8 mm diameter hole was drilled at the mid-height of the composite samples to insert a thermocouple in order to measure the temperature of the inner portion;thus,the adiabatic principle can be applied to this study[22,23].The hot deformation tests were carried out in a FIE servo-controlled UniversalTesting Machine with the capacity of 100 KN.The study was performed over a temperature range of(T)250–400°C and strain rates(ε′)of 0.01 s?1,0.1 s?1,1 s?1and 1.5 s?1.The compression axis was used parallel to the extrusion direction during the hot deformation study.The composite samples were heated to the predetermined temperatures,i.e.,250°C,300°C,350°C and 400°C, for 20 minutes and then hot compressed to reduce the height by up to 50%for each strain rate.The hot compressed samples were quenched in water to retain the microstructure developed during the process.The compression tests of each condition were repeated twice to study the variation of the process.The average of two readings of each condition was used to construct fow curves.The engineering stress and engineering strain values were obtained from the experimental study.The true stress and true stain values were calculated from the experimental values using standard formulae[18].Fig.1(a)–(c)shows the microstructures of extruded Mg/ZnO nano composite before the hot deformation.The details of extrusion and compression directions are shown in the Fig.1(a).The arrow mark indicates the direction of extrusion.The direction of compressive loading and extrusion is parallel to the axis of cylindrical surface as shown in Fig.1(a).The microstructures were taken on the compressive surface which is perpendicular to the direction of extrusion.Fig.1(b)shows composite microstructure with the energy dispersive spectrum(EDS)to provide evidence for the presence of Mg and ZnO.

    4.Results and discussions

    4.1.Processing map

    Fig.2 exhibits the relation between the log(fow stress)and log(strain rate).Fig.2 proves that the fow stress is increased when the strain rate increases;however,the reverse effect occurs with respect to increase in temperatures.The fow stress is gradually decreased irrespective of strain rates when the deformation temperature increases.

    Fig.1.Microstructure of extruded Mg/ZnO nano-composite(a)Extrusion and compressive load directions(b)SEM with EDS(c).Optical microscopy image,in (b)and(c)the extrusion direction is perpendicular to the image plane.

    The processing map was developed using dynamic materials model(DMM)[18],as developed by Prasad and Sheshacharulu [24].The values were compared to the dissipation power effciency,temperatures and log(ε′),and used to build a processing map.Fig.3 shows the processing map for the Mg-0.5vol.% nano-ZnO composite at a strain(ε)of 0.5.This map was developed by superimposing instability map along with a power dissipation map.Based on the criterion derived by Prasad[17], fow instability occurs whenξ(ε′)<0.Hot deformation mechanisms,such as DRX and DRY,were observed in the hot deformed nano-composite,as shown in Fig.3.The map shows the different zones that showed DRX,DRY and instability at different strain rates and temperatures.The frst zone formed in the region defned by a temperature of 400°C and strain rate of 0.01 s?1.The maximum effciency of 34.7%is observed at a lower strain rate(0.01 s?1)and higher temperature(400°C). The formation of DRX is evidenced by using images as shown in Fig.4.Earlier studies reported a similar manifestation of DRX at higher temperatures and lower strain rates[25,26].The fow stress peaked to a maximum value gradually decreases and attains a steady state.This phenomenon occurs due to the nucleation and continued growth of new grains[26].The second zone is marked by a lower strain rate(0.01 s?1)and temperature (300°C)and shows the presence of DRY.The formation of DRY is accelerated during hot working when the operating temperatures and strain rates are lower.The third zone is identifed as the instability region due to the negative value of the instability parameter.This instability is identifed at higher strain rates(>0.1 s?1)and all temperatures,but it is predominant at lower(250°C)and higher(400°C)temperatures.The instability mechanism is linked to cracking,localized plastic fow and adiabatic shear bands[27].

    4.2.Microstructural characterization

    The microstructure of the hot deformed magnesium-zinc oxide nano-composite was examined with images obtained from optical microscope(OM),scanning electron microscope (SEM)and transmission electron microscope(TEM).The specimens for OM were prepared via serial grinding,polishing and etching.The polished surfaces of hot compressed composite samples were dipped in an acetic-picral etchant until a brownflm was obtained on the surface,followed by washing in ethanol and drying in hot air.The specimens were carefully prepared to avoid particle damage.The specimens for TEM were cut to a thickness of 150μm using a diamond cutter and then ground and polished.

    Fig.2.Log(fow stress)vs log(strain rate)data and interpolating curves ftted with third order polynomial equation.

    Fig.3.Processing map for a strain of 0.5.

    Fig.4.TEM image shows DRX grains at processing temperature of 400°C and strain rate 0.01s?1(the extrusion direction is perpendicular to the image plane).

