• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Phase stability,electronic,elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy:A frst principles study

    2015-02-16 01:44:11ChenLinMaoLiu
    Journal of Magnesium and Alloys 2015年3期

    H.L.Chen*,L.Lin,P.L.Mao,Z.Liu

    School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    Phase stability,electronic,elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy:A frst principles study

    H.L.Chen*,L.Lin,P.L.Mao,Z.Liu

    School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    Electronic structure and elastic properties of Al2Y,Al3Y,Al2Gd and Al3Gd phases were investigated by means of frst-principles calculations from CASTEP program based on density functional theory(DFT).The ground state energy and elastic constants of each phase were calculated, the formation enthalpy(ΔH),bulk modulus(B),shear modulus(G),Young’s modulus(E),Poisson’s ratio(ν)and anisotropic coeffcient(A)were derived.The formation enthalpy shows that Al2RE is more stable than Al3RE,and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics.The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases,it may lead to the similar performance when deforming due to their similar elastic constants.The total and partial electron density of states(DOS),Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases.Finally,phonon calculation was conducted,and the thermodynamic properties were obtained and further discussed.

    First-principles calculation;Phase stability;Electronic structure;Elastic properties;Thermodynamic properties

    1.Introduction

    Because of their low density,good stiffness and the highest strength-to-weight-ratio of all structural metals[1,2],and especially the signifcant advantage of recycling,magnesium alloys are becoming more and more attractive for lightweight structural applications[3,4].Mg-Al alloys are the well-known series of precipitation hardening alloys which signifcantly improve the mechanical properties at room temperature.However,the poorthermalstability ofitsmain precipitation phase (β-Mg17Al12)limits its use in high temperature[5,6].

    Rare earth elements are considered to be prime added elements to improve the performance of magnesium alloys at high temperature due to the solution hardening and precipitation strengthening effect,thus improving comprehensive mechanical properties of magnesium alloys[7–9].Y and Gd are commonly used due to their anomalous solid solution hardening effect in Mg[10].As added elements in Mg-Al alloy,Y and Gd have a priority to combine with Al to form Al-RE metal compound,whichAl2Y orAl2Gd phaseisthemain strengthening phase,resulting in a signifcant strengthening effect[11,12].Al also can form Al3RE compound in rapid solidifcation condition,which has a low density,high oxidation resistance,high melting point and good high temperature strength,hence,it can improve the mechanical properties of Mg-Al alloys[13].

    The frst principles calculations are employed to systematically investigate the phase stability,electronic and elastic properties of binary Al2Y,Al3Y,Al2Gd and Al3Gd phases in this work.The thermodynamic properties were also discussed.The results of this work are compared with the available experimental and theoretical values,which can provide a theoretical guidance to design a new kind of magnesium alloy and beneft to understand the microscopic strengthen mechanism.

    2.Computational details

    Cambridge Sequential Total Energy Package(CASTEP) [14],a frst-principles plane wave pseudo-potential method based on density function theory(DFT),is used for geometryoptimization and energetic calculations.Generalized gradient approximation(GGA)of Perdew–Burke–Ernzerhof(PBE) [15,16]is used to describe the exchange-correlation energy function.The ultrasoft pseudo-potential[17]is used to describe the interaction between ion core and valence electron for all elements.

    The cut-off energy of plane wave is set to 400 eV.The Monkhost–Pack scheme with a k-point separation for each phase is followed by system.In consideration of the stability deviation associated with atomic coordinates,all atomic positions within the cell of each phase were relaxed according to total energy and ionic force using the BFGS scheme.Calculation of total energy and related properties were then performed after geometry optimization with the SCF tolerance of 5×10?8eV.The maximum displacement is within 5×10?4?; and the maximum stress is within 0.02 GPa.

    3.Results and discussion

    3.1.Crystal structure and formation enthalpy

    The crystal structures of Al2RE and Al3RE are shown in Fig.1.The lattice constants and structure parameters are listed in Tables 1 and 2.The calculated values are in good agreement with the experimental values.This good agreement indicates that the present calculation method is highly accurate and reliable.

