• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy

    2015-02-16 01:44:12FangChaiDatongZhangYuanyuanLi
    Journal of Magnesium and Alloys 2015年3期

    Fang Chai,Datong Zhang*,Yuanyuan Li

    National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials,School of Mechanical and Automotive Engineering,South China

    University of Technology,Guangzhou 510640,China

    Microstructures and tensile properties of submerged friction stir processed AZ91 magnesium alloy

    Fang Chai,Datong Zhang*,Yuanyuan Li

    National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials,School of Mechanical and Automotive Engineering,South China

    University of Technology,Guangzhou 510640,China

    6 mm thick AZ91 casting alloy plates were subjected to normal friction stir processing(NFSP,in air)and submerged friction stir processing (SFSP,under water),and microstructures and tensile properties of the experimental materials were investigated.After FSP,the coarse microstructures in the as-cast condition are replaced by fne and equiaxed grains and the network-like eutectic β-Mg17Al12phases disappear and are changed into particles pinned at the grain boundaries.SFSP results in further grain refnement in comparison with NFSP,and the average grain sizes of the NFSP and SFSP alloys are 8.4±1.3 and 2.8±0.8μm,respectively.XRD results reveal that the intensity of β-Mg17Al12diffraction peaks in the SFSP specimen decreases compared with NFSP.Due to signifcant grain refnement,the tensile strength and elongation of the SFSP AZ91 alloy are increased from 262 MPa and 18.9%for the NFSP material to 282 MPa and 25.4%,and the tensile strength(282 MPa)is nearly three times that of the BM(105 MPa).SFSP is an effective approach to refne the grain size and enhance the tensile properties of AZ91 casting alloy.

    Submerged friction stir processing;AZ91 magnesium alloy;Microstructure;Tensile properties

    1.Introduction

    Of all metallic materials,magnesium alloys have the lowest density and because of their excellent specifc properties,they have been widely employed in the automobile and aerospace industries to replace heavier materials[1–4].However,owing to the HCP crystal structure with limited number of independent slip system,both the formability and industrial application of magnesium alloys have been restricted to some extent.Fortunately,this can be solved by grain size refnement,which can improve the strength and ductility of magnesium alloys simultaneously.Some researches revealed that severe plastic deformation(SPD)such as equal-channel angular pressing(ECAP) [5,6]or accumulative roll bonding(ARB)[7],which can induce large-scale deformation during the process of magnesium alloys,has great grain refning capacity[8].Using this approach,materials with high strength and high ductility can be prepared,especially with excellent superplasticity.As a novel SPD technique,friction stir processing(FSP)gains high attention among researchers due to its energy effciency,environment friendless and versatility[9].Recently researches on FSP of magnesium alloys mainly focus on preparation of fnegrained materials,grain refnement mechanism,and properties of fne-grained materials[10–13];according to these different parameters of FSP,the average grain size of magnesium alloys varies in a range of 4–15μm.However,thermal accumulation applied on the samples may result in the growth of the grains and reduction of mechanical properties.Apparently,it is possible to prepare much fner-grained materials with improved strength through combining FSP technique with rapid cooling.

    Aimed at preparing a much fner-grained material,submerged friction stir processing(SFSP)comes up as a new variation to FSP,which means that the entire processing plate is carried out underwater.For the convenience of statement,FSP performed in air is defned as normal FSP(NFSP).Tokisue et al.were the frst to use SFSP,and their result showed that it is possible to joinAl-6061 submerged[14].At present there are only a few reports about SFSP,and all those researches showed that SFSP has great potential in the preparation of fner-grained materials[15,16].However,most of the researches on SFSP are confned to aluminum alloys,and SFSP of magnesium alloys has been rarely reported until now.

    Fig.1.Macroscopic features of the FSP AZ91 alloy:top surface of(a)NFSP and(b)SFSP;cross-section of(c)NFSP and(d)SFSP.

    In this study,6 mm thick cast AZ91 magnesium alloy plates were subjected to NFSP and SFSP,and the microstructure and tensile properties of the experimental materials were examined and compared.

    2.Experimental methods

    AZ91 magnesium alloy plates with a thickness of 6 mm were machined from the cast billets,and the main chemical composition of the plate is 9.08Al-0.60Zn-0.27Mn-0.014Si-0.002Fe-0.012Ce(wt.%).The plates were subjected to NFSP and SFSP at a rotation speed of 600 rpm and a traverse speed of 60 mm/min, respectively.The FSP experiments were carried out on FSW-3LM-003 welding machine with a 5.8 mm diameter,5 mm length cone-thread pin and a concave shoulder 16 mm in diameter.A tilting angle of 2.5°was used and the plunge depth of the shoulder was controlled at~0.2 mm.The SFSP experiment was conducted in a tank with the plates underwater,and the fow rate of water was 29 ml/s.

