• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modeling of transverse welds formation during liquid–solid extrusion directly following vacuum infltration of magnesium matrix composite

    2015-02-16 01:44:14JinLiuLehuQiHiynZhngHepingHou
    Journal of Magnesium and Alloys 2015年3期

    Jin Liu,Lehu Qi*,Hiyn Zhng,Heping Hou

    aFaculty of Printing,Packaging Engineering and Digital Media Technology,Xi’an University of Technology,Xi’an 710048,China

    bSchool of Mechatronic Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Modeling of transverse welds formation during liquid–solid extrusion directly following vacuum infltration of magnesium matrix composite

    Jian Liua,Lehua Qib,*,Haiyan Zhanga,Heping Houa

    aFaculty of Printing,Packaging Engineering and Digital Media Technology,Xi’an University of Technology,Xi’an 710048,China

    bSchool of Mechatronic Engineering,Northwestern Polytechnical University,Xi’an 710072,China

    Liquid–solid extrusion directly following vacuum infltration(LSEVI)is an infltration–extrusion integrated forming technique,and transverse weld between upper residual magnesium alloy and magnesium matrix composites is a common internal defect,which can severely reduce the yield of composite products.To improve current understanding on the mechanism of transverse welding phenomenon,a thermo-mechanical numerical model of LSEVI for magnesium matrix composites was developed.The formation of transverse weld during extrusion was visualized using fnite element simulation method,and the formation mechanism was discussed from the aspect of velocity feld using a point tracking technique.The simulation results were verifed by the experimental results in term of weld shape.

    Liquid–solid extrusion;Magnesium matrix composite;Transverse weld;Finite element simulation

    1.Introduction

    Magnesium matrix composite is a light-weight structural material with high performance,and has a wide application prospect in high-precision aerospace system,automotive industry and sports equipment due to their superior mechanical properties[1–3].However,their applications are usually limited by poor formability and relatively high fabrication cost.The development of cost-effective fabrication techniques,therefore,is an essential element for expanding their applications.Liquid–solid extrusion following vacuum infltration(LSEVI)is a special forming technique that integrates vacuum infltration,squeeze casting and semi-solid extrusion[4].It has a series of merits such as densifcation of matrix microstructure,uniform dispersion of reinforcement,perfect interfacial bonding,low deformation resistance in the liquid–solid state,and near-net forming.

    Besides surface cracks and central cracks,inhomogeneous metal fow in liquid–solid extrusion process always leads to the formation of a cone-shaped transition region between the residual magnesium alloy and the composites(see Fig.1).The interface(transverse weld)region is always porous due to the different fow velocities and solidifcation shrinkage levels between the composites and residual magnesium alloy.Hence, the transition region was usually cut out to obtain the pure composite section.However,it is hard to determine the position and length of weld seam by non-destructive method.In extrusion production,the transverse welding patterns and length are generally estimated by trial-and-error.By comparison,FEM technique is an effective and low-cost defect prediction method [5],which has been successfully applied on studies of transverse weld formation in hot extrusion process of aluminum alloy[6–8],trying to understand welding behavior concentrated upon the fact that die modifcation may infuence the weld length and quality[9].In this process,the new billet is welded onto the back surface of the old billet under extrusion force to maintain continuous production.However,the discontinuity caused by a weld interface in the microstructure of the extruded product can severely reduce the strength of the product,so it is important to minimize the transverse weld interface length while at the same time providing a high-quality weld.

    For hot extrusion,the welding process is achieved in solid state between two same billets.The LSEVI is carried out in the semi-solid state containing a small amount of liquid phase,and the transverse weld is formed between composites and matrixmetal.In addition,before extrusion,the composites and matrix metalbondtogetherduringsolidifcation.Atpresent,simulation studiesaboutLSEVIaremainlyconcentratedontheload-stroke curve,temperature history,deformation pattern or macroscopic material fow,e.g.Qi et al.[10]used coupled thermal–mechanical rigid-viscoplastic FEM to analyze the solidifcation and subsequent extrusion process of composites,and gained the distribution of the stress,strain,fow velocity and temperature evolution in the extrusion process.Wang et al.[11]applied three-dimensional thermo-mechanical fnite element method to reveal the formation mechanism of surface cracks based on temperature and velocity felds in the extrusion process. However,previous studies neglect the effect of residual magnesium alloy on the fow behavior of composites,and the transverse weld phenomenon has not been studied.In present paper,thethermo-mechanicalfniteelementmodelofLSEVIfor magnesium matrix composites reinforced by short carbon fbers wasdeveloped.Theaimofthisstudyistoprovideaninsightinto the transverse weld phenomenon in LSEVI.

    Fig.1.Longitudinal section of composite rod fabricated by extrusion directly following vacuum infltration technique.

