• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Age hardening,fracture behavior and mechanical properties of QE22 Mg alloy

    2015-02-16 01:44:13KhanMDPanigrahi
    Journal of Magnesium and Alloys 2015年3期

    F.Khan MD,S.K.Panigrahi*

    Department of Mechanical Engineering,Indian Institute of Technology Madras,Chennai 600036,India

    Age hardening,fracture behavior and mechanical properties of QE22 Mg alloy

    F.Khan MD,S.K.Panigrahi*

    Department of Mechanical Engineering,Indian Institute of Technology Madras,Chennai 600036,India

    The microstructure,mechanical properties and fracture behavior of an as-received QE22 alloy have been investigated under different thermal conditions,including solution treated(ST),under aged(UA),peak aged(PA)and over aged(OA)conditions.A signifcant increase in hardness of 27%,yield strength of 60%and ultimate tensile strength of 19%was observed in peak aged sample as compared to solution treated sample.The improvements of mechanical strength properties are mainly associated with the metastable λ and β′precipitates.Grain growth was not observed in the ST samples after subjecting to UA and PA treatments due to the presence of eutectic Mg12Nd particles along the grain boundaries.In over aged sample,signifcant grain growth occurred because of dissolution of eutectic phase particles.Different natures of crack initiation and propagation were observed under different thermal conditions during tensile testing at room temperature.The mode of failure of solution treated sample is transgranular,cleavage and twin boundary fractures.A mixed mode of transgranular,intergranular,cleavage and twin boundary failure is observed in both peak aged and over aged samples.

    Magnesium alloy(QE22);Age hardening behavior;Microstructure;Mechanical properties;Fracture

    1.Introduction

    Magnesium alloys have received an increasing interest in the last decade for potential applications in the automotive,aerospace,defense and electronic industries.An increased usage of these alloys depends on enhancing their mechanical properties further.One of the potential conventional methods of improving the strength properties of magnesium alloys is development of age hardenable alloys.

    Among various age hardenable magnesium alloys, Mg-Ag-Re alloys are most famous because of their very good thermal stability,remarkable age hardening response,good creep resistance,good tensile strength and fatigue strength [1].These alloys are mainly used in automotive,military and aircraft industries such as gear box casings,engine casings, wheels and rotor heads in helicopters[2].The fracture behavior of these alloys is also important in understanding the relationship between microstructureand mechanical properties,as itdetermines the fracture strength and elongation.Few researchers have attempted to correlate the relation between fracture behavior and mechanical properties of Mg-Y-Nd alloy,Mg-Gd-Y-Zr alloy and Mg-Gd-Er alloy [3–7].However similar attempt on Mg-Ag-Nd alloy has not been studied so far.Even though,few researchers have studied the phase transformations and age hardening behavior of different Mg-Ag-Re based alloys and composites[8–13], there is still a degree of uncertainty in the literature about the precipitation sequence,structure and composition of hardening phases of these alloys.

    This paper mainly studies the evolution of microstructure, fracture behavior and mechanical property in magnesium silver rare earth(Mg-Ag-Nd-Zr)commercial alloy(commonly named QE22)when subjected to different thermal treatments.The objective of this work is to establish relationship between precipitation,microstructure,mechanical properties and fracture behavior.

    2.Experimental procedure

    The as-received QE22 alloy of 25 mm thick plate was procured from Magnesium Elektron,Manchester,UK.The chemical composition of this alloy is provided in Table 1.Thechemical composition of the as-received material is tested through optical emission spectroscopy(OES).The samples with required dimension were solution treated at 525°C for 8 hours,quenched into cold water,and then isothermally aged at 200°C for various periods of time.In order to prevent oxidation,the samples were kept in quartz crystal glass tube prior to solution treatment.The heat treated samples were subjected to mechanical polishing by using different emery grit sizes,followed by diamond polishing and etched with picric acid solution.For the microstructure observation, an inverted metallographic microscope Quama 5000 series and a Quanta 200 scanning electron microscope with EDAX attachment were used.The polished samples with and without heat treatment were taken to microhardness testing to determine the hardness value.The test was carried out on Vickers Microhardness testing machine with a load of 200 g for 10 s.Phase analysis was carried out with X-ray diffraction(XRD).Thin foils of QE22 alloy(less than 100μm)samples are prepared to study the morphology of the precipitates from transmission electron microscopy.Thin foils were twin jet polished with electrolyte (99%pure ethanol+1%Perchloric acid)followed by ion milling.Phillips 200 kV model transmission electron microscopy was employed to conduct these experiments.At most care was taken to prevent oxidation of magnesium samples after electrolyte polishing.

    Table 1Chemical composition of the as-received material QE22 alloy.

    The tensile tests were performed at a cross head speed of 1 mm/min at room temperature.The samples for tensile tests had a gauge length of 5 mm,width of 2 mm and thickness of 2 mm.Three specimens were used for each test condition to ensure the reproducibility of data.The fractured specimens were sectioned longitudinally and examined mode of failure using optical microscopy(OM).The fracture surfaces of the failed tensile specimens were examined using scanning electron microscopy.

    3.Results and discussions

    3.1.Microstructure

    The SEM-BSE microstructure of the solution treated sample is shown in Fig.1.The chemical composition of the ST sample and eutectic phase is shown in Table 2.