    The specimens used for microstructural examinations were cross sectioned perpendicular to the FSP direction.After being mechanically grinded and polished,the specimens were etched in a solution of 5 g picric acid,10 ml acetic acid,10 ml distilled water and 80 ml ethanol.The microstructures were observed by Keyence VHX-600 light microscopy,Leica DMI-500M horizontal metallurgical optical microscope(OM). Thin foils with a thickness of about 1 mm were prepared for transmission electron microscopy(TEM)specimens.After being mechanically ground to approximately 40μm,the foils were further ground to a thickness of 25μm by a Gatan-656 dimple grinder.Final thinning of the foils was performed by ion milling operated at 5 kV.TEM observation was carried out on a JEM-2200FS TEM operated at 200 kV.Tensile specimens with a gauge length of 5 mm,a width of 3.5 mm and a thickness of 1.5 mm were machined by electro-discharged machining parallel to the processing direction,with the gauge part consisting of the stir zone(SZ)only.Tensile tests were performed using a ShimadzuAG-X100kN computer-controlled universal testing machine at a strain rate of 1×10?3s?1.The tensile specimens at each processing condition were repeated fve times.The fracture surfaces of failed tensile specimens were examined by a Nova Nano 430 scanning electron microscopy (SEM).

    3.Results and discussion

    3.1.Macrostructure and microstructure of the experimental material

    Fig.1 shows the top surface and cross-section appearance of NFSP and SFSP AZ91 magnesium alloys.From the fgure, defect such as voids and cracks are not observed on the top surface and cross-section both for the NFSP and SFSP AZ91 specimen.However,comparing Fig.1a with b,the NFSP specimen creates excessive fash(shown by arrows),especially on the retreating side(RS),while the surface of the SFSP AZ91 specimen exhibits very smooth quality and particular rings without prominences or depressions.Furthermore,due to the high tool rotation speed,both the NFSP and SFSP AZ91 specimens show elliptical stir shape and onion-ring patterns can be seen clearly in the SZ(Fig.1c and d).Based on the microstructural characterization,four zones,i.e.base material(BM),heat affected zone(HAZ),thermo-mechanically affected zone (TMAZ)and stir zone(SZ)are identifed.For the two FSP specimens,the boundaries around SZ are much more distinct in the advancing side(AS)than RS.

    Fig.2 shows the optical images of as-cast,NFSP and SFSP AZ91 magnesium alloy.The alloy in the as-cast condition exhibits coarse and continuous eutectic network β-Mg17Al12phases in α-Mg dendrites(Fig.2a).The average grain size of magnesium grains is about 72±3μm.Due to dynamic recrystallization during FSP,the microstructures are greatly refned. The average grain size of the NFSP AZ91 alloy is about 8.4±1.3μm(Fig.2b).Compared with NFSP,SFSP results in further grain refnement,and the microstructures are more uniform.SFSP is similar to conducting FSP with immediate quench,in which the duration time at high temperature is very short for the newly-formed grains to grow.Through the lineintercept method,the average size of the SFSP AZ91 specimen is about 2.8±0.8μm(Fig.2c).Darras et al.also reported that more grain refnement was achieved under submerging condition,and they attributed it to two main factors:(1)submerging in water reduced the maximum temperature;(2)the time spent by the processed material above certain temperature was reduced[17].Moreover,the network β-Mg17Al12phases in the BM disappear after FSP.

    Fig.2.Microstructures of AZ91 magnesium alloys:(a)BM;(b)NFSP;(c)SFSP.

    Fig.3.Representative microstructures of the FSP magnesium alloys:SFSP of(a)SZ/TMAZ on theAS,(b)TMAZ and(c)HAZ;NFSP of(d)SZ/TMAZ on theAS, (e)TMAZ and(f)HAZ.

    Fig.4.Backscattered electron images of the AZ91 magnesium alloy showing particles:as-cast condition;(b)NFSP;(c)SFSP.

    Fig.3 shows the representative grained structures of the NFSP and SFSP specimens.From Fig.3a and d,it can be observed that the SZ and TMAZ have a sharp interface on the AS.The grains of theTMAZ are highly extruded and elongated for both NFSP and SFSP(Fig.3b and e).Compared with NFSP, SFSP results in much fner microstructures in the TMAZ.For HAZ,due to only experiencing processing thermal cycles without plastic deformation during FSP,both the NFSP and SFSP specimens exhibit similar grained microstructures with BM(Fig.3c and f).However,much fner grains are achieved under submerging in water due to the reducing heat accumulation of the cooling water.In addition,deformation twins can be observed in the HAZ(Fig.3c and f).