    Fig.4 shows the formation of DRX grains during the hot deformation of the composite at a temperature of 400°C and strain rates of 0.01 s?1.The DRX growth is a benefcial effect during the hot deformation process;the steady fow of material is associated with the refnement of grains and softening[25]. Raghunath et al.[28]quantifed the occurrence of DRX with the help of interface nucleation and the growth rate.The rate of interface progress was observed based on the rate of dislocation created and the probability of dynamic recovery.Hence,zone I is identifed as the optimum region for hot working,with an effciency range of 27 to 34.7 and temperature of 375–400°C at strain rates of 0.01 s?1.A considerable amount of new grains formed at the grain boundaries with ZnO nano-particles.This formation occurred due to the high deformation temperatures and higher recrystallization temperature as the driving force, which facilitate the formation of new grains in the deformed structure.This fnding is in good agreement with the results of previous studies[29].During the formation of DRX,an interface forms and grains grow.The interface formation is initiated at the nucleus due to dislocations.The dislocations activate the formation of the nucleus during the hot working process.The high-density dislocation and formation of sub-grains in the boundary is proved in Fig.5.The TEM image in Fig.5 reveals the dislocation of the composite in the structure deformed at 400°C and a strain rate of 0.01 s?1,with a maximum power dissipation effciency of 34.7%.This dislocation occurs due to the addition of non-deforming ceramic particle reinforcements to the matrix phase at higher temperatures and particular strain rates.The dislocation density of the region is high,and large wavy grains are the most suitable sites for the formation of a recrystallization nucleus.The presence of ZnO nano-particles in the Mg matrix trap dislocations during hot working,which minimizes the restoration rate[30].

    The workability of the Mg-0.5%.Vol.ZnO composite was manifested in the region having temperature of 400°C and a strain rate of 0.01s?1.Fig.6(a)shows the formation of elongated grains at 300°C and a strain rate of 0.01 s?1in the deformed composite structure.The fnely grained structures of composite samples deformed at high temperatures and lower strain rates exhibited unusual elongation in the grains,which is called superplasticity sub-grain boundaries formed in the dislocation structure and a lower dislocation density was observed inside the subgrains.These fndings confrm the formation of DRY in the matrix phase as shown in Fig.6(b).As recovery continues,the cell walls undergo a transition into subgrain structure, which happens through a steady annihilation of dislocations and the reordering of the remaining dislocations into low-angle grain boundaries.Deformation of composite at low temperature produces high density dislocation in the structure.When the deformation temperature further increases,the dislocation density starts decreasing.The dislocation structure leads to form subgrain boundaries at temperature of 300°C and strain rate of 0.01s?1.The outline is made to show the subgrains in the matrix phase in Fig.6(b).A slight work hardening effect was noticed at lower temperatures in the true stress-strain curves, which agrees well with earlier studies[18,23].

    Fig.5.Dislocation density of the composite atT=400°C and ε′=0.01 s?1(the extrusion direction is perpendicular to the image plane).

    Fig.6.Microstructure of composite at T=300°C and ε′=0.01s?1.a)Elongated grains.b)TEM image revealing DRY(the extrusion direction is perpendicular to the image plane).

    4.3.Instability region

    Figs.7 and 8 show the evidence for the instability zone,such as pores,crack initiation and propagation,twinning and shear bands.These types of structures have been observed either at higher strain rates or lower temperatures[22,26].

    The fow instability covers a wide region in the processing map at the lower temperatures(250°C–300°C)and higher strain rates(1–1.5 s?1),and a narrow region at higher temperatures(350°C–400°C)and higher strain rates(1–1.5 s?1). During the hot deformation of the metal matrix composite,the matrix phase undergoes plastic fow while hard particles are rigid;thus,cracks are triggered at the interface,and the bonding is ultimately disturbed.If the stress values continuously increase and become very large,the interface is damaged, which leads to ductile fracture due to the separation of hard particles from the matrix phase.This type of fow instability is observed when the composite samples are deformed at lower temperatures and higher strain rates.The microstructures of the nano-composite hot deformed at 300°C and 0.1 s?1is shown in Fig.7(a)exhibit adiabatic shear bands and cracks formation.The angles of the slopes of the adiabatic shear bands were approximately 45°.The lower intensity shear bands were observed at lower strain rates(0.1s?1),irrespective of the hot deformation temperatures.This fnding agrees with those reported in a previous study[31].

    Fig.7.TEM image reveals shear bands at T=300°C.(a)Strain rate of 0.1 s?1.(b)Strain rate of 1 s?1(the extrusion direction is perpendicular to the image plane).

    The metal matrix composite sample generates heat due to the action of fow localization which increases the temperature of the sample when hot deformed at higher temperatures and strain rates.Due to this increase in the temperature,the heat does not easily and quickly dissipate to a cooler region,which decreases the fow stress and localizes the compression axis at 45°,as observed in a previous study[32].The composites failed at a temperature of 300°C and strain rate of 1 s?1due to fow localization mechanism,as shown in Fig.7(b).