    2.Modeling

    LSEVI technique consists of four steps.First,magnesium alloy is melted in a sealed melting furnace,which is flled with argon to prevent oxidation,and carbon fber preform is simultaneously preheated in extrusion die.Second,when the magnesium alloy and preform are preheated to the preset temperatures and held for a long time,the liquid meal is sucked into extrusion die via a stainless steel pipe which connects the melting unit and extrusion die,and then infltrated into the preform immediately under gas pressure.Third,after infltration,the magnesium alloy is forced to solidify under high squeezing pressure of punch.Finally,the infltrated composites containing a small fraction of liquid phase are extruded out via the die exit when the container is cooled to the preset temperature.The schematic diagram of experimental setup is shown in Fig.2.

    In this study,the FE model of LSEVI consists of fve objects to be simulated:billet(composite and magnesium alloy), punch,container,forming die,and plug rod,as schematically shown in Fig.3.Due to the symmetry of billet,tools,boundary conditions and loads in whole forming process,half of the actual model was selected to establish the fnite element model in order to reduce the computational workload and storage.To ensure computing convergence and computing precision, remeshing is necessary.The maximum interference depth was selected to start a remeshing procedure.If any portion of a master object(tools)penetrates into a slave object(billet) beyond a critical depth(it takes 0.25 mm in present model), remeshing will be triggered.

    The thermo-mechanical behavior of the magnesium matrix composite at both the elevated temperature and in the semi-solid state was described using a modifed viscoplastic law,which considers the effect of liquid phase[12],

    Fig.2.Schematic diagram of liquid–solid extrusion following vacuum infltration.

    Fig.3.Geometry models and meshes of the billet,die and other extrusion tooling.

    whereσ,ε˙,T,andfldenote fow stress(MPa),strain rate(s?1), deformation temperature(K),and liquid fraction,respectively.A,a,andbare material constants.n,R,andQdenote stress exponent,universal gas constant(J/mol·K),and apparent activation energy(J/mol).These material parameters in Eq.(1) were determined using multiple linear regression method based on the compression test data of fow stress and strain:n=7.8351,A=3.0578,a=1.0044,b=4.2910,Q=2. 071× 105.The thermo-mechanical behavior of matrix AZ91D magnesium alloy was described using a viscoplastic constitutive model,which integrated the effect of temperature, strain rate,and strain[13],

    The values for the material parameters in Eq.(2)were determined through hot compression tests:A=30.85,B=2.5×10?5,C=0.1051,D=5.8×10?5,E=?0.02,F=24.16,G=?2×10?4.The tooling was considered as thermo-rigid body.Both of these material models neglected the elastic behavior of the billet and tooling materials.The thermal conductivity and specifc heat capacity were calculated from the thermo physical properties of AZ91D magnesium alloy and carbon fber according to the mixing rule,and the effect of latent heat on the temperature feld during solidifcation was treated using equivalent specifc heat method[14].

    The convection heat transfer coeffcient between tools, extrudate and environment takes 0.1,and the surface radiation coeffcients of extrudate and tooling take 0.12 and 0.7,respectively.Due to the fact that interfacial heat transfer coeffcient is always proportional to normal pressure,a linear relationship between the heat transfer coeffcient and the pressure levels used for squeeze casting was selected in this simulation[15]. The semi-solid material usually sticks to the die surface under the large contact pressure in the liquid–solid extrusion process, the shear friction model is more suitable for this situation.The friction between billet and container wall is a sticking friction, so the friction factor takes 1[16].The conical surface and bearing of the forming die were coated with oil-based graphite as lubricant,so the friction coeffcient between billet and forming die takes 0.3.

    The simulation of LSEVI process consists of two steps.The frst step is heat transfer analysis of mushy composites and residual magnesium alloy during solidifcation process.The second step is thermo-mechanical analysis in the liquid–solid extrusion process.The obtained temperature feld by the frststep simulation was set as the initial temperature conditions of the second-step simulation.The dimensions of billet and die as well as the main process parameters adopted in the current numerical simulation are listed in Table 1.

    3.Results and discussion

    Figure 4 shows the simulation results about the formation of a transverse weld between the residual Mg alloy and composite. It can be seen that the interface between residual Mg alloy and composite does not remain fat when fowing toward the forming die,and the central part of the billets moves much faster than the billet surface.When the punch moved down 30 mm,the front of the magnesium alloy has entered into die land,and the distance between the upper surface and fow front has reached 36.68 mm.When punch stroke reached 40 mm, which exceeds the composite billet height,the composite billet has still not been completely extruded out of the forming die, and the residual part sticks to container wall,forming a cladlayer.The magnesium alloy fowed into the center of composite extrudate,exhibiting an inverted cone.The interface between the fow front of magnesium alloy and the composite clad layer is just the transverse weld.