    3.2.Evolution of the second phases of the experimental material during FSP

    Fig.4 shows the backscattered electron images of as-cast, NFSP and SFSP AZ91 magnesium alloys.As for the as-cast condition,most of the β-Mg17Al12phases exist as network structures distributed at the grain boundary,while some β-Mg17Al12particles are distributed inside α-Mg grains (Fig.4a).Fig.4b and c shows the backscattered electron images of the NFSP and SFSP AZ91 magnesium alloys,respectively. The network β-Mg17Al12phases are changed into particles after FSP.It is considered that the morphology change of the β-Mg17Al12phases is mainly caused by dissolution,breaking-up and re-precipitation during FSP.Compared with the density of the β-Mg17Al12particles,NFSP results in much more volume fraction of β-Mg17Al12particles than SFSP.This is mainly due to the high cooling rate during SFSP which can hinder the re-precipitation.

    Fig.5.TEM images of the SFSP AZ91 magnesium alloy showing particles on the grain boundaries.

    Fig.6.XRD patterns of AZ91D magnesium alloy:(a)as-cast;(b)NFSP;(c) SFSP.

    Fig.5 shows the TEM image of the SFSP AZ91 magnesium alloy.Fine equiaxed grains are observed in the fgure due to dynamic recrystallization.It is widely accepted that low dislocation density can be observed in the recrystallized grains [18,19].However,in the present investigation,the interior of the recrystallization grains contains few dislocations.From Fig.5,it also can be seen that the continuous networks have disappeared and changed into particles.The particles pinning on the grain boundaries can be seen clearly which are shown by arrows.The particles have an ellipsoidal shape,with size ranging from 180 to 550 nm.Zhang et al.reported that the different sizes of the second phase played a different role in dynamic recrystallization[20].At the beginning of FSP,due to the large second phase,the high strain energy in the matrix provides preferential nucleated sites of dynamic recrystallization.When the second phases change into small particles,the particles can retard grain growth.Therefore,relatively fner grains are prepared in FSP in comparison with BM.

    Fig.6showstheXRDpatternsoftheAZ91magnesiumalloys, whichindicatethepresenceofα-Mgandβ-Mg17Al12phasesinthe BM,NFSP and SFSP specimens.After FSP,both the number and the intensity of β-Mg17Al12diffraction peaks decrease. Furthermore,the intensity of β-Mg17Al12diffraction peaks in SFSP AZ91 magnesium alloy is lower compared with the NFSP AZ91 alloy,suggesting the re-precipitation of β-Mg17Al12phases is retarded.This coincides with the results of Fig.4.

    3.3.Tensile properties of the experimental materials

    Fig.7a shows the strain–stress curves of the as-cast,NFSP and SFSP AZ91 magnesium alloys.Fig.7b summarizes the room-temperature tensile properties of cast and FSP AZ91 magnesium alloys.Due to the presence of the coarse eutectic β-Mg17Al12network at the grain boundaries,the as-cast AZ91 magnesium alloy exhibits lower yield and ultimate strengths(55 and 105 MPa)and elongation(15.2%).FSP results in a signifcant improvement in tensile strength.This is mainly attributed to the remarkable grain refnement and signifcant dissolution and breakup of theβ-Mg17Al12phases.First, the FSP results in much fner grain size than that of BM,and grain refnement plays an important role in material strengthening.Second,according to the Orowan hardening mechanism, the fne particles can reduce the possibility of crack under lower stress,thereby improving the strength of the FSP specimens. Moreover,compared with NFSP,the tensile strengths of the SFSP specimens are improved,with the yield strength and ultimate tensile strength from 132 and 262 MPa in the NFSP condition increasing to 151 and 282 MPa.It is worth noting that the ultimate tensile strength of the SFSP specimens is signifcantly improved,which is nearly three times that of BM.The tensile test results also indicate that FSP can enhance the ductility of AZ91 magnesium alloy.In NFSP the elongation is increased up to 18.9%,which is around 1.2 times the BM elongation.In addition,because much fner grains after SFSP can make the deformation more uniform,the elongation of the SFSP specimen(25.4%)is signifcantly improved.

    Fig.8a shows the fracture surface of the as-cast AZ91 magnesium alloy.Some small cleavage planes(shown by arrows) and tearing edges can be observed,indicating a typical characteristic of quasi-cleavage fracture.Fig.8b and d presents the fracture surfaces of NFSP and SFSP specimens at the edge, respectively.It can be found the surface of the SFSP specimen is much more fat.This suggests that the SFSP specimen possesses better ductility than the NFSP specimen.Both the fracture surfaces of the NFSP and SFSP specimens at the center exhibit a ductile small-sized dimples with fne particles(shown by arrows),indicating plastic deformation occurs during tensile test(Fig.8c and e).