    The microstructure of the ST sample is mainly composed of equiaxed grains surrounded by eutectic network and second phase.The average grain size(GS)and hardness of the solution treated sample are observed as 52μm and 64 Hv respectively. Linear intercept method was used to obtain average grain size. TheobservedeutecticphaseisrichinAgandNd(Table2)which indicates the occurrence of an Mg-Ag-Re ternary phase.

    3.2.Age hardening behavior

    Fig.1.Microstructure of solution treated QE22 alloy(arrow indicates twins).

    The as-received QE22 Mg alloy is an age hardenable alloy. To know the peak aging temperature of this alloy,solution treated(ST)samples are aged for 1 hour at different aging temperatures from 50°C to 500°C,followed by microhardness testing.Fig.2 shows the age hardening response of the ST QE22 alloy.An increase in microhardness trend is observed in the ST QE22 alloy with increase in aging temperature up to200°C and then decreases.Therefore,200°C is selected for further age hardening studies.The age hardening behavior of the ST QE22 alloy at temperature of 200°C is shown in Fig.3. The samples are aged isothermally at 200°C for various time intervals from 0.5 to 200 hours,followed by air cooling.Prior to aging,the initial hardness of the solution treated alloy is 64 Hv. During aging,a signifcant increase in hardness is observed up to 12 hours and then it decreases.At peak aging condition,the hardness value is observed as 87 Hv.

    Table 2Chemical composition of the ST QE22 alloy and eutectic phase.

    Fig.2.Effect of aging temperature on hardness of the ST QE22 alloy for 1 hour of aging duration.

    Fig.3.Age hardening behavior of the ST QE22 alloy at 200°C:(A)solution treated(ST);(B)under aging(UA);(C)peak aging(PA);(D)over aging(OA) condition.

    Faster increase in hardness and smaller time to peak(about 12 h)is observed in the present alloy which seems to be a potential material for industrial application.After obtaining the peak hardness at 12 hours,the prolonged aging leads to only a slight reduction in hardness.Moreover,the alloy aged at 200°C shows a broad width of stable hardness for a long duration from 12 to 200 h with an average micro hardness not less than 74 Hv. From the age hardening plot,four aging conditions at aging times of 0 h,0.5 h,12 h and 200 h are selected which corresponds solution treated(ST),under aged(UA),peak aged(PA) and over aged(OA)treatments respectively.The ST samples are subjected to the above mentioned treatments to obtain UA,PA and OA samples.The post microstructural analysis and mechanical properties were evaluated in the age hardened samples to understand the mechanism of age hardening behavior of the present alloy.

    Fig.4 shows the XRD results of ST,UA,PA and OA samples.In all the samples α-Mg and Mg12Nd peaks are detected.A ternary precipitate phase of Mg12Nd2Ag is observed in PA and OA samples.This ternary phase is not observed in XRD plots of ST and UA samples.During high temperature solution treatment and quenching,Nd and Ag solutes might have dissolved in Mg matrix and retained in metastable state. Upon heat treating the ST samples to PA and OA treatment, precipitation of Mg12Nd2Ag phase occurred which is responsible for increase in hardness in both of the thermal treated samples than that of ST sample.

    Fig.4.XRD pattern of the QE22 alloy at different aging conditions:solution treated(ST);under aged(UA);peak aged(PA);over aged(OA).

    Fig.5 shows the microstructures of the ST,UA,PA and OA samples.The microstructure of the ST,UA and PA sample contains equiaxed grains with eutectic phase which is decorated along the grain boundaries.The SEM-EDAX result(Table 2) indicates that the observed eutectic phase is Mg-Ag-RE ternary phase.This result contradicts with XRD result of ST sample. The XRD result reveals that the ST material contains binary Mg12Nd eutectic phase.The possible reason may be due to similar size of atomic radius between magnesium (rMg: 0.162 nm)and silver atoms(rAg:0.144 nm).Due to this reason, the atoms of silver can replace the atoms of magnesium without disturbing the crystal structure of intermetallic eutectic phase [10,11].Therefore,the possible eutectic phase which is decorated along the grain boundaries of the all the four thermal treated samples may be of binary Mg12Nd phase.The average grain sizes of all the three thermal treated(ST,UA and PA) samples are almost similar and lie in the range of 50±3μm. The higher thermal stability of UA and PA samples is due to the presence of eutectic phase along the grain boundaries which provides pinning action on the grain boundaries leading to suppression of grain growth.Signifcant grain growth is observed in OA sample(74μm).The eutectic phase which was observed along the grain boundaries of ST,UA,PA samples is not observed in OA sample.Therefore,the occurrence of grain growth in OA sample is due to dissolution of the eutectic phase which is responsible for retardation of grain growth in UA and PA states.The presence of twins is also observed in all the thermal treated samples.The order of twin fraction in allthe fourthermaltreated samples is as follows: ST>UA>PA>OA.In ST sample,the cast as-received material is solution treated at 525°C for 8 hours followed by cold water quenching.Due to rapid quenching from high temperature,internal stresses developed in the material whichresulted in formation of deformation or mechanical twins in ST material.Mechanical twins are often observed in magnesium alloys because of HCP crystal structure due to non-availability of suffcient independent slip systems in order to satisfy the Von-Mises criterion[7].However,mechanical twins are not thermally stable[14]and hence the levels of twins have reduced with respect to different aging conditions(UA,PA and OA).