    Table 1Simulation and experimental parameters.

    The formation of the transverse weld is usually ascribed to the inhomogeneous metal fow in hot extrusion process[6].In order to reveal the formation mechanism of the transverse weld in LSEVI,four tracking points(P1,P2,P3 and P4)evenly spaced at the welding interface between the magnesium alloy and composite were selected,and the fow velocities of these points along the extrusion direction as function of punch stroke are shown in Fig.5.It can be seen from Fig.5 that the velocity curves of P1,P2,and P3 can be divided into four stages:in the frst starting stage,the fow velocity increases sharply to a certain value,and then enters a long stable stage(the second stage).In this stage,the velocity difference is relatively smaller. When the punch stroke reaches about 25 mm(the third stage), the fow velocities sharply increase again,and deformation non-uniformity is obviously aggravated,this may be attributed to that P1,P2,and P3 gradually approach deformation zone, where the billet is in the semi-solid state with low deformation resistance and better fowability.Figure 6 shows the position changes of the tracking points crossing the deformation zone as function of punch stroke.It can be seen from Fig.6 that when punch stroke reaches 25 mm,P1,P2,and P3 enter the semisolid zone one by one,in which the liquid fraction increases from outer zone to inner zone at the die exit.The higher the liquid fraction,the better the fowability is for magnesium alloy. Hence,the presence of liquid phase further aggravates the deformation inhomogeneity,which can be verifed by our previous experimental results[17].In the fnal stage,a new stable stage appears,and the fow velocities were almost same. However,the fow velocity of P4 is always almost constant,and even lower than the punch velocity,which can be ascribed to the sticking friction between billet and container.

    To validate the model,the same process parameters were adopted to fabricate the composite rod using LSEVI technique, and the remaining materials in the forming die were sectioned using electrical discharge machining technique,as shown in Fig.7.It can be seen from Fig.7 that the remaining material can be divided into two parts in term of color,i.e.dark clad layer and central light region.According the observation using a microscope,they are composite and Mg alloy,respectively.By comparing Fig.7 and Fig.4d,it can be found that the simulation results basically agree with the experimental one in term of weld shape.

    To minimize the weld length,optimization of the metal fow during extrusion processes is an important means.There are many factors infuencing the metal fow,among which the die structure is closely related to non-homogeneity of metal fow.In order to reveal the infuences of die structure on the shape and length of weld seam,another cone-shaped dies with die semiangle 45°and 60°were selected for comparison.Figure 8 shows the simulated weld shape under different die semi-angles.It can be seen that the corresponding weld lengths are 57.59,75.17, and 90.72 mm,which indicates that weld length increases withincreasing die semi-angle in the range of 45°–60°.However,the smaller the die semi-angle,the smaller the dead metal zone is. Considering that the outside surface of the extrudate originates from the material moving along the dead metal zone[18], which is necessary to remove some impurities at the outer layer of the billet,otherwise,it may be extruded out from the forming die and reduce the surface quality of extrudate,hence a moderate die semi-angle 55°was selected.

    Fig.4.Evolution of transverse weld during liquid–solid extrusion,S denotes punch stroke.

    Fig.5.Flow velocity of the tracking points along extrusion direction.

    4.Conclusions

    A 2-D numerical model of liquid–solid extrusion directly following vacuum infltration has been developed using the commercial FEM package DEFORM,and the formation process of transverse weld between residual magnesium alloy after infltration and composite was simulated,and the main conclusions can be summarized as follows:

    Fig.7.Longitudinal section of remaining material in the forming die showing the shape of transverse weld.

    (1)The formation process of transverse weld can be mainly ascribed to the nonuniform fow of materials,which was caused by the sticking friction between billet and container as well as the presence of liquid phase in the deformation zone.

    (2)Simulation results are basically consistent with the experimental one in term of weld shape.Weld length increases with increasing die semi-angle in the range of 45°–60°,and it can be shortened by employing smaller die semi-angle.

    Acknowledgements

    The authors would like to gratefully acknowledge the fnancial support of National Natural Science Foundation of China (Grant No.51305345),and Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2014JQ6228).

    Fig.6.Position of the tracking points as function of punch stroke,liquid fraction denotes the volume fraction of liquid phase in the semi-solid material.

    Fig.8.Weld length(mm)under different die semi-angle.

    [1]M.Gupta,N.M.L.Sharon,Magnesium,Magnesium Alloys,and Magnesium Composites,John Wiley&Sons,Inc.,Hoboken,2011,pp. 113–231.