    Fig.7.Tensile properties of the as-cast and FSP AZ91 magnesium alloys:(a)the strain-stress curves;(b)the histogram images

    Fig.8.Fracture surfaces of the AZ91 magnesium alloy:(a)BM;NFSP specimen at the(b)edge and(c)center;SFSP specimen at the(d)edge and(e)center.

    4.Conclusion

    This work presents experimental investigation of NFSP and SFSP forAZ91 magnesium alloy,respectively.Microstructures and mechanical properties of the two FSP specimens are investigated in detail.The results are concluded as follows:

    1 Compared with NFSP,SFSP has remarkable grain refnement effect.The average grain size of the NFSP and SFSP specimen is 8.4±1.3 and 2.8±0.8μm,respectively.Furthermore,the microstructures in theTMAZ and HAZ for the SFSP are much fner than those for the NFSP.

    2 After FSP,the coarse network β-Mg17Al12phases in the as-cast condition are changed into particles pinned on the grain boundaries.The volume fraction of the β-Mg17Al12particles in the SFSP specimen is much less than the NFSP specimen,suggesting the re-precipitation of β-Mg17Al12phases is retarded.

    3 The yield strength,tensile strength and elongation of SFSP AZ91 magnesium alloy with much fner-grained structure are much higher than those of as-cast and NFSP materials.

    Acknowledgement

    This work was sponsored by the Fundamental Research Funds for the Central Universities(No.2014ZG0028)and Research Fund for the Doctoral Program of Higher Education of China(No.20130172110044).

    [1]B.L.Mordike,T.Ebert,Mater.Des.302(2001)37.

    [2]J.A.DelValle,M.T.Pérez-Prado,O.A.Ruano,Metall.Mater.Trans.A 36 (2005)1427.

    [3]W.J.Kim,I.K.Moon,S.H.Han,Mater.Sci.Eng.A 538(2012)374.

    [4]K.Máthis,J.Gubicza,N.H.Nam,J.Alloys Compd.394(2005)194.

    [5]M.Mabuchi,H.Iwasaki,K.Yanase,K.Higashi,Scripta Mater.36(1997) 681.

    [6]H.Watanabe,T.Mukai,K.Ishikawa,K.Higashi,Scripta Mater.46(2002) 851.

    [7]M.T.Pérez-Prado,J.A.del Valle,O.A.Ruano,Scripta Mater.51(2004) 1093.

    [8]R.Z.Valiev,R.K.Islamgaliev,I.V.Alexandrov,Prog.Mater.Sci.45 (2000)103.

    [9]R.S.Mishra,Z.Y.Ma,Mater.Sci.Eng.R 50(2005)1.

    [10]A.F.Feng,Z.Y.Ma,Scripta Mater.56(2007)397.

    [11]P.Cavaliere,P.P.De Macro,J.Mater.Process.Technol.184(2007)77.

    [12]D.T.Zhang,S.X.Wang,C.Qiu,W.Zhang,Mater.Sci.Eng.A 556(2012) 100.

    [13]C.J.Chang,C.J.Lee,J.C.Huang,Scripta Mater.51(2004)509.

    [14]D.Sakurada,K.Katoh,H.Tokisue,Jpn.Inst.Light Met.52(2002)2.

    [15]J.Q.Su,T.W.Nelson,C.J.Sterling,Scripta Mater.52(2005)135.

    [16]D.C.Hofmann,K.S.Wecchio,Mater.Sci.Eng.A 402(2005)234.

    [17]B.Darras,E.Kishta,Mater.Des.47(2013)133.

    [18]C.G.Rhodes,M.W.Mahoney,W.H.Bingel,R.A.Spurling,C.C. Bampton,Scripta Mater.36(1997)69.

    [19]G.Liu,L.E.Murr,C.S.Niou,J.C.McClure,F.R.Vega,Scripta Mater.37 (1997)355.

    [20]D.T.Zhang,M.Suzuki,K.Maruyama,Scripta Mater.52(2005) 899.

    Received 17 September 2014;revised 11 August 2015;accepted 25 August 2015 Available online 28 September 2015

    *Corresponding author.Tel:+86 20 87112272;Fax:+86 20 87112111. National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials,School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,China.