    The adiabatic shear bands formed approximately 45°to the hot compressed axis of the Mg-0.5%.ZnO nano-composite,as shown in Fig.7(b).The composite samples were subjected to highly localized fow along the maximum shear stress plane at higher strain rate due to inadequate time for the transfer of heat and low thermal conductivity during the hot deformation. Earlier studies yielded the same results[33–35].The adiabatic shear bands extended to cracks on the hot compressed composite.

    The instability zone is wide at the lower temperatures (250°C)and higher strain rate(1 s?1)compared to the other temperatures(300–400°C),as shown in Fig.3.The instability starts at medium strain rates between 0.1 and 1 s?1and the lower temperatures(250°C and 300°C)due to the formation of adiabatic shear bands.The cracks were deeper in nano-composite samples deformed at higher strain rates and lower temperatures than those in samples deformed at higher strain rates and higher temperatures.These fndings reveal that the instability regions in the processing maps are wider at lower temperatures and higher strain rates.

    Fig.8 shows the formation of pores and cracks at the grain boundary of the composite that was hot deformed at atemperature of 250°C and strain rate of 1 s?1.The slipping of the adjacent strains triggered a considerable amount of stress concentration due to the accommodation mechanism when the shear stress acted at the grain boundary.The cracks initiate in the composite samples when the stress concentration reached a critical value[25,34,36].

    Fig.8.Composite deformed at T=250°C and ε′=1 s?1(the extrusion direction is perpendicular to the image plane).

    5.Conclusions

    The hot deformation behaviour of an extruded Mg-0.5%.ZnO nano-composite was investigated at temperatures varying from 250 to 400°C at 50°C intervals and strain rates varying from 0.01 to 1.5 s?1.The conclusion can be drawn from the present study.

    (1)The DRX formation and workability were optimized in the zone defned by temperatures varying from 375 to 400°C and at a strain rate of 0.01 s?1.This optimization was attributed to the higher retained temperature in this region due to the addition of ZnO oxide nanoparticles to the magnesium matrix.

    (2)DRY formation,as confrmed via a microstructural analysis,was identifed in the region worked at temperatures of 300–350°C and a strain rate of 0.01 s?1.

    (3)The maximum power dissipation effciency was found to be 34.7%.

    (4)The nano-composite samples exhibited highly localized fow along the maximum shear stress plane at higher strain rates due to the inadequate time and low thermal conductivity during hot deformation.The instability region,which was found at all hot working temperatures andhigher strain rates(>0.1 s?1),is identifedat thetop of the processing map.Cracks and pores are observed in the instability region.

    [1]O.Sivakesavama,Y.V.R.K.Prasad,Mater.Sci.Eng.A 362(2003) 118–124.

    [2]Z.Huang,W.Qi,J.Xu,C.Cai,Trans.Nonferrous Met.Soc.China 25 (2015)22–29.

    [3]B.K.Raghunath,R.Karthikeyan,G.Ganesan,M.Gupta,Mater.Des.29 (2008)622–627.

    [4]W.P.Peng,P.J.Li,P.Zeng,L.P.Lei,Mater.Sci.Eng.A 494(2008) 173–178.

    [5]Y.C.Lin,Q.-F.Li,Y.-C.Xia,L.-T.Li,Mater.Sci.Eng.A 534(2012) 654–662.

    [6]Y.C.Lin,L.-T.Li,Y.-C.Xia,Mater.Sci.50(2011)2038–2043.

    [7]K.H.Jung,H.W.Lee,Y.T.Im,Mater.Sci.Eng.A 519(2009)94–104.

    [8]M.Seyed Salehi,S.Serajzadeh,Comput.Mater.Sci.49(2010)773–781.

    [9]K.H.Jung,H.W.Lee,Y.T.Im,Int.J.Mech.Sci.52(2010)1136–1144.

    [10]A.I.Fernández,P.Uranga,B.López,J.M.Rodriguez-Ibabe,ISIJ Int.40 (2000)893–901.

    [11]H.Zhou,Q.D.Wang,B.Yea,W.Guo,Mater.Sci.Eng.A 576(2013) 101–107.

    [12]R.Cottam,J.Robson,G.Lorimer,B.Davis,Mater.Sci.Eng.A485(2008) 375–382.

    [13]J.Liu,Z.Cui,C.Li,J.Mater.Process.Technol.205(2008)497–505.

    [14]H.Ziegler,in:I.N.Sneddon,R.Hill(Eds.),Progress in Solid Mechanics, vol.4,Wiley,New York,1963,pp.93–192.

    [15]G.Z.Quan,T.W.Ku,W.J.Song,B.S.Kang,Mater.Des.32(2011) 2462–2468.