    [2]M.J.Shen,M.F.Zhang,W.F.Ying,J.Magn,Alloy 3(2015)162–167.

    [3]M.Balakrishnan,I.Dinaharan,R.Palanivel,R.Sivaprakasam,J.Magn, Alloy 3(2015)76–78.

    [4]J.Liu,L.H.Qi,J.T.Guan,Y.Q.Ma,J.M.Zhou,Mater.Sci.Eng.A 531 (2012)164–170.

    [5]H.J.Hu,D.F.Zhang,F.S.Pan,M.B.Yang,Acta Metall.Sin.22(2009) 353–364.

    [6]Q.Li,C.Harris,M.R.Jolly,Mater.Des.24(2003)493–496.

    [7]J.Liu,G.Y.Lin,D.Feng,Y.M.Zou,L.P.Sun,Special Cast.Nonferrous Alloys 29(2009)1105–1108(in Chinese).

    [8]A.J.den Bakker,R.J.Werkhoven,W.H.Sillekens,L.Katgerman,J.Mater. Process.Technol.214(2014)2349–2358.

    [9]Y.Mahmoodkhani,M.A.Wells,N.Parson,W.J.Poole,J.Mater.Process. Technol.214(2014)688–700.

    [10]L.H.Qi,L.Z.Su,C.X.Jiang,J.M.Zhou,H.J.Li,Mater.Sci.Eng.A 454–455(2007)608–613.

    [11]Z.J.Wang,L.H.Qi,J.M.Zhou,J.Mater.Process.Technol.209(2009) 2068–2076.

    [12]L.H.Qi,Z.J.Wang,J.M.Zhou,L.Z.Su,H.J.Li,Compos.Sci.Technol.71 (2011)955–961.

    [13]S.S.Xie,X.G.Li,X.X.Jiang,J.Plast.Eng.12(2005)89–93(in Chinese).

    [14]L.H.Qi,J.Liu,J.T.Guan,L.Z.Su,J.M.Zhou,T.Nonferrous Metal.Soc. 20(2010)1737–1742.

    [15]H.Hu,A.Yu,Modell.Simul.Mater.Sci.Eng.10(2002)1–11.

    [16]G.Liu,J.Zhou,J.Duszczyk,J.Mater.Process.Technol.186(2007) 191–199.

    [17]L.Z.Su,L.H.Qi,J.M.Zhou,H.J.Li,J.Alloys Compd.509(2011) 775–781.

    [18]I.Flitta,T.Sheppard,Mater.Sci.Technol.21(2005)648–656.

    Received 15 February 2015;revised 12 July 2015;accepted 20 July 2015 Available online 1 October 2015

    *Corresponding author.School of Mechatronic Engineering,Northwestern Polytechnical University,Xi’an 710072,China.Tel.:+8602988460447;fax: +86 29 88491982.

    E-mail address:qilehua@nwpu.edu.cn(L.Qi).