    E-mail address:dtzhang@scut.edu.cn(Z.Datong).

    http://dx.doi.org/10.1016/j.jma.2015.08.001

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    美女被艹到高潮喷水动态| 在线天堂最新版资源| 国产日韩欧美在线精品| 欧美3d第一页| 国产视频首页在线观看| 国内少妇人妻偷人精品xxx网站| 国产伦在线观看视频一区| 99热精品在线国产| 国产成人一区二区在线| 欧美区成人在线视频| av.在线天堂| 日韩人妻高清精品专区| 精品一区二区三区人妻视频| 国产亚洲精品久久久久久毛片| 国产伦一二天堂av在线观看| 欧美日本视频| 中文字幕精品亚洲无线码一区| 国产精华一区二区三区| 国产精华一区二区三区| 99久国产av精品| 中文在线观看免费www的网站| 午夜精品一区二区三区免费看| 国产精品99久久久久久久久| 亚洲av二区三区四区| 亚洲电影在线观看av| 国产午夜精品久久久久久一区二区三区| 高清日韩中文字幕在线| 免费大片18禁| 99riav亚洲国产免费| 狂野欧美白嫩少妇大欣赏| 蜜桃久久精品国产亚洲av| 老师上课跳d突然被开到最大视频| 亚洲av不卡在线观看| 中文字幕制服av| 久久人妻av系列| 在线免费十八禁| 久久久色成人| 夜夜爽天天搞| 国产国拍精品亚洲av在线观看| 亚洲成人久久性| av黄色大香蕉| 真实男女啪啪啪动态图| 干丝袜人妻中文字幕| 亚洲国产欧美人成| 亚洲无线在线观看| 国产伦精品一区二区三区视频9| 午夜福利在线在线| 亚洲成人中文字幕在线播放| 午夜a级毛片| 一边亲一边摸免费视频| 国产精品爽爽va在线观看网站| av卡一久久| 久久久国产成人免费| 国产中年淑女户外野战色| 一级av片app| 成人亚洲精品av一区二区| 国产精品美女特级片免费视频播放器| 狂野欧美白嫩少妇大欣赏| 九九爱精品视频在线观看| 丝袜喷水一区| 少妇熟女aⅴ在线视频| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 亚洲av男天堂| 亚洲内射少妇av| 日本免费a在线| 免费在线观看成人毛片| 欧美+日韩+精品| 神马国产精品三级电影在线观看| 欧美性猛交黑人性爽| 一级毛片我不卡| 好男人在线观看高清免费视频| 日本一本二区三区精品| 一区二区三区高清视频在线| 狂野欧美激情性xxxx在线观看| 精品人妻熟女av久视频| 小蜜桃在线观看免费完整版高清| 中文欧美无线码| 黄色视频,在线免费观看| 久久人人爽人人片av| 午夜视频国产福利| 日本与韩国留学比较| 国产视频首页在线观看| 国产精品蜜桃在线观看 | 伦精品一区二区三区| 国产极品天堂在线| 91在线精品国自产拍蜜月| 成熟少妇高潮喷水视频| 欧美最新免费一区二区三区| 99热只有精品国产| 精品人妻熟女av久视频| 欧美人与善性xxx| 黄片无遮挡物在线观看| 亚洲七黄色美女视频| 人妻久久中文字幕网| 黄色配什么色好看| 久久精品国产清高在天天线| 午夜老司机福利剧场| 天堂影院成人在线观看| 99久久久亚洲精品蜜臀av| 又粗又硬又长又爽又黄的视频 | 波野结衣二区三区在线| 深夜精品福利| 国产视频内射| 九草在线视频观看| 美女国产视频在线观看| 99久久精品国产国产毛片| 亚洲在线自拍视频| 日韩欧美 国产精品| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区 | 99热只有精品国产| 人妻少妇偷人精品九色| 久久亚洲国产成人精品v| 日本与韩国留学比较| а√天堂www在线а√下载| 国产v大片淫在线免费观看| 国产伦在线观看视频一区| eeuss影院久久| 日韩av在线大香蕉| 在线播放国产精品三级| 在线观看av片永久免费下载| 欧美一区二区国产精品久久精品| 国产单亲对白刺激| 网址你懂的国产日韩在线| 成人国产麻豆网| 亚洲va在线va天堂va国产| 日韩大尺度精品在线看网址| 日本色播在线视频| 能在线免费看毛片的网站| 级片在线观看| 成人毛片60女人毛片免费| 久久精品夜夜夜夜夜久久蜜豆| 卡戴珊不雅视频在线播放| 久久久久久久久久久丰满| 免费观看在线日韩| 亚洲无线在线观看| 日本三级黄在线观看| 成年版毛片免费区| 国产成人精品婷婷| 亚洲国产精品成人久久小说 | 亚洲欧美日韩卡通动漫| 欧美高清性xxxxhd video| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 免费在线观看成人毛片| 亚洲成人av在线免费| 黑人高潮一二区| 