    Fig.5.Microstructures of QE22 alloy at different aging conditions:(A)solution treated(ST);(B)under aged(UA);(C)peak aged(PA);(D)over aged(OA);(twins are indicated with arrow heads and circle).

    To know the precipitate evolution during aging,TEM analysis was carried out on UA,PA and OA samples and shown in Fig.6.TEM analysis of UA sample reveals the presence of fne spherical nano precipitates uniformly distributed inside and along the grains with an average size of 5 nm.These nano precipitates are most likely Guinier–Preston(GP)zones[12]. The TEM observation of PA sample shows the presence of uniformly distributed fne hexagonal/spherical precipitates with size ranging from 20 to 40 nm and few elongated precipitates. The hexagonal/spherical and elongated particles are β′phase and λ phase precipitates respectively[8,9].In case of OA sample,coarse particles are observed in TEM micrograph with dimensions in the range of 30–100 nm.These coarse particles are stable β phase precipitates which are having high thermal stability.Based on TEM analysis and existing literature [2–9,11],the precipitation evolution sequence in ST,UA,PA and OA samples can be concluded as follows:

    In summary,the solutes are dissolved in solid solution and retained as super saturated solid solution during ST.In UA state,evolution of GP zone occurs.At PA state these GP zones dissolve and evolution of a bimodal precipitation state consisting of β′and λ phases occurs.On further aging up to OA condition,the λ phase precipitates dissolve completely and β′phase precipitates transform to stable β precipitates.

    Fig.6.Transmission electron microscopy of the QE22 at different aging conditions:(A)under aged(UA);(B)peak aged(PA);(C)over aged(OA).

    The increasing trend of age hardening curve(64–87 Hv)up to 12 hours is due to the presence of coherent GP zones and transformation of GP zones to semi coherent β′and coherent λ phase precipitates.After reaching peak aging condition,the hardness decreases from 87 Hv to 80 Hv at 50 hours and then almost saturates until 200 hours.The decrease in hardness at OA state is due to over aging effect because of the presence of incoherent stable β phase precipitates.

    3.3.Tensile properties

    The tensile properties(ultimate tensile strength(UTS),yield strength(YS)and elongation(?))of QE22 alloy in ST,UA,PA and OA conditions are presented in Fig.7 and Table 3.

    Fig.7.Tensile properties(engineering stress vs.engineering strain)of QE22 alloy at different aging conditions.

    Three important observations can be seen from Fig.7 and Table 3 with respect to the strength and hardness properties in all the four thermal treated samples.First,the order of strength (both YS and UTS)improvement is PA>OA>UA>ST.The yield strength(YS),ultimate tensile strength(UTS)of the solution treated and peak aged QE22 alloy at room temperature are 80 MPa,222 MPa and 199 MPa,274 MPa respectively.The signifcant improvement ofYS and UTS of PA sample as compared to ST sample is due to the presence of semi-coherent/ coherent β′and λ precipitate.The mechanical properties of UA,PA and OA samples are also observed as almost similar. The range of average YS,UTS and elongation(%)of UA, PA and OA is 195±5 MPa,263±10 MPa and 13±1% respectively.

    The fractography analysis was carried on tensile fractured cross sections of ST,UA,PA and OA samples using scanning electron microscopy(SEM)and optical microscopy(OM)to study the failure analysis.Fig.8 shows the optical microstructures of a tensile fractured surface of solution treated and thermal treated samples.In all the thermal treated samples except PA and OA conditions,the mode of failure was observed as transgranular(Fig.8A and B).However,in the case of PA and OA treated samples,mixed mode of failure(transgranular and intergranular)was observed(Fig.8C and D).This is due to the decorative action of eutectics and precipitates along the grain boundary.

    The secondary electron(SE)micrographs of the fracture surfaces of the tensile specimens of QE22 alloy under variousconditions are shown in Fig.9.Twin boundary fracture is observed in all the processed(ST,UA,PA and OA)samples. Twinning is an important deformation mode in most of the HCP materials[3].In solution treated sample,the fracture surfaces are mainly composed of ductile transgranular cleavage planes and tear ridges(Fig.9A).The microstructure of the ST sample (Fig.1)shows the presence of round shaped Mg12Nd eutectics along the grain boundaries and grain interiors.The XRD result shows the absence of ternary Mg12Nd2Ag precipitates.Therefore,only Mg12Nd hard eutectic particles might have acted as crack nucleation points during tensile testing.Since the Mg12Nd eutectic particles are distributed at the grain interior and grain boundaries,the cracks might have initiated both at grain interiors and grain boundaries and propagated/traveled mainly transgranularly.Therefore,lots of cleavage planes are left on the fracture surface of ST samples which resulted high ductility (elongation:30%).The nature of fracture mode of all the three age hardened samples(UA,PA and OA)is different than that of ST sample.The ductility of all the three aged samples is also lower than that of ST sample.In UA sample,the fracture surface is characterized mainly by cleavage planes and twin boundary fracture,as shown in Fig.9B.A mixed pattern of transgranular,intergranular,cleavage planes and twin boundary fracture is observed in both PA and OA samples.

    Table 3Hardness and tensile properties of QE22 alloy.