    http://dx.doi.org/10.1016/j.jma.2015.07.001

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    亚洲av电影不卡..在线观看| 色老头精品视频在线观看| 国产成人免费无遮挡视频| 女人爽到高潮嗷嗷叫在线视频| 亚洲va日本ⅴa欧美va伊人久久| 女人被躁到高潮嗷嗷叫费观| 村上凉子中文字幕在线| 91av网站免费观看| www.999成人在线观看| 涩涩av久久男人的天堂| 午夜福利,免费看| 中文字幕高清在线视频| 99在线视频只有这里精品首页| 香蕉国产在线看| 亚洲黑人精品在线| 一夜夜www| 久久精品人人爽人人爽视色| а√天堂www在线а√下载| 亚洲人成电影观看| 黄色片一级片一级黄色片| 国产精品美女特级片免费视频播放器 | 欧美日本亚洲视频在线播放| 一区二区三区激情视频| 每晚都被弄得嗷嗷叫到高潮| 日韩欧美国产一区二区入口| 国产真人三级小视频在线观看| 午夜久久久久精精品| 国产精品免费一区二区三区在线| 久久久久久国产a免费观看| 十八禁网站免费在线| 19禁男女啪啪无遮挡网站| 满18在线观看网站| 又大又爽又粗| 桃色一区二区三区在线观看| 精品久久蜜臀av无| 精品欧美一区二区三区在线| 可以在线观看毛片的网站| 午夜免费鲁丝| 色播在线永久视频| 中文字幕精品免费在线观看视频| 咕卡用的链子| 欧美精品亚洲一区二区| 91九色精品人成在线观看| 久久精品91蜜桃| 侵犯人妻中文字幕一二三四区| 人人妻人人澡欧美一区二区 | 久久人妻熟女aⅴ| 亚洲人成电影观看| 波多野结衣一区麻豆| 美女 人体艺术 gogo| 99久久综合精品五月天人人| www国产在线视频色| 可以免费在线观看a视频的电影网站| 久久午夜综合久久蜜桃| 国产精品一区二区免费欧美| 久久人妻av系列| 国产精品一区二区免费欧美| 女人爽到高潮嗷嗷叫在线视频| 国产精品乱码一区二三区的特点 | 一级黄色大片毛片| 亚洲成av人片免费观看| 桃红色精品国产亚洲av| 亚洲人成电影免费在线| 欧美成狂野欧美在线观看| 久久中文字幕人妻熟女| av有码第一页| 色综合站精品国产| 久久久水蜜桃国产精品网| 十八禁网站免费在线| 日韩欧美一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| 午夜a级毛片| 国产视频一区二区在线看| 麻豆成人av在线观看| 在线国产一区二区在线| 色播在线永久视频| 国产国语露脸激情在线看| 亚洲av电影不卡..在线观看| 亚洲国产精品久久男人天堂| 久99久视频精品免费| 国产激情久久老熟女| 精品卡一卡二卡四卡免费| 久久香蕉精品热| 村上凉子中文字幕在线| 一二三四社区在线视频社区8| 日日干狠狠操夜夜爽| 精品欧美国产一区二区三| 成人国语在线视频| 久久影院123| 香蕉久久夜色| 亚洲熟女毛片儿| 免费看a级黄色片| 日韩 欧美 亚洲 中文字幕| www.999成人在线观看| 男女之事视频高清在线观看| 这个男人来自地球电影免费观看| 人人妻人人澡人人看| 中文字幕色久视频| 51午夜福利影视在线观看| 一本久久中文字幕| 久久九九热精品免费| 日本vs欧美在线观看视频| 亚洲男人的天堂狠狠| 人妻丰满熟妇av一区二区三区| 欧美乱色亚洲激情| 色婷婷久久久亚洲欧美| 女性被躁到高潮视频| 麻豆久久精品国产亚洲av| 搡老岳熟女国产| 99re在线观看精品视频| 91精品三级在线观看| 少妇裸体淫交视频免费看高清 | 禁无遮挡网站| 非洲黑人性xxxx精品又粗又长| 成人亚洲精品av一区二区| 法律面前人人平等表现在哪些方面| 成人18禁高潮啪啪吃奶动态图| netflix在线观看网站| 变态另类成人亚洲欧美熟女 | 成人手机av| 免费在线观看黄色视频的| 精品欧美一区二区三区在线| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| 国产免费男女视频| 国产精品亚洲一级av第二区| www.