久久久久网色| 久久精品国产亚洲av涩爱 | 成人综合一区亚洲| 国产精品无大码| 18禁在线无遮挡免费观看视频| 亚洲国产毛片av蜜桃av| 最新的欧美精品一区二区| 欧美日韩视频高清一区二区三区二| 狠狠精品人妻久久久久久综合| 国产男女超爽视频在线观看| 免费av中文字幕在线| 国产一级毛片在线| 亚洲国产精品一区二区三区在线| 日本av手机在线免费观看| 99热这里只有精品一区| 成人毛片60女人毛片免费| 丰满迷人的少妇在线观看| 丝袜在线中文字幕| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 久久99精品国语久久久| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 色网站视频免费| 在线观看三级黄色| 91精品国产九色| 99视频精品全部免费 在线| av又黄又爽大尺度在线免费看| 狂野欧美激情性bbbbbb| 欧美日韩综合久久久久久| 大片电影免费在线观看免费| 成年av动漫网址| 国产精品久久久久久久电影| 男女高潮啪啪啪动态图| 亚洲国产精品国产精品| av播播在线观看一区| 精品少妇内射三级| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 亚洲欧美中文字幕日韩二区| av有码第一页| 夫妻午夜视频| 九九爱精品视频在线观看| 日本-黄色视频高清免费观看| 青春草亚洲视频在线观看| 精品99又大又爽又粗少妇毛片| 亚洲av日韩在线播放| 国产综合精华液| 在线观看人妻少妇| 亚洲精品自拍成人| 国产成人免费无遮挡视频| 黄色欧美视频在线观看| 久久精品国产自在天天线| 婷婷色综合www| 久久亚洲国产成人精品v| 少妇人妻 视频| 国产片特级美女逼逼视频| 国产av一区二区精品久久| 日本午夜av视频| 亚洲综合精品二区| 看免费成人av毛片| 久久ye,这里只有精品| 久久精品国产鲁丝片午夜精品| 两个人的视频大全免费| 99久久综合免费| 日韩电影二区| 久久久久久久久大av| 狂野欧美激情性bbbbbb| 亚洲第一区二区三区不卡| 在线观看国产h片| 国产深夜福利视频在线观看| 成人手机av| 欧美日韩国产mv在线观看视频| 人妻 亚洲 视频| 免费播放大片免费观看视频在线观看| 免费黄色在线免费观看| 全区人妻精品视频| 国产高清有码在线观看视频| 久久狼人影院| 一区在线观看完整版| 女性被躁到高潮视频| 成年人免费黄色播放视频| 亚洲国产欧美在线一区| 蜜桃久久精品国产亚洲av| 91久久精品电影网| 日本爱情动作片www.在线观看| 乱人伦中国视频| 最近中文字幕2019免费版| 精品国产一区二区三区久久久樱花| 午夜精品国产一区二区电影| 99国产综合亚洲精品| 中文精品一卡2卡3卡4更新| 老司机亚洲免费影院| 乱人伦中国视频| 国产女主播在线喷水免费视频网站| 国产亚洲欧美精品永久| 春色校园在线视频观看| 三上悠亚av全集在线观看| 国产精品.久久久| 久久精品国产自在天天线| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播| 少妇高潮的动态图| 成人国产麻豆网| 久久97久久精品| 青春草国产在线视频| 欧美一级a爱片免费观看看| 夫妻性生交免费视频一级片| 成人黄色视频免费在线看| 亚洲内射少妇av| 免费日韩欧美在线观看| 女的被弄到高潮叫床怎么办| 国产不卡av网站在线观看| 我的老师免费观看完整版| 一级毛片 在线播放| 亚洲,一卡二卡三卡| 少妇 在线观看| 久久久a久久爽久久v久久| 99精国产麻豆久久婷婷| 日韩制服骚丝袜av| 亚洲欧美中文字幕日韩二区| 中国美白少妇内射xxxbb| 精品久久久久久久久亚洲| 久久久久网色| 亚洲第一区二区三区不卡| 高清不卡的av网站| 麻豆成人av视频| 亚洲内射少妇av| 精品人妻一区二区三区麻豆| 99视频精品全部免费 在线| 黑人欧美特级aaaaaa片| 国产av一区二区精品久久| 国产精品国产三级国产av玫瑰| 国产精品久久久久久精品古装| 伊人亚洲综合成人网| 午夜老司机福利剧场| 精品少妇黑人巨大在线播放| 2018国产大陆天天弄谢| 乱人伦中国视频| 国产精品一国产av| 久久精品夜色国产| 久久久久久久久久人人人人人人| 日日爽夜夜爽网站| 日韩成人伦理影院| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 欧美日韩综合久久久久久| 高清av免费在线| 黄色视频在线播放观看不卡| 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 精品酒店卫生间| 国产视频首页在线观看| 少妇被粗大的猛进出69影院 | 欧美人与性动交α欧美精品济南到 | .