    Fig.8.Optical micrographs on tensile fracture surfaces of QE22 alloy at different aging conditions:(A)solution treated(ST);(B)under aged(UA);(C)peak aged (PA);(D)over aged(OA).

    Fig.9.Scanning electron microscopy of fracture surfaces after tensile testing of QE22 alloy at different aging conditions:(A)solution treated(ST);(B)under aged (UA);(C)peak aged(PA);(D)over aged(OA).

    The precipitation sequence in the present QE22 alloy during aging is observed as SS α-Mg→GP zones→β′+λ→β[2,9].When the ST samples are subjected to precipitation hardening treatment,the intermediate precipitates are formed along the grain boundaries and grain interiors.As the age hardening time increases,the grain boundary precipitates become coarse and denser which has a tendency to reduce cohesive strength of the grain boundaries.This may result in favorable path for crack propagation.The UA sample has GP zones with 5 nm size which is uniformly distributed along the grains and grain interiors(Fig.6A).The strength of these tiny particles is not enough to reduce the cohesive strength of grain boundaries and resulted in cleavage transgranular fracture in UA sample.As the aging time increases to obtain PA treatment,the GP zones are transformed to semi coherent β′and coherent λ phase precipitates and distributed along grain boundaries and grain interiors [4–6].The density and shape of both types of precipitates along grain boundaries may be probably suffcient to reduce the grain boundary cohesive strength which resulted in intergranular fracture.The presence of precipitates at grain interiors and twins are responsible for transgranular failure.The grain boundary eutectic particles will be further responsible for both transgranular and intergranular failure.Therefore a mixed mode of transgranular and intergranular failure is observed in PA sample.Similar observation of failure mode as like PA sample is also observed in OA sample.A schematic diagram is shown in Fig.10 which illustrates the failure mechanism of ST, UA,PA and OA samples.

    A signifcant growth of grain size(GS of ST,UA and PA samples 50±3μm;GS of OA sample–74μm)and coarsening of precipitates(30–100 nm)are observed in OA sample(Fig. 6C).In spite of higher grain size and coarse precipitate,the ductility of OA sample is low.The possible reason is due to the presence of stableβphase particles with high density[4–6].

    Fig.10.Schematic diagrams showing the location of crack nucleation and propagation of QE22 alloy in different aging condition:(A)solution treated(ST);(B) under aged(UA);(C)peak aged(PA);(D)over aged(OA).

    4.Conclusions

    The microstructure,mechanical properties and fracture behavior of as-receivedMg-Ag-RE alloy(QE22)in different thermal conditions are analyzed and the following conclusions are made.

    (1)The solution treated(ST),under aged(UA)and peak aged(PA)samples show high thermal stability with stable grain size in the range of 50±3μm.The possible cause for high thermal stability is due to the presence of Mg12Nd eutectics along the grain boundaries.Signifcant grain growth is observed in over aged(OA)samples (74μm).During over aging,the eutectics as decorated along the grain boundary have been dissolved in the matrix which leads to grain growth.

    (2)As compared to ST sample,the PA sample shows signifcant improvement of yield strength(YS)from 80 MPa to 222 MPa and ultimate tensile strength(UTS)from 199 MPa to 274 MPa.These improved mechanical properties are mainly associated with the metastable λ and β′precipitates of Mg12Nd2Ag phase.

    (3)A signifcant reduction in ductility is observed in aged samples(UA:14%,PA:13%and OA:12%)as compared to ST samples(30%).The reduction in ductility is due to the appearance of coherent precipitates of GP zones in UA sample,mixture of semi-coherent/coherent β′and λ precipitates in PA sample and incoherent stableβprecipitates in OA samples.

    (4)The mode of failure of ST and UA samples was observed as transgranular.However,in the case of PA and OA samples,a mixed mode of failure(transgranular and intergranular)was observed.This is due to the presence of Mg12Nd eutectics along the grain boundaries and incoherent Mg12Nd2Ag precipitates at grain interior and the grain boundaries.

    [1]J.Kiehn,B.Smola,P.Vostry,I.Stulikova,K.U.Kainer,Phys.Stat.Sol. (A)164(1997)709–723.

    [2]J.F.Nie,Metallurg.Mater.Trans.A 43(11)(2012)3891–3939.

    [3]S.K.Panigrahi,W.Yuan,R.S.Mishra,R.DeLorme,B.Davis,K.Cho, Mater.Sci.Eng.A 530(2011)28–35.

    [4]L.Gao,R.Chen,E.Han,Trans.Nonfer.Met.Soc.China 20(7)(2010) 1217–1221.

    [5]F.Penghuai,P.Liming,J.Haiyan,Z.Zhenyan,Z.Chunquan,Mater.Sci. Eng.A 486(1–2)(2008)572–579.

    [6]Q.Peng,H.Dong,Y.Wu,L.Wang,J.Alloys Comp.456(2008)395–399.

    [7]S.K.Panigrahi,K.Kumar,N.Kumar,W.Yuan,R.S.Mishra,R.DeLorme, et al.,Mater.Sci.Eng.A 549(2012)123–127.

    [8]G.Barucca,R.Ferragut,D.Lussana,P.Mengucci,F.Moia,G.Riontino, Acta Mater.57(15)(2009)4416–4425.

    [9]B.L.Mordike,Mater.Sci.Eng.A 324(2002)103–112.