自偷自拍.com| 国产高清激情床上av| 自线自在国产av| 99热只有精品国产| 国产伦人伦偷精品视频| 可以在线观看的亚洲视频| 一卡2卡三卡四卡精品乱码亚洲| 淫妇啪啪啪对白视频| 国产熟女xx| 亚洲一区二区三区色噜噜| 无遮挡黄片免费观看| 有码 亚洲区| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华精| 99精品久久久久人妻精品| 欧美3d第一页| 久久精品国产亚洲av天美| 午夜久久久久精精品| 日日摸夜夜添夜夜添小说| 亚洲成av人片在线播放无| 老熟妇乱子伦视频在线观看| 婷婷精品国产亚洲av在线| 99久久精品热视频| 久久久久久久午夜电影| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| 尤物成人国产欧美一区二区三区| 欧美潮喷喷水| 三级男女做爰猛烈吃奶摸视频| 男女啪啪激烈高潮av片| 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲91精品色在线| 亚洲欧美日韩卡通动漫| 国产美女午夜福利| 精品久久久久久久久久久久久| 久久久久久久久久成人| 精品一区二区三区视频在线观看免费| 18+在线观看网站| 狂野欧美白嫩少妇大欣赏| 亚洲avbb在线观看| 少妇的逼水好多| 婷婷精品国产亚洲av| 日韩人妻高清精品专区| 亚洲欧美日韩无卡精品| 久久久久久伊人网av| 偷拍熟女少妇极品色| 搡老妇女老女人老熟妇| 亚洲欧美日韩卡通动漫| 欧美xxxx性猛交bbbb| 国产在视频线在精品| av在线亚洲专区| 成人毛片a级毛片在线播放| 少妇被粗大猛烈的视频| 国产精品,欧美在线| 国产男人的电影天堂91| 美女xxoo啪啪120秒动态图| 亚洲四区av| 99久国产av精品| 亚洲在线自拍视频| 国产成人一区二区在线| 欧美区成人在线视频| 中文字幕av成人在线电影| 一进一出好大好爽视频| 少妇的逼好多水| 色播亚洲综合网| 国内精品久久久久久久电影| 日本一本二区三区精品| 国产黄片美女视频| 亚洲va日本ⅴa欧美va伊人久久| 成人毛片a级毛片在线播放| 色综合亚洲欧美另类图片| 亚洲狠狠婷婷综合久久图片| 一个人观看的视频www高清免费观看| 成人性生交大片免费视频hd| 欧美极品一区二区三区四区| 看黄色毛片网站| 欧美最新免费一区二区三区| 村上凉子中文字幕在线| 婷婷六月久久综合丁香| 欧美性猛交黑人性爽| 日韩欧美精品免费久久| 国产69精品久久久久777片| 亚洲一区高清亚洲精品| 观看免费一级毛片| 亚洲性久久影院| 亚洲第一区二区三区不卡| 精华霜和精华液先用哪个| 国产av不卡久久| 色精品久久人妻99蜜桃| 97超级碰碰碰精品色视频在线观看| 观看免费一级毛片| 国产高清不卡午夜福利| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 亚洲五月天丁香| 国内精品久久久久久久电影| 黄色丝袜av网址大全| 18+在线观看网站| 在线天堂最新版资源| 亚洲精品成人久久久久久| 国产精品三级大全| 久久亚洲真实| 久99久视频精品免费| 久久人妻av系列| 日日摸夜夜添夜夜添av毛片 | 日韩欧美一区二区三区在线观看| 亚洲精品粉嫩美女一区| 亚洲精华国产精华精| 国产精品一区www在线观看 | 永久网站在线| 午夜a级毛片| 97人妻精品一区二区三区麻豆| 亚洲自偷自拍三级| 久久午夜福利片| 亚洲成a人片在线一区二区| 日日夜夜操网爽| 国产精品亚洲一级av第二区| 3wmmmm亚洲av在线观看| 99九九线精品视频在线观看视频| 午夜爱爱视频在线播放| 又爽又黄a免费视频| 国产精品亚洲美女久久久| 亚洲国产高清在线一区二区三| 深夜a级毛片| 国产欧美日韩精品亚洲av| 乱人视频在线观看| av女优亚洲男人天堂| 国产精品久久电影中文字幕| 中文资源天堂在线| 欧美一区二区精品小视频在线| 国产精品人妻久久久影院| 男女视频在线观看网站免费| 免费看日本二区| 可以在线观看毛片的网站| 99久久久亚洲精品蜜臀av| 99热只有精品国产| 久久6这里有精品| 久久精品国产亚洲网站| 国产欧美日韩精品一区二区| 婷婷亚洲欧美| 我的老师免费观看完整版| 一进一出好大好爽视频| 99九九线精品视频在线观看视频| 真人一进一出gif抽搐免费| 欧美另类亚洲清纯唯美| 日韩在线高清观看一区二区三区 | 亚洲精品日韩av片在线观看| 欧美日韩中文字幕国产精品一区二区三区| 欧美色视频一区免费| 尤物成人国产欧美一区二区三区| 国产黄片美女视频| 亚洲欧美日韩无卡精品| 免费看美女性在线毛片视频| 亚洲国产色片| av在线老鸭窝| 小说图片视频综合网站| 色噜噜av男人的天堂激情| 日韩强制内射视频| 国产人妻一区二区三区在| 免费人成在线观看视频色| 精品福利观看| 无遮挡黄片免费观看| 久久久精品欧美日韩精品| 无人区码免费观看不卡| 99热精品在线国产| 国内少妇人妻偷人精品xxx网站| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 美女高潮的动态| 看黄色毛片网站| 