    [16]K.Tun,P.Jayaramanavar,Q.B.Nguyen,J.Chan,R.Kwok,M.Gupta, Mater.Sci.Technol.28(2012)582–588.

    [17]Y.V.R.K.Prasad,S.Sasidhara,Hot Working Guide:A Compendium On Processing Maps,ASM International,Metals Park,OH,1997.

    [18]Y.V.R.K.Prasad,H.L.Gegel,S.M.Doraivelu,J.C.Malas,J.T.Morgan, K.A.Lark,et al.,Metall.Mater.Trans.A 15(1984)1883–1892.

    [19]Y.Ji,S.Qu,W.Han,Trans.Nonferrous Met.Soc.China 25(2015) 88–94.

    [20]Z.Chen,Z.Li,C.Yu,Mater.Sci.Eng.A 528(2011)961–966.

    [21]Y.H.Wei,Q.D.Wang,Y.P.Zhu,H.T.Zhou,W.J.Ding,Y.Chino,et al., Mater.Sci.Eng.A 360(2003)107–115.

    [22]L.Qi,Z.Wanga,J.Zhou,L.Su,H.Lic,Compos.Sci.Technol.71(2011) 955–961.

    [23]M.Srinivasan,C.Loganathan,R.Narayanasamy,V.Senthilkumar,Q.B. Nguyen,M.Gupta,Mater.Des.47(2013)449–455.

    [24]Y.V.R.K.Prasad,T.Sheshacharulu,Int.Mater.Rev.44(1998)243–258.

    [25]G.Ganesan,K.Raghukandan,R.Karthikeyan,B.C.Pai,Mater.Sci.Eng. A 369(2004)230–235.

    [26]J.Liu,Z.Cui,C.Li,Comput.Mater.Sci.41(2008)375–382.

    [27]C.Y.Wang,X.J.Wang,H.Chang,K.Wu,M.Y.Zheng,Mater.Sci.Eng.A 464(2007)52–58.

    [28]B.K.Raghunath,R.Karthikeyan,M.Gupta,Mater.Res.9(2006) 217–222.

    [29]M.Gang,L.Bolong,L.Hongmei,H.Hui,N.Zuoren,Mater.Sci.Eng.A 517(2009)132–137.

    [30]C.Y.Wang,K.Wu,M.Y.Zheng,Mater.Sci.Eng.A 477(2008)179–184.

    [31]Y.El-saeid Essa,J.L.Perez-Castellanos,J.Mater.Process.Technol.143 (2003)856–859.

    [32]B.L.Zhang,M.S.Mac Lean,T.N.Baker,J.Mater.Sci.Technol.16(2000) 897–902.

    [33]A.B.Li,L.J.Huang,Q.Y.Meng,L.Geng,X.Cui,Mater.Des.30(2009) 1625–1631.

    [34]O.Sivakesavam,Y.V.R.K.Prasad,Mater.Sci.Eng.A 323(2002)270–277.

    [35]S.Venugopal,P.Venugopal,S.L.Mannan,J.Mater.Process.Technol.202 (2008)201–215.

    [36]R.Raj,Metall.Mater.Trans.A 12(1981)1089–1097.

    Received 12 May 2015;revised 6 July 2015;accepted 20 July 2015 Available online 1 October 2015

    *Corresponding author. Department of Mechanical Engineering, Mookambigai College of Engineering,Pudukkottai,Tamilnadu-622502,India. Tel.:+91 4339 262273;fax:+91 4339 262272.

    E-mail address:bselvam_spt@yahoo.co.in(B.Selvam).