    [10]A.Kie?bus,J.Achievem.Mater.Manufact.Eng.18(1)(2006)131–134.

    [11]R.Ciach,A.Rakowska,M.Socjusz-podosek,L.Lityn,Mikrochim.Acta 149(2002)145–149.

    [12]O.A.Lambri,W.Riehemann,Script.Mater.52(2)(2005)93–97.

    [13]I.J.Polmear,Mater.Trans.37(1)(1996)12–31.

    [14]H.Carpenter,S.Tamara,Proc.R.Soc.Lond.A Math.Phys.Sci.113 (1926)161.

    Received 7 March 2015;revised 16 August 2015;accepted 25 August 2015 Available online 28 September 2015

    *Corresponding author.Department of Mechanical Engineering,Indian Institute ofTechnology Madras,Chennai 600036,India.Tel.:+91 44 22574742; fax:+91 44 22574652.

    E-mail address:skpanigrahi@iitm.ac.in(S.K.Panigrahi).

    http://dx.doi.org/10.1016/j.jma.2015.08.002

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    aaaaa片日本免费| 国产精品久久久av美女十八| 国产精品九九99| 色精品久久人妻99蜜桃| 色尼玛亚洲综合影院| 日韩大尺度精品在线看网址 | 777久久人妻少妇嫩草av网站| 久久欧美精品欧美久久欧美| 成人免费观看视频高清| 国产成人av教育| 91大片在线观看| 女性被躁到高潮视频| 免费看a级黄色片| 18禁国产床啪视频网站| 大型av网站在线播放| 女人精品久久久久毛片| 一区二区三区国产精品乱码| 久久久久久人人人人人| 国产精品日韩av在线免费观看 | 国产精品一区二区免费欧美| 国产亚洲精品久久久久久毛片| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 久久久国产成人精品二区 | 69av精品久久久久久| 国产区一区二久久| 99国产精品一区二区三区| 国产精品影院久久| 免费观看人在逋| 亚洲人成伊人成综合网2020| 欧美乱码精品一区二区三区| 欧美av亚洲av综合av国产av| 午夜亚洲福利在线播放| av网站在线播放免费| 久久精品亚洲精品国产色婷小说| 久久国产乱子伦精品免费另类| 国产精品爽爽va在线观看网站 | 亚洲av日韩精品久久久久久密| 青草久久国产| 久久青草综合色| 热re99久久精品国产66热6| 岛国视频午夜一区免费看| 这个男人来自地球电影免费观看| 久久久久精品国产欧美久久久| 手机成人av网站| 精品国产一区二区三区四区第35| 久久亚洲真实| 久久午夜综合久久蜜桃| 身体一侧抽搐| 午夜福利在线免费观看网站| 中文字幕色久视频| 欧美日韩精品网址| 国产精品国产av在线观看| 夜夜爽天天搞| 国产高清国产精品国产三级| 成人特级黄色片久久久久久久| 欧美激情 高清一区二区三区| 国产黄色免费在线视频| 9色porny在线观看| 老熟妇仑乱视频hdxx| 老汉色av国产亚洲站长工具| 人人妻人人澡人人看| 丁香六月欧美| www.自偷自拍.com| 午夜亚洲福利在线播放| 欧美中文日本在线观看视频| 9热在线视频观看99| 国产不卡一卡二| 国产成人精品久久二区二区91| 精品午夜福利视频在线观看一区| 国产精品1区2区在线观看.| 男女下面进入的视频免费午夜 | av欧美777| 人成视频在线观看免费观看| 国产人伦9x9x在线观看| 欧美一区二区精品小视频在线| 国产亚洲欧美在线一区二区| 亚洲免费av在线视频| 一本综合久久免费| 巨乳人妻的诱惑在线观看| а√天堂www在线а√下载| 亚洲第一欧美日韩一区二区三区| 精品福利观看| 国产成年人精品一区二区 | 新久久久久国产一级毛片| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲人成77777在线视频| 国产麻豆69| netflix在线观看网站| 最好的美女福利视频网| 国产成年人精品一区二区 | 不卡av一区二区三区| 激情视频va一区二区三区| 午夜福利欧美成人| 久久中文字幕人妻熟女| 超色免费av| 精品一区二区三区四区五区乱码| 亚洲男人的天堂狠狠| 99国产精品一区二区三区| av欧美777| 丝袜人妻中文字幕| 久久 成人 亚洲| 精品久久久久久电影网| 香蕉久久夜色| 日本 av在线| 色精品久久人妻99蜜桃| 一级毛片女人18水好多| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 