国产精品一区二区性色av| 五月玫瑰六月丁香| www.www免费av| 老女人水多毛片| 九九在线视频观看精品| 日本 av在线| 亚洲五月天丁香| 久久久久久久久久久丰满 | 男女啪啪激烈高潮av片| 久久久久久久午夜电影| 性色avwww在线观看| 免费黄网站久久成人精品| 日韩一区二区视频免费看| 午夜福利在线观看免费完整高清在 | 欧美黑人欧美精品刺激| 日本 欧美在线| 老师上课跳d突然被开到最大视频| av福利片在线观看| 成人国产麻豆网| 最近最新免费中文字幕在线| 老司机福利观看| 两性午夜刺激爽爽歪歪视频在线观看| 99热6这里只有精品| 欧美国产日韩亚洲一区| 看十八女毛片水多多多| 午夜a级毛片| 久久午夜福利片| 亚洲美女搞黄在线观看 | 久久久久久久久中文| 成人国产一区最新在线观看| 俄罗斯特黄特色一大片| 亚洲一区高清亚洲精品| 欧美激情国产日韩精品一区| 亚洲av中文av极速乱 | 午夜久久久久精精品| av.在线天堂| 天堂√8在线中文| 午夜激情欧美在线| 内射极品少妇av片p| 美女大奶头视频| 女人十人毛片免费观看3o分钟| 99热这里只有是精品在线观看| netflix在线观看网站| 亚洲自拍偷在线| 两个人视频免费观看高清| 日韩欧美在线二视频| 国产亚洲精品久久久久久毛片| 99热网站在线观看| 99精品久久久久人妻精品| 人人妻人人看人人澡| 自拍偷自拍亚洲精品老妇| 免费看美女性在线毛片视频| 两人在一起打扑克的视频| 欧美人与善性xxx| 日韩中字成人| 色精品久久人妻99蜜桃| 亚洲av成人精品一区久久| 国产精品一区二区性色av| 国产精品自产拍在线观看55亚洲| 中出人妻视频一区二区| 少妇高潮的动态图| 男人舔女人下体高潮全视频| 97热精品久久久久久| 亚洲美女搞黄在线观看 | 可以在线观看毛片的网站| 欧美+亚洲+日韩+国产| 久久久久久大精品| 干丝袜人妻中文字幕| 久久久久免费精品人妻一区二区| 日韩欧美国产一区二区入口| 免费观看人在逋| 国产精品永久免费网站| 国产一级毛片七仙女欲春2| 久久人人爽人人爽人人片va| 亚洲四区av| 欧美最黄视频在线播放免费| 日本免费一区二区三区高清不卡| 亚洲无线在线观看| 国产视频内射| 亚洲经典国产精华液单| 久久久久久久久久黄片| 亚洲国产色片| 中文字幕av在线有码专区| 国产三级中文精品| 国产精品自产拍在线观看55亚洲| 久久草成人影院| 老熟妇乱子伦视频在线观看| 天堂动漫精品| 亚洲欧美精品综合久久99| 99视频精品全部免费 在线| 十八禁网站免费在线| 非洲黑人性xxxx精品又粗又长| 人妻制服诱惑在线中文字幕| 日韩精品有码人妻一区| 给我免费播放毛片高清在线观看| 成人欧美大片| 深夜a级毛片| 国产亚洲av嫩草精品影院| 欧美潮喷喷水| 国产一区二区在线观看日韩| 性色avwww在线观看| 麻豆一二三区av精品| 国产三级中文精品| 欧美成人性av电影在线观看| 日韩欧美在线二视频| 在线天堂最新版资源| 床上黄色一级片| 99热6这里只有精品| 精品福利观看| 久久人人爽人人爽人人片va| 老司机午夜福利在线观看视频| 免费无遮挡裸体视频| 国产欧美日韩精品亚洲av| 夜夜夜夜夜久久久久| 在线观看66精品国产| 亚洲av日韩精品久久久久久密| 干丝袜人妻中文字幕| 国产亚洲精品久久久久久毛片| 麻豆国产97在线/欧美| 又爽又黄无遮挡网站| 久久香蕉精品热| 欧美性猛交黑人性爽| 人妻久久中文字幕网| 国产极品精品免费视频能看的| 国产精品精品国产色婷婷| 国产av一区在线观看免费| 成人av一区二区三区在线看| 69人妻影院| 天堂影院成人在线观看| 亚洲精品亚洲一区二区| 男女视频在线观看网站免费| 亚洲在线自拍视频| 村上凉子中文字幕在线| 国模一区二区三区四区视频| 联通29元200g的流量卡| 成人三级黄色视频| 午夜福利视频1000在线观看| 国产精品不卡视频一区二区| avwww免费| 国产精品一区www在线观看 | 色吧在线观看| 97超级碰碰碰精品色视频在线观看| 波野结衣二区三区在线| 国产一区二区在线av高清观看| 啦啦啦啦在线视频资源| 全区人妻精品视频| 黄色视频,在线免费观看| 91麻豆av在线| 国产精品一区二区性色av| 国产黄色小视频在线观看| 又爽又黄a免费视频| 日日啪夜夜撸| 俺也久久电影网| 特级一级黄色大片| 五月玫瑰六月丁香| 91精品国产九色| 麻豆久久精品国产亚洲av| 日本a在线网址| 99精品在免费线老司机午夜| 久久精品久久久久久噜噜老黄 | 能在线免费观看的黄片| 久久亚洲精品不卡| 亚洲四区av| h日本视频在线播放| 淫秽高清视频在线观看| 久久精品国产鲁丝片午夜精品 | av.