    http://dx.doi.org/10.1016/j.jma.2015.07.002

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    精品国产乱子伦一区二区三区| 亚洲 欧美 日韩 在线 免费| 中文亚洲av片在线观看爽| 精品不卡国产一区二区三区| 亚洲精品在线美女| 亚洲 国产 在线| av天堂在线播放| 无遮挡黄片免费观看| 中文字幕人成人乱码亚洲影| 一区福利在线观看| 午夜福利一区二区在线看| 长腿黑丝高跟| 制服丝袜大香蕉在线| 免费搜索国产男女视频| 一本一本综合久久| 午夜激情福利司机影院| 成年免费大片在线观看| 精品久久久久久成人av| 黑人欧美特级aaaaaa片| 欧美最黄视频在线播放免费| 美国免费a级毛片| 亚洲精品一卡2卡三卡4卡5卡| 久久婷婷成人综合色麻豆| 欧美又色又爽又黄视频| 国产精品久久久av美女十八| 久久国产精品男人的天堂亚洲| 午夜a级毛片| 1024香蕉在线观看| АⅤ资源中文在线天堂| 91成年电影在线观看| 黄色视频,在线免费观看| 听说在线观看完整版免费高清| 黄频高清免费视频| 夜夜爽天天搞| 中文字幕人妻熟女乱码| 91麻豆av在线| 精品第一国产精品| 91九色精品人成在线观看| 在线观看66精品国产| 久久精品人妻少妇| 一区福利在线观看| 变态另类丝袜制服| 午夜亚洲福利在线播放| 18禁裸乳无遮挡免费网站照片 | 日韩大尺度精品在线看网址| 亚洲一区二区三区不卡视频| 女同久久另类99精品国产91| 亚洲全国av大片| 在线观看一区二区三区| 十八禁网站免费在线| 中文字幕另类日韩欧美亚洲嫩草| 久久久久九九精品影院| 99久久精品国产亚洲精品| 欧美国产日韩亚洲一区| 男男h啪啪无遮挡| 搞女人的毛片| 日韩中文字幕欧美一区二区| 日韩免费av在线播放| 一级a爱片免费观看的视频| 黄片小视频在线播放| 成在线人永久免费视频| 亚洲精华国产精华精| 在线观看免费日韩欧美大片| 99热6这里只有精品| 精品午夜福利视频在线观看一区| 观看免费一级毛片| 久久精品亚洲精品国产色婷小说| 日本黄色视频三级网站网址| 91成人精品电影| 99热只有精品国产| 91av网站免费观看| 亚洲成av人片免费观看| 久久久久国产一级毛片高清牌| 免费观看精品视频网站| 岛国在线观看网站| 午夜福利高清视频| 久久精品aⅴ一区二区三区四区| 色综合站精品国产| 丝袜人妻中文字幕| 亚洲aⅴ乱码一区二区在线播放 | 一级作爱视频免费观看| 欧美丝袜亚洲另类 | 首页视频小说图片口味搜索| 亚洲在线自拍视频| 亚洲午夜精品一区,二区,三区| 欧美亚洲日本最大视频资源| 美女午夜性视频免费| 国产亚洲欧美在线一区二区| 亚洲五月天丁香| 精品一区二区三区四区五区乱码| 国产高清videossex| 国产成人精品久久二区二区免费| 日本成人三级电影网站| 欧美日本亚洲视频在线播放| www.999成人在线观看| 大型av网站在线播放| 日本一区二区免费在线视频| 高清在线国产一区| 99国产精品一区二区三区| 日韩免费av在线播放| 久久精品国产清高在天天线| 国产伦人伦偷精品视频| 一级作爱视频免费观看| 天堂影院成人在线观看| 不卡av一区二区三区| 伊人久久大香线蕉亚洲五| 免费电影在线观看免费观看| 国产成人精品久久二区二区91| 99久久国产精品久久久| 成人18禁高潮啪啪吃奶动态图| 超碰成人久久| 午夜福利高清视频| 99热只有精品国产| 国产精品 国内视频| 亚洲成a人片在线一区二区| 男女那种视频在线观看| 日韩精品中文字幕看吧| 婷婷精品国产亚洲av在线| 国产成年人精品一区二区| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 精品久久久久久久人妻蜜臀av| 熟女电影av网| 一级a爱片免费观看的视频| 美女高潮到喷水免费观看| 久久天躁狠狠躁夜夜2o2o| 欧美日韩福利视频一区二区| 99久久综合精品五月天人人| 精品卡一卡二卡四卡免费| 在线观看66精品国产| 久久久国产欧美日韩av| 日韩欧美三级三区| 免费搜索国产男女视频| 免费在线观看亚洲国产| 国产精品电影一区二区三区| 国产亚洲av高清不卡| 女人高潮潮喷娇喘18禁视频| 黄色女人牲交| 丝袜美腿诱惑在线| 高清毛片免费观看视频网站| 狂野欧美激情性xxxx| 亚洲精品av麻豆狂野| 熟女电影av网| 一区福利在线观看| 少妇裸体淫交视频免费看高清 | 国产一区二区激情短视频| 免费人成视频x8x8入口观看| 国产区一区二久久| 久久国产亚洲av麻豆专区| 婷婷精品国产亚洲av| 国产真人三级小视频在线观看| 国产欧美日韩精品亚洲av| av超薄肉色丝袜交足视频| 夜夜夜夜夜久久久久| 亚洲av中文字字幕乱码综合 | 欧美成人一区二区免费高清观看 | 亚洲人成77777在线视频| 男人的好看免费观看在线视频 | 麻豆一二三区av精品| 亚洲国产高清在线一区二区三 | 又大又爽又粗| √禁漫天堂资源中文www| 超碰成人久久| 在线视频色国产色| 亚洲性夜色夜夜综合| 久久这里只有精品19| 啦啦啦韩国在线观看视频| 日韩中文字幕欧美一区二区| 久久精品国产清高在天天线| 久久精品91无色码中文字幕| 午夜成年电影在线免费观看| 色婷婷久久久亚洲欧美| 丁香欧美五月| 久久中文字幕一级| 老司机午夜十八禁免费视频| 亚洲av中文字字幕乱码综合 | 美女 人体艺术 gogo| 国产激情偷乱视频一区二区| 黄色 视频免费看| 日本精品一区二区三区蜜桃| 久久久久九九精品影院| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 在线观看一区二区三区| 69av精品久久久久久| 色综合欧美亚洲国产小说| 少妇熟女aⅴ在线视频| 亚洲成人精品中文字幕电影| 免费看美女性在线毛片视频| 在线av久久热| 欧美日本视频| 日本五十路高清| 国产精品,欧美在线| 最近最新免费中文字幕在线| 校园春色视频在线观看| 亚洲最大成人中文| 在线视频色国产色| 一夜夜www| 特大巨黑吊av在线直播 | 亚洲精品中文字幕一二三四区| 两人在一起打扑克的视频| 国产亚洲精品av在线| 国产精品影院久久| 国产精品精品国产色婷婷| 国产区一区二久久| 欧美绝顶高潮抽搐喷水| 啦啦啦免费观看视频1| 搡老妇女老女人老熟妇| 91麻豆av在线| 曰老女人黄片| 久久亚洲精品不卡| 国产精品 国内视频| 国产片内射在线| 久久国产精品影院| 国产私拍福利视频在线观看| 国产精华一区二区三区| xxx96com| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 三级毛片av免费| 精品国产国语对白av| 亚洲美女黄片视频| 男女之事视频高清在线观看| 99久久综合精品五月天人人| 亚洲午夜精品一区,二区,三区| 久久亚洲精品不卡| 亚洲精品久久国产高清桃花| 最新美女视频免费是黄的| 国产99白浆流出| 亚洲精品国产精品久久久不卡| 非洲黑人性xxxx精品又粗又长| 在线观看舔阴道视频| 午夜福利18| 亚洲国产精品成人综合色| 国产成人啪精品午夜网站| 少妇 在线观看| 精品乱码久久久久久99久播| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 日韩欧美国产一区二区入口| 亚洲性夜色夜夜综合| 国产v大片淫在线免费观看| 亚洲午夜精品一区,二区,三区| 黄色女人牲交| 成年人黄色毛片网站| 99精品在免费线老司机午夜| 国产精品久久久久久亚洲av鲁大| 亚洲九九香蕉| 婷婷丁香在线五月| 亚洲国产精品合色在线| 日本 av在线| 高清毛片免费观看视频网站| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 香蕉丝袜av| 精品午夜福利视频在线观看一区| 国产精品免费视频内射| 国产成年人精品一区二区| 国产麻豆成人av免费视频| 亚洲一区二区三区不卡视频| 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 黄色a级毛片大全视频| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 欧洲精品卡2卡3卡4卡5卡区| 一区二区三区激情视频| 国产午夜精品久久久久久| 在线看三级毛片| 美女国产高潮福利片在线看| 国产私拍福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 一个人观看的视频www高清免费观看 | xxxwww97欧美| 欧美性长视频在线观看| 男女做爰动态图高潮gif福利片| 黄片大片在线免费观看| 麻豆一二三区av精品| 国产精品久久久av美女十八| 1024视频免费在线观看| 免费观看精品视频网站| 欧美日本亚洲视频在线播放| a级毛片在线看网站| 国内精品久久久久精免费| 97碰自拍视频| 亚洲aⅴ乱码一区二区在线播放 | 搡老熟女国产l中国老女人| 久久国产精品男人的天堂亚洲| a在线观看视频网站| 一级毛片高清免费大全| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 精品久久久久久久人妻蜜臀av| 亚洲第一av免费看| 一区二区三区精品91| 精品高清国产在线一区| 2021天堂中文幕一二区在线观 | 曰老女人黄片| 日韩欧美三级三区| 美女 人体艺术 gogo| 曰老女人黄片| 欧美黑人欧美精品刺激| 久9热在线精品视频| 国产免费男女视频| 