男女高潮啪啪啪动态图| 精品一区二区三区视频在线观看免费 | 亚洲国产精品一区二区三区在线| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费 | 夜夜爽天天搞| 一级毛片精品| 美女午夜性视频免费| 老鸭窝网址在线观看| 久久国产精品人妻蜜桃| 亚洲 国产 在线| 午夜福利在线免费观看网站| 婷婷丁香在线五月| 黑人巨大精品欧美一区二区mp4| 99国产精品免费福利视频| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 免费av毛片视频| 欧美乱妇无乱码| 99国产精品99久久久久| 精品国产一区二区三区四区第35| 久久香蕉激情| 欧美日韩国产mv在线观看视频| 动漫黄色视频在线观看| 久久久国产欧美日韩av| 欧美日本中文国产一区发布| 日韩av在线大香蕉| 欧美日韩福利视频一区二区| 欧美另类亚洲清纯唯美| 免费观看精品视频网站| 女性被躁到高潮视频| 亚洲精品在线观看二区| 欧美日本中文国产一区发布| 亚洲人成电影观看| 国产97色在线日韩免费| 久久青草综合色| 亚洲专区国产一区二区| 亚洲欧美日韩无卡精品| 国产午夜精品久久久久久| 亚洲精华国产精华精| 性欧美人与动物交配| 国产精品野战在线观看 | 最近最新免费中文字幕在线| 首页视频小说图片口味搜索| 91精品国产国语对白视频| 亚洲中文字幕日韩| 久久狼人影院| videosex国产| 在线观看日韩欧美| xxxhd国产人妻xxx| 美女午夜性视频免费| a在线观看视频网站| 99精品在免费线老司机午夜| 欧美黑人精品巨大| 麻豆国产av国片精品| 亚洲av成人一区二区三| 国产免费av片在线观看野外av| 一区在线观看完整版| netflix在线观看网站| 精品一品国产午夜福利视频| 在线观看免费午夜福利视频| 少妇 在线观看| 国产一区二区三区综合在线观看| 成人三级做爰电影| 日韩精品青青久久久久久| 日本a在线网址| 中文字幕最新亚洲高清| www.自偷自拍.com| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 久久久水蜜桃国产精品网| 亚洲成a人片在线一区二区| 9热在线视频观看99| 亚洲熟妇熟女久久| 欧美一级毛片孕妇| 成人特级黄色片久久久久久久| 国产一区二区三区在线臀色熟女 | 国产成年人精品一区二区 | 国产一卡二卡三卡精品| 精品欧美一区二区三区在线| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 在线观看免费高清a一片| 在线观看一区二区三区| 国产成人一区二区三区免费视频网站| 日韩中文字幕欧美一区二区| 91成年电影在线观看| 色综合欧美亚洲国产小说| 丰满饥渴人妻一区二区三| 国产一区二区三区在线臀色熟女 | 亚洲精品国产精品久久久不卡| 女人被狂操c到高潮| 亚洲欧美日韩另类电影网站| 免费观看人在逋| 黑人欧美特级aaaaaa片| 国产一区在线观看成人免费| 人人妻人人澡人人看| 777久久人妻少妇嫩草av网站| 国产三级黄色录像| 国产高清国产精品国产三级| 国产一区在线观看成人免费| 日本vs欧美在线观看视频| 国产精品1区2区在线观看.| 成人免费观看视频高清| 人人澡人人妻人| 久久人人精品亚洲av| 久久精品亚洲av国产电影网| 女性被躁到高潮视频| 亚洲熟妇熟女久久| 成人18禁高潮啪啪吃奶动态图| 神马国产精品三级电影在线观看 | 国产深夜福利视频在线观看| 大香蕉久久成人网| 757午夜福利合集在线观看| 欧美黑人欧美精品刺激| 亚洲国产中文字幕在线视频| 久久久国产欧美日韩av| 国产成人av教育| 一级黄色大片毛片| 性色av乱码一区二区三区2| 国产精品一区二区免费欧美| 久热这里只有精品99| 操出白浆在线播放| 午夜两性在线视频| 母亲3免费完整高清在线观看| 亚洲 欧美一区二区三区| 精品一区二区三卡| 人人妻人人澡人人看| 侵犯人妻中文字幕一二三四区| 成人亚洲精品一区在线观看| 91老司机精品| av视频免费观看在线观看| 午夜老司机福利片| av免费在线观看网站| 成人亚洲精品一区在线观看| 亚洲在线自拍视频| 免费搜索国产男女视频| 看免费av毛片| 日韩欧美三级三区| 大码成人一级视频| 女人被躁到高潮嗷嗷叫费观| 日韩大码丰满熟妇| 亚洲一区中文字幕在线| 亚洲九九香蕉| 亚洲av成人一区二区三| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 80岁老熟妇乱子伦牲交| 大码成人一级视频| 嫩草影视91久久| 又大又爽又粗| 国产精品国产高清国产av| 视频区欧美日本亚洲| 成人18禁高潮啪啪吃奶动态图| 美女大奶头视频| 久久香蕉激情| 亚洲精品国产区一区二| 久久久久国内视频| 亚洲午夜精品一区,二区,三区| 成人免费观看视频高清| 日日夜夜操网爽| 婷婷六月久久综合丁香| 18禁黄网站禁片午夜丰满| 国产精品亚洲一级av第二区| 欧美在线一区亚洲| 色综合婷婷激情| 亚洲精品一二三| 精品欧美一区二区三区在线| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 