在线天堂| 有码 亚洲区| 欧美高清性xxxxhd video| 精品一区二区三区视频在线观看免费| 听说在线观看完整版免费高清| 亚洲不卡免费看| 国产精品久久久久久亚洲av鲁大| 最后的刺客免费高清国语| 日本熟妇午夜| 最近视频中文字幕2019在线8| 精品一区二区三区av网在线观看| 午夜福利欧美成人| 少妇人妻精品综合一区二区 | 免费看a级黄色片| 久久久久九九精品影院| 欧美日本视频| 国产91精品成人一区二区三区| 午夜激情福利司机影院| 少妇高潮的动态图| 亚洲精品粉嫩美女一区| 免费黄网站久久成人精品| 一进一出抽搐gif免费好疼| 岛国在线免费视频观看| 日日夜夜操网爽| 热99在线观看视频| 日本黄色片子视频| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 窝窝影院91人妻| 久久久久久久久久黄片| 极品教师在线视频| 欧美+亚洲+日韩+国产| 国产美女午夜福利| 三级国产精品欧美在线观看| 最近最新免费中文字幕在线| 不卡视频在线观看欧美| 国产黄a三级三级三级人| 国产又黄又爽又无遮挡在线| 国产主播在线观看一区二区| 成年免费大片在线观看| 成人av一区二区三区在线看| a在线观看视频网站| 搞女人的毛片| 国产精品爽爽va在线观看网站| 国产综合懂色| 精品久久久久久久久亚洲 | 日本成人三级电影网站| 成人午夜高清在线视频| 亚洲性久久影院| 国产精品爽爽va在线观看网站| 免费观看精品视频网站| 国产精品一及| 久久精品国产亚洲av天美| 一级a爱片免费观看的视频| 51国产日韩欧美| 日本黄大片高清| a在线观看视频网站| 黄色配什么色好看| 超碰av人人做人人爽久久| 国产av麻豆久久久久久久| 97超视频在线观看视频| 精品人妻一区二区三区麻豆 | 搞女人的毛片| 嫩草影院精品99| 窝窝影院91人妻| 天堂动漫精品| 国产色爽女视频免费观看| 久久99热这里只有精品18| 精品午夜福利视频在线观看一区| 波多野结衣高清无吗| 在现免费观看毛片| 色哟哟哟哟哟哟| 亚洲欧美清纯卡通| 日本成人三级电影网站| av视频在线观看入口| 欧美绝顶高潮抽搐喷水| av在线天堂中文字幕| 色5月婷婷丁香| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 九色成人免费人妻av| 人妻丰满熟妇av一区二区三区| 99热只有精品国产| 老女人水多毛片| 国产私拍福利视频在线观看| 精品久久久久久成人av| 国产一区二区在线观看日韩| 国产69精品久久久久777片| 神马国产精品三级电影在线观看| 人妻少妇偷人精品九色| 久久久久久久亚洲中文字幕| 亚洲av中文av极速乱 | 国产免费男女视频| 免费看美女性在线毛片视频| 中文字幕高清在线视频| 狂野欧美激情性xxxx在线观看| 啦啦啦观看免费观看视频高清| 久久久久久久久久黄片| 99久久成人亚洲精品观看| 婷婷六月久久综合丁香| 国产精品永久免费网站| 亚洲美女视频黄频| 99热这里只有精品一区| 一区福利在线观看| 老司机福利观看| 久久人人精品亚洲av| 麻豆精品久久久久久蜜桃| 欧美又色又爽又黄视频| 在线免费十八禁| 欧美又色又爽又黄视频| 国产精品一区www在线观看 | 狠狠狠狠99中文字幕| 久久久久久久久久成人| 两个人视频免费观看高清| 国产精品乱码一区二三区的特点| 日本免费a在线| netflix在线观看网站| 欧美性猛交╳xxx乱大交人| 午夜日韩欧美国产| 国产一区二区亚洲精品在线观看| 免费在线观看日本一区| 欧美精品国产亚洲| 九色国产91popny在线| 免费高清视频大片| 国产探花在线观看一区二区| 亚洲无线在线观看| 国产激情偷乱视频一区二区| 国产一区二区亚洲精品在线观看| 国产伦精品一区二区三区四那| 久久人人爽人人爽人人片va| 国产av麻豆久久久久久久| 国产黄a三级三级三级人| 联通29元200g的流量卡| 国产成人福利小说| 免费人成在线观看视频色| 色哟哟·www| 在线播放无遮挡| 国产精品精品国产色婷婷| 日本熟妇午夜| 免费人成视频x8x8入口观看| 免费无遮挡裸体视频| 精品久久久久久久末码| 精品不卡国产一区二区三区| 毛片女人毛片| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 嫩草影视91久久| 欧美色欧美亚洲另类二区| 国产一区二区三区av在线 | 午夜激情福利司机影院| 国产av在哪里看| 精品午夜福利视频在线观看一区| 国产一区二区在线观看日韩|