免费电影在线观看免费观看| 国产熟女午夜一区二区三区| 午夜日韩欧美国产| 国产在线观看jvid| 俺也久久电影网| 真人做人爱边吃奶动态| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 一级毛片高清免费大全| 午夜影院日韩av| 视频区欧美日本亚洲| 亚洲一区高清亚洲精品| 女同久久另类99精品国产91| 午夜福利免费观看在线| 成熟少妇高潮喷水视频| 久久婷婷成人综合色麻豆| 午夜亚洲福利在线播放| 男女那种视频在线观看| 日本五十路高清| www.www免费av| 精品国产国语对白av| 午夜老司机福利片| 国产乱人伦免费视频| 变态另类丝袜制服| 成人亚洲精品av一区二区| 亚洲精品中文字幕在线视频| 叶爱在线成人免费视频播放| www.熟女人妻精品国产| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 成人一区二区视频在线观看| 国产在线观看jvid| 男人操女人黄网站| 国产免费男女视频| 亚洲国产欧洲综合997久久, | 神马国产精品三级电影在线观看 | 一进一出抽搐动态| 国产黄片美女视频| 国产一区二区激情短视频| 国产亚洲欧美精品永久| 亚洲精品在线美女| 叶爱在线成人免费视频播放| 久久人妻av系列| 久久人人精品亚洲av| 国产成人影院久久av| 国产亚洲精品综合一区在线观看 | 日本精品一区二区三区蜜桃| 国产v大片淫在线免费观看| 每晚都被弄得嗷嗷叫到高潮| 69av精品久久久久久| 精品久久久久久久人妻蜜臀av| 一区二区日韩欧美中文字幕| 黄色片一级片一级黄色片| 国产精品1区2区在线观看.| 亚洲精品美女久久久久99蜜臀| 婷婷丁香在线五月| 男人舔女人的私密视频| 欧美黑人巨大hd| 中文字幕高清在线视频| 日韩欧美一区二区三区在线观看| 热99re8久久精品国产| 亚洲人成网站在线播放欧美日韩| 欧美激情高清一区二区三区| 黑人欧美特级aaaaaa片| 久久国产精品男人的天堂亚洲| 在线观看免费午夜福利视频| 成人国产综合亚洲| 视频区欧美日本亚洲| 午夜久久久久精精品| 波多野结衣av一区二区av| 精品欧美国产一区二区三| 国产精品乱码一区二三区的特点| 国产黄a三级三级三级人| 亚洲男人的天堂狠狠| 嫩草影视91久久| 这个男人来自地球电影免费观看| 久久精品亚洲精品国产色婷小说| 国产欧美日韩精品亚洲av| √禁漫天堂资源中文www| 亚洲精品一区av在线观看| 两性夫妻黄色片| 曰老女人黄片| 黄色视频,在线免费观看| 国内精品久久久久精免费| 国产高清激情床上av| 亚洲免费av在线视频| 亚洲中文字幕一区二区三区有码在线看 | 女警被强在线播放| 亚洲专区国产一区二区| 国产伦人伦偷精品视频| 久久青草综合色| 草草在线视频免费看| 中文字幕精品亚洲无线码一区 | 一级a爱片免费观看的视频| 国产精品美女特级片免费视频播放器 | 亚洲av成人av| www.精华液| 亚洲精品一区av在线观看| 国产熟女午夜一区二区三区| 在线观看66精品国产| 日本a在线网址| 啦啦啦韩国在线观看视频| 国产精品久久久久久精品电影 | 97碰自拍视频| 香蕉国产在线看| 亚洲av五月六月丁香网| 久久人妻福利社区极品人妻图片| 人妻丰满熟妇av一区二区三区| 男女做爰动态图高潮gif福利片| 女人被狂操c到高潮| 久久精品人妻少妇| 午夜精品在线福利| 精品少妇一区二区三区视频日本电影| 国产高清有码在线观看视频 | 日本一本二区三区精品| 国产不卡一卡二| 性欧美人与动物交配| 波多野结衣高清无吗| 久久久国产成人免费| 亚洲人成网站在线播放欧美日韩| 欧美zozozo另类| 国产亚洲精品一区二区www| 久久久水蜜桃国产精品网| 黄色丝袜av网址大全| 美女免费视频网站| 桃色一区二区三区在线观看| 999久久久国产精品视频| 久久午夜亚洲精品久久| 侵犯人妻中文字幕一二三四区| 成人午夜高清在线视频 | 18禁美女被吸乳视频| 亚洲av成人一区二区三| 国产精品九九99| 人妻丰满熟妇av一区二区三区| 91麻豆精品激情在线观看国产| 午夜久久久在线观看| 国产精品久久久av美女十八| av片东京热男人的天堂| 91字幕亚洲| 国产av又大| 亚洲三区欧美一区| 欧美成人一区二区免费高清观看 | 首页视频小说图片口味搜索| 此物有八面人人有两片| 最近在线观看免费完整版| 日韩一卡2卡3卡4卡2021年| 亚洲一区二区三区色噜噜| 免费看十八禁软件| av免费在线观看网站| 日韩av在线大香蕉| 女性被躁到高潮视频| 亚洲九九香蕉| 亚洲国产日韩欧美精品在线观看 | 免费在线观看亚洲国产| 亚洲专区中文字幕在线| 制服诱惑二区| 精品国产超薄肉色丝袜足j| 久久久久国内视频| 国产精品1区2区在线观看.