国产精品久久| 黄片播放在线免费| 97超碰精品成人国产| 2018国产大陆天天弄谢| 成人综合一区亚洲| 国产成人精品婷婷| 久久狼人影院| 日韩av免费高清视频| 在线观看人妻少妇| 十分钟在线观看高清视频www| 飞空精品影院首页| 美女主播在线视频| 999精品在线视频| 在线看a的网站| 一本久久精品| 久久鲁丝午夜福利片| 国产亚洲最大av| 少妇精品久久久久久久| 日本vs欧美在线观看视频| 国产日韩欧美视频二区| 日韩一本色道免费dvd| 成年人午夜在线观看视频| 亚洲成人av在线免费| 卡戴珊不雅视频在线播放| 欧美人与善性xxx| 中文字幕最新亚洲高清| 国产av一区二区精品久久| 又粗又硬又长又爽又黄的视频| 在线观看人妻少妇| 免费不卡的大黄色大毛片视频在线观看| 内地一区二区视频在线| 亚洲美女视频黄频| 蜜桃国产av成人99| 欧美人与性动交α欧美精品济南到 | 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| av.在线天堂| 能在线免费看毛片的网站| 国产成人精品福利久久| 久久韩国三级中文字幕| 国产精品一区二区在线观看99| 黄色怎么调成土黄色| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| 成人综合一区亚洲| 午夜久久久在线观看| 男女无遮挡免费网站观看| 亚洲av福利一区| videos熟女内射| 亚洲美女视频黄频| 97在线人人人人妻| 精品一区二区免费观看| 亚洲美女搞黄在线观看| 日本vs欧美在线观看视频| 久久精品国产a三级三级三级| 又大又黄又爽视频免费| 99热这里只有精品一区| www.色视频.com| 久久久久久久久久久丰满| 一区二区av电影网| videos熟女内射| 亚洲av.av天堂| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 亚洲图色成人| 日韩大片免费观看网站| 国产色婷婷99| 黑人猛操日本美女一级片| 久久久精品免费免费高清| 久久人人爽人人爽人人片va| 精品人妻在线不人妻| 欧美另类一区| 国产伦理片在线播放av一区| 青青草视频在线视频观看| 日韩在线高清观看一区二区三区| 免费大片18禁| 九草在线视频观看| 大片免费播放器 马上看| 大香蕉久久网| 欧美日韩国产mv在线观看视频| 色网站视频免费| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 成人免费观看视频高清| 欧美性感艳星| 国产免费又黄又爽又色| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 国产精品无大码| 人妻少妇偷人精品九色| 国产日韩欧美亚洲二区| 免费av不卡在线播放| 亚洲av男天堂| av国产精品久久久久影院| 新久久久久国产一级毛片| av播播在线观看一区| 欧美日韩国产mv在线观看视频| 日韩一区二区视频免费看| 街头女战士在线观看网站| 午夜福利视频精品| 成人午夜精彩视频在线观看| 男人操女人黄网站| 久久午夜福利片| 韩国高清视频一区二区三区| 99精国产麻豆久久婷婷| 一级毛片 在线播放| 人妻系列 视频| 国产男女超爽视频在线观看| 啦啦啦在线观看免费高清www| 亚洲精品成人av观看孕妇| 夫妻性生交免费视频一级片| 一级毛片电影观看| 人妻系列 视频| 成人亚洲欧美一区二区av| 成人18禁高潮啪啪吃奶动态图 | 考比视频在线观看| 搡女人真爽免费视频火全软件| 简卡轻食公司| 成人免费观看视频高清| 中文字幕最新亚洲高清| 99久久人妻综合| freevideosex欧美| 老司机亚洲免费影院| 国产av精品麻豆| 黄色怎么调成土黄色| 午夜免费观看性视频| 我的女老师完整版在线观看| 亚洲天堂av无毛| 日韩大片免费观看网站| 精品亚洲成a人片在线观看| 国产国语露脸激情在线看| 18禁在线无遮挡免费观看视频| 国产成人freesex在线| 制服人妻中文乱码| 一级爰片在线观看| 99热国产这里只有精品6| 曰老女人黄片| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 精品一区二区三区视频在线| 亚洲经典国产精华液单| 免费久久久久久久精品成人欧美视频 | 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久久久久久免| 永久网站在线| 啦啦啦视频在线资源免费观看| 精品视频人人做人人爽| 亚洲国产精品专区欧美| 亚洲精品456在线播放app| 