亚洲人成网站在线播放欧美日韩| 精品福利永久在线观看| 欧美日韩瑟瑟在线播放| 欧美日韩亚洲综合一区二区三区_| 脱女人内裤的视频| 91精品三级在线观看| 丰满人妻熟妇乱又伦精品不卡| 天天躁狠狠躁夜夜躁狠狠躁| 久久亚洲真实| 亚洲av片天天在线观看| 国产黄a三级三级三级人| 免费久久久久久久精品成人欧美视频| 巨乳人妻的诱惑在线观看| 精品国产一区二区久久| 91字幕亚洲| 亚洲五月婷婷丁香| 在线观看66精品国产| 精品国产乱码久久久久久男人| 免费一级毛片在线播放高清视频 | 香蕉国产在线看| 亚洲av五月六月丁香网| 亚洲av第一区精品v没综合| 在线国产一区二区在线| 欧美激情极品国产一区二区三区| 亚洲在线自拍视频| 人人妻人人爽人人添夜夜欢视频| 国产人伦9x9x在线观看| 亚洲激情在线av| 亚洲国产中文字幕在线视频| 欧美av亚洲av综合av国产av| 国产亚洲欧美98| 女人被躁到高潮嗷嗷叫费观| 别揉我奶头~嗯~啊~动态视频| 国产亚洲av高清不卡| 亚洲精品中文字幕一二三四区| 91在线观看av| 精品久久久久久久毛片微露脸| 夜夜躁狠狠躁天天躁| 国产蜜桃级精品一区二区三区| 婷婷丁香在线五月| 99re在线观看精品视频| 少妇的丰满在线观看| av中文乱码字幕在线| bbb黄色大片| 超碰97精品在线观看| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 日韩av在线大香蕉| 亚洲一区中文字幕在线| 精品福利永久在线观看| 色婷婷久久久亚洲欧美| 亚洲欧美一区二区三区黑人| 岛国在线观看网站| 91av网站免费观看| 亚洲va日本ⅴa欧美va伊人久久| 淫秽高清视频在线观看| 精品高清国产在线一区| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 女性被躁到高潮视频| 免费观看人在逋| 亚洲欧美一区二区三区久久| 天天添夜夜摸| 欧美日韩国产mv在线观看视频| 女性生殖器流出的白浆| 看黄色毛片网站| 十八禁网站免费在线| 91大片在线观看| 他把我摸到了高潮在线观看| 法律面前人人平等表现在哪些方面| 国产xxxxx性猛交| 欧美丝袜亚洲另类 | 淫秽高清视频在线观看| 黑人操中国人逼视频| 国产亚洲欧美在线一区二区| 亚洲国产欧美网| 美女高潮到喷水免费观看| 亚洲精品久久午夜乱码| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| a级片在线免费高清观看视频| 色尼玛亚洲综合影院| 日韩欧美一区视频在线观看| 欧美成人免费av一区二区三区| 久久久国产欧美日韩av| 精品日产1卡2卡| 在线观看一区二区三区激情| 亚洲男人的天堂狠狠| 日韩精品免费视频一区二区三区| 国产精品久久电影中文字幕| 久久天堂一区二区三区四区| 国产成人av激情在线播放| 国产精品免费一区二区三区在线| 精品国产乱子伦一区二区三区| 精品乱码久久久久久99久播| 免费观看精品视频网站| 视频区欧美日本亚洲| 美女福利国产在线| 精品久久久久久久毛片微露脸| 亚洲av成人一区二区三| 日本免费a在线| 不卡av一区二区三区| 狠狠狠狠99中文字幕| 欧美 亚洲 国产 日韩一| 香蕉丝袜av| 亚洲一区二区三区不卡视频| 一夜夜www| 岛国在线观看网站| 久久精品成人免费网站| 超碰97精品在线观看| 国产欧美日韩一区二区精品| 国产欧美日韩一区二区三区在线| 亚洲欧美激情综合另类| 日本欧美视频一区| 欧美另类亚洲清纯唯美| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 美女高潮到喷水免费观看| 久久久久久久久中文| 国产精品爽爽va在线观看网站 | 亚洲成国产人片在线观看| 午夜影院日韩av| 亚洲第一欧美日韩一区二区三区| 精品人妻在线不人妻| 多毛熟女@视频| 久热这里只有精品99| 天堂影院成人在线观看| 国产一区二区三区综合在线观看| 亚洲午夜理论影院| 最近最新中文字幕大全免费视频| 水蜜桃什么品种好| 一区二区三区精品91| 老汉色∧v一级毛片| 别揉我奶头~嗯~啊~动态视频| 好男人电影高清在线观看| 99久久精品国产亚洲精品| 欧美av亚洲av综合av国产av| 精品无人区乱码1区二区| 变态另类成人亚洲欧美熟女 | 一边摸一边抽搐一进一小说| 国产伦一二天堂av在线观看| 亚洲美女黄片视频| 中亚洲国语对白在线视频| 高清欧美精品videossex| 亚洲精品粉嫩美女一区| 欧美大码av| 免费少妇av软件| 日本一区二区免费在线视频| 动漫黄色视频在线观看| 亚洲国产欧美一区二区综合| 色播在线永久视频| 日韩三级视频一区二区三区| 国产精品久久电影中文字幕| 日韩欧美一区二区三区在线观看| 人妻丰满熟妇av一区二区三区| 美女高潮到喷水免费观看| 在线观看舔阴道视频| 高清黄色对白视频在线免费看| 成年版毛片免费区| 在线观看免费日韩欧美大片| 成人手机av| 国产无遮挡羞羞视频在线观看| 操出白浆在线播放| 美女大奶头视频| 国产精品 欧美亚洲| 美女高潮喷水抽搐中文字幕| 看片在线看免费视频| 大陆偷拍与自拍| a级毛片黄视频| 最近最新免费中文字幕在线| 