| 日韩av在线大香蕉| 欧美激情久久久久久爽电影| 免费女性裸体啪啪无遮挡网站| 欧美日韩亚洲综合一区二区三区_| 国产1区2区3区精品| www.999成人在线观看| 黄片播放在线免费| 精品乱码久久久久久99久播| 亚洲天堂国产精品一区在线| 久久人妻av系列| 欧美绝顶高潮抽搐喷水| 亚洲狠狠婷婷综合久久图片| 日韩大尺度精品在线看网址| 国产精品一区二区三区四区久久 | 少妇 在线观看| 亚洲av熟女| 国产伦在线观看视频一区| 淫秽高清视频在线观看| 免费一级毛片在线播放高清视频| 99在线人妻在线中文字幕| 免费在线观看日本一区| 深夜精品福利| 91老司机精品| 一二三四社区在线视频社区8| xxx96com| 天堂动漫精品| 国产99久久九九免费精品| 亚洲,欧美精品.| 中文在线观看免费www的网站 | 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 久久99热这里只有精品18| www.精华液| 国产av一区二区精品久久| 午夜久久久在线观看| 两个人免费观看高清视频| 欧洲精品卡2卡3卡4卡5卡区| 男人舔女人下体高潮全视频| 色av中文字幕| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 国产精品久久久av美女十八| www国产在线视频色| 久久人人精品亚洲av| 精品久久蜜臀av无| 亚洲国产毛片av蜜桃av| 日本撒尿小便嘘嘘汇集6| 久久国产乱子伦精品免费另类| 最新在线观看一区二区三区| 999久久久国产精品视频| 午夜激情福利司机影院| 男人舔奶头视频| 日本一区二区免费在线视频| 国产精品久久久久久亚洲av鲁大| 午夜激情福利司机影院| 国产精品久久久久久亚洲av鲁大| 99久久精品国产亚洲精品| 最好的美女福利视频网| 国产日本99.免费观看| 人人妻人人澡欧美一区二区| 亚洲免费av在线视频| 国产又爽黄色视频| 十分钟在线观看高清视频www| 欧美日本亚洲视频在线播放| 老司机午夜福利在线观看视频| 搡老岳熟女国产| 欧美成人免费av一区二区三区| 亚洲国产精品sss在线观看| 午夜福利成人在线免费观看| avwww免费| 欧美大码av| 国产成年人精品一区二区| 精品国产乱子伦一区二区三区| 国产精品九九99| 精品卡一卡二卡四卡免费| 日本免费a在线| 欧美绝顶高潮抽搐喷水| 两个人视频免费观看高清| 亚洲专区国产一区二区| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 中文字幕人妻熟女乱码| 韩国精品一区二区三区| 亚洲欧美激情综合另类| 18禁黄网站禁片免费观看直播| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 精品久久久久久成人av| 国产主播在线观看一区二区| 在线播放国产精品三级| 国产欧美日韩一区二区三| www.熟女人妻精品国产| 久久久久久久久久黄片| 啦啦啦韩国在线观看视频| or卡值多少钱| 国产免费男女视频| av超薄肉色丝袜交足视频| 成人特级黄色片久久久久久久| av福利片在线| 99国产极品粉嫩在线观看| 亚洲欧美精品综合久久99| 成人三级黄色视频| 老司机午夜福利在线观看视频| av欧美777| 一本精品99久久精品77| 美女高潮喷水抽搐中文字幕| 精品久久久久久久人妻蜜臀av| 一个人免费在线观看的高清视频| 美国免费a级毛片| 国产成人精品无人区| 亚洲午夜精品一区,二区,三区| 午夜福利在线观看吧| 亚洲精品中文字幕在线视频| 99久久国产精品久久久| 91成人精品电影| 一卡2卡三卡四卡精品乱码亚洲| 黄片小视频在线播放| 黄色毛片三级朝国网站| 亚洲人成77777在线视频| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 少妇粗大呻吟视频| 久久精品国产99精品国产亚洲性色| 美女午夜性视频免费| 两个人看的免费小视频| 哪里可以看免费的av片| 91在线观看av| 最近最新免费中文字幕在线| 999久久久精品免费观看国产| 午夜老司机福利片| 丁香欧美五月| 两个人看的免费小视频| 欧美日韩中文字幕国产精品一区二区三区| 桃色一区二区三区在线观看| 国产真人三级小视频在线观看| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| 精品国产国语对白av| 久久久久久久精品吃奶| 日本成人三级电影网站| bbb黄色大片| 亚洲自拍偷在线| 高清在线国产一区| 啦啦啦 在线观看视频| 黑人操中国人逼视频| 亚洲黑人精品在线| 日本成人三级电影网站| 精品熟女少妇八av免费久了| 国产亚洲精品第一综合不卡| 一卡2卡三卡四卡精品乱码亚洲|