你懂的网址亚洲精品在线观看| 视频中文字幕在线观看| 国产高清三级在线| 国产永久视频网站| 一区二区三区免费毛片| 麻豆成人av视频| 久久人人爽人人爽人人片va| 亚洲不卡免费看| 五月伊人婷婷丁香| 老女人水多毛片| 亚洲欧洲日产国产| 久久久久久久久久成人| 丰满少妇做爰视频| 天天操日日干夜夜撸| 99热6这里只有精品| 97超视频在线观看视频| 熟妇人妻不卡中文字幕| 免费不卡的大黄色大毛片视频在线观看| av专区在线播放| 国产综合精华液| 成人亚洲精品一区在线观看| 国产片特级美女逼逼视频| 免费人妻精品一区二区三区视频| 欧美成人午夜免费资源| 少妇的逼好多水| 国产成人一区二区在线| 亚洲国产最新在线播放| 亚洲激情五月婷婷啪啪| 亚洲人成网站在线播| 精品久久蜜臀av无| 色5月婷婷丁香| 亚洲婷婷狠狠爱综合网| 久久热精品热| 蜜桃国产av成人99| 97超视频在线观看视频| 亚洲精品一二三| 美女福利国产在线| 边亲边吃奶的免费视频| 韩国高清视频一区二区三区| 亚洲国产精品专区欧美| 午夜视频国产福利| 久久国产亚洲av麻豆专区| 国产免费福利视频在线观看| 欧美丝袜亚洲另类| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 国产av国产精品国产| 全区人妻精品视频| a级毛色黄片| 国产极品粉嫩免费观看在线 | 午夜av观看不卡| 国产日韩欧美亚洲二区| 狂野欧美激情性xxxx在线观看| av有码第一页| 久久久久精品性色| 欧美日韩视频精品一区| 国产精品麻豆人妻色哟哟久久| 欧美少妇被猛烈插入视频| 欧美激情极品国产一区二区三区 | tube8黄色片| 精品一区在线观看国产| 大香蕉久久网| 丝袜脚勾引网站| 欧美人与性动交α欧美精品济南到 | 亚洲国产av影院在线观看| 免费人成在线观看视频色| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 久久精品国产亚洲网站| 美女国产视频在线观看| 99久久精品一区二区三区| 亚洲欧美日韩卡通动漫| 99国产综合亚洲精品| 亚洲成人手机| 欧美日韩国产mv在线观看视频| 女的被弄到高潮叫床怎么办| 免费观看a级毛片全部| 国产亚洲一区二区精品| 男女边摸边吃奶| 婷婷色综合www| 永久网站在线| 在现免费观看毛片| 国产成人精品久久久久久| 最后的刺客免费高清国语| 免费av不卡在线播放| 丰满少妇做爰视频| 精品国产露脸久久av麻豆| 亚洲国产最新在线播放| 国产精品久久久久久久电影| 国产精品熟女久久久久浪| 久久99一区二区三区| 亚洲欧美中文字幕日韩二区| 久久免费观看电影| 青春草国产在线视频| 午夜av观看不卡| 18禁动态无遮挡网站| 观看av在线不卡| 久久久久久久国产电影| www.色视频.com| 黄色欧美视频在线观看| 免费av中文字幕在线| a级片在线免费高清观看视频| 在线观看美女被高潮喷水网站| 亚洲在久久综合| 视频中文字幕在线观看| 亚洲国产日韩一区二区| 国产av国产精品国产| 免费观看在线日韩| 飞空精品影院首页| 国产精品免费大片| av有码第一页| 在线免费观看不下载黄p国产| 少妇人妻 视频| 国产不卡av网站在线观看| 性色avwww在线观看| 视频在线观看一区二区三区| 亚洲美女搞黄在线观看| 国产精品一区二区在线不卡| 免费观看av网站的网址| 特大巨黑吊av在线直播| 欧美少妇被猛烈插入视频| 老司机影院毛片| 久久久精品区二区三区| 国产男人的电影天堂91| 国产精品.久久久| 久久人人爽人人片av| 97超视频在线观看视频| 亚洲精品美女久久av网站| 男人爽女人下面视频在线观看| 亚洲欧洲国产日韩| 欧美变态另类bdsm刘玥| 毛片一级片免费看久久久久| 婷婷色麻豆天堂久久| 少妇精品久久久久久久| 人人妻人人添人人爽欧美一区卜| 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久v下载方式| 日韩强制内射视频| 国产熟女欧美一区二区| 热re99久久精品国产66热6| 午夜激情久久久久久久| 日本黄色日本黄色录像| 一本一本综合久久| 成人黄色视频免费在线看| 老熟女久久久| 欧美精品国产亚洲| 国产伦理片在线播放av一区| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| 国产成人freesex在线| 午夜91福利影院| www.av在线官网国产| 亚洲成人手机| 永久网站在线| 99热全是精品| 亚洲色图 男人天堂 中文字幕 | 国产欧美另类精品又又久久亚洲欧美| 另类亚洲欧美激情| 久久 成人 亚洲| 午夜福利在线观看免费完整高清在|