99久久久亚洲精品蜜臀av| 精品国产一区二区久久| 亚洲国产看品久久| 精品一区二区三区av网在线观看| 成人免费观看视频高清| 岛国在线观看网站| 中文欧美无线码| 三上悠亚av全集在线观看| 久99久视频精品免费| 日本黄色视频三级网站网址| 免费搜索国产男女视频| 搡老熟女国产l中国老女人| 欧美黄色片欧美黄色片| 一级片'在线观看视频| 色在线成人网| aaaaa片日本免费| 久久人人97超碰香蕉20202| 在线观看免费日韩欧美大片| 变态另类成人亚洲欧美熟女 | 最近最新免费中文字幕在线| 亚洲午夜精品一区,二区,三区| 亚洲欧美一区二区三区黑人| 亚洲自偷自拍图片 自拍| 中文字幕人妻丝袜制服| 丝袜美足系列| 天堂√8在线中文| 国产又色又爽无遮挡免费看| 夜夜夜夜夜久久久久| 女人高潮潮喷娇喘18禁视频| 国产成人一区二区三区免费视频网站| 亚洲成人免费电影在线观看| 香蕉丝袜av| 精品国内亚洲2022精品成人| 日韩欧美一区视频在线观看| 国产精品永久免费网站| 久久精品国产亚洲av香蕉五月| 美女扒开内裤让男人捅视频| 男女做爰动态图高潮gif福利片 | 99riav亚洲国产免费| 曰老女人黄片| 欧美激情高清一区二区三区| 国产亚洲精品综合一区在线观看 | 国产精品成人在线| 咕卡用的链子| 一二三四社区在线视频社区8| 最新美女视频免费是黄的| 亚洲片人在线观看| 亚洲欧美精品综合久久99| 日韩成人在线观看一区二区三区| 99久久精品国产亚洲精品| 新久久久久国产一级毛片| 亚洲成a人片在线一区二区| 婷婷精品国产亚洲av在线| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 欧美日韩一级在线毛片| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 999久久久精品免费观看国产| 中文欧美无线码| 欧美日韩黄片免| 欧美色视频一区免费| 色哟哟哟哟哟哟| tocl精华| 亚洲一区二区三区色噜噜 | 黄色a级毛片大全视频| 男女床上黄色一级片免费看| 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| av天堂在线播放| 别揉我奶头~嗯~啊~动态视频| 国产精品影院久久| 欧美黄色淫秽网站| 精品一品国产午夜福利视频| 狂野欧美激情性xxxx| 免费在线观看影片大全网站| 欧美成狂野欧美在线观看| 国产99白浆流出| 久9热在线精品视频| 一进一出抽搐gif免费好疼 | 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 久久香蕉精品热| 国产精品偷伦视频观看了| 999精品在线视频| 国产精品美女特级片免费视频播放器 | 国产欧美日韩综合在线一区二区| 久久人人97超碰香蕉20202| 性少妇av在线| 精品久久久久久,| 成人三级做爰电影| 男女做爰动态图高潮gif福利片 | 色综合欧美亚洲国产小说| 免费高清视频大片| 激情在线观看视频在线高清| 18美女黄网站色大片免费观看| 亚洲三区欧美一区| 一级作爱视频免费观看| 人人妻,人人澡人人爽秒播| 日韩一卡2卡3卡4卡2021年| 搡老岳熟女国产| 久久青草综合色| 人成视频在线观看免费观看| 好男人电影高清在线观看| 色尼玛亚洲综合影院| 久久久精品欧美日韩精品| 变态另类成人亚洲欧美熟女 | 中文字幕精品免费在线观看视频| 制服诱惑二区| 国产精品香港三级国产av潘金莲| 一区二区三区国产精品乱码| www.www免费av| 精品久久久久久,| 怎么达到女性高潮| 久久亚洲真实| av中文乱码字幕在线| 国产在线精品亚洲第一网站| 在线看a的网站| 少妇粗大呻吟视频| 多毛熟女@视频| 亚洲性夜色夜夜综合| 亚洲精品在线美女| 高清av免费在线| 一个人免费在线观看的高清视频| 精品少妇一区二区三区视频日本电影| 国产极品粉嫩免费观看在线| 色在线成人网| 欧美日韩视频精品一区| aaaaa片日本免费| 一区福利在线观看| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 两个人看的免费小视频| 久久香蕉国产精品| www日本在线高清视频| 高清毛片免费观看视频网站 | 在线播放国产精品三级| 久久精品影院6| 成人永久免费在线观看视频| 久久人妻熟女aⅴ| 国产精品久久久久成人av| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 久久伊人香网站| 欧美日韩中文字幕国产精品一区二区三区 | 性欧美人与动物交配| 精品乱码久久久久久99久播| 欧美乱码精品一区二区三区| 国产黄色免费在线视频| 久久久久亚洲av毛片大全| 久久久久精品国产欧美久久久| 午夜福利免费观看在线| 亚洲av五月六月丁香网| 免费在线观看黄色视频的| 亚洲片人在线观看| 日日夜夜操网爽| 亚洲九九香蕉| 在线观看免费视频日本深夜| 成人手机av| 好男人电影高清在线观看| 免费久久久久久久精品成人欧美视频| 日韩三级视频一区二区三区| 国产精品国产高清国产av| 欧美人与性动交α欧美精品济南到| 欧美av亚洲av综合av国产av|