    The phase stability can be characterized by formation enthalpy.Formation enthalpy of Al-RE intermetallics is calculated by the following equation:

    where ΔH is the formation enthalpy;Etotis the total energy of each Al-RE intermetallics;andare per atom energy of pure elements A and B,respectively;NAand NBare the number of A and B atoms in unit cell,respectively.The calculated formation enthalpy values of Al2Y,Al3Y,Al2Gd and Al3Gd are listed in Table 3.

    Fig.1.Crystal structure of Al2RE(a)and Al3RE(b).

    Table 1Structure parameters of Al2RE and Al3RE.

    Table 2Equilibrium crystal parameters(a),unit cell volume(V0)and density(ρ)of Al2Y,Al3Y,Al2Gd and Al3Gd.

    Table 3Formation enthalpy(ΔH)of Al2Y,Al3Y,Al2Gd and Al3Gd.

    As can be seen from Table 3,the formation enthalpies of Al2Y,Al3Y,Al2Gd and Al3Gd are negative values,showing that these phases can stably exist.The lower the formation enthalpy is,the more stable the phase structure is.From Table 3,it can be concluded thatAl2Y has the stronger forming ability thanAl3Y, Al2Gd has the stronger forming ability than Al3Gd,and Al-Y phases are more stable than Al-Gd phases.

    3.2.Electronic properties

    The electronic properties were calculated to understand the mechanism about structure stability of these fourAl-RE phases and further reveal their bonding characteristics.The calculated total and partial density of states(DOS)of Al2Y,Al3Y,Al2Gd andAl3Gd are shown in Fig.2.The bonding peaks of these four phases,which mainly range from?10 to 15 eV,originate from the contribution of valence electron ofAl s,Al p,Y d orbits for Al-Y phases and Al s,Al p,Gd d,Gd f for Al-Gd phases.For Al2Y,Al p state andY p,d state mainly contribute to the bonds; forAl3Y,Al p state andY d state mainly contribute to the bonds; for Al2Gd,Al p state and Gd d,f state mainly contribute to the bonds;for Al3Gd,Al p state and Gd d,f state mainly contribute to the bonds.Gd f state has a signifcant effect on DOS curve. As can be seen in the total DOS comparison of these four phases,in the vicinity of the Fermi level,the occupied electron energy range of Al3Y is larger than Al2Y,Al3Gd is larger than Al2Gd;therefore,Al2RE is more stable than Al3RE,and Al-Y phases are more stable thanAl-Gd phases because of Gd with f valence electron.This result is in good agreement with the conclusion obtained from formation enthalpy.Pseudogap directly refects the covalent bonding strength of a phase,the wider the pseudogap is,the stronger the covalent bond is.There is no pseudogap in the DOS of Al-Y phases,but exists in the DOS ofAl-Gd phases.The performance of DOS curve at Fermilevel indicates that the covalent bond strength of Al-Gd phases is stronger than Al-Y phases.In addition,the width of pseudogap for Al2Gd is a little larger than Al3Gd.

    Fig.2.Total and partial DOS of Al2Y(a),Al3Y(b),Al2Gd(c)and Al3Gd(d).

    In order to fnd the ionic bond feature of the phases,the Mulliken populations of Al2Y,Al3Y,Al2Gd and Al3Gd were calculated.The calculated bond lengths of the four phases are positive,which indicates that the chemical bonds in the intermetallics can be able to build.The calculated electron occupation numbers ofAl2Y,Al3Y,Al2Gd andAl3Gd are shown in Table 4.For Al2Y,the valence electron confguration of Al atom is 3s23p1,while through bonding with Y,the electron confguration of Al atom changed to 3s1.23p2.16.The electron number localized inAl is 3.37,Al obtained 0.37e per atom;the valence electron confguration ofY atom is 4d15s2,while through bonding with Al,the electron confguration ofY atom changed to 4d2.075s0.27,the electron number localized in Y atom is 2.27, Y lost 0.74e per atom.The transfer number of electron is 1.48 in a cell.Similarly,for Al3Y,the electron number localized in Al is 2.89,Al lost 0.11e per atom;the electron number localized in Y atom is 3.33,Y obtained 0.33e per atom.The transfer number of electron is 0.66 in a cell.For Al2Gd,while throughbonding with Gd,the electron confguration ofAl atom changed to 3s0.893p1.64.The electron number localized in Al is 2.53,Al lost 0.47e per atom;the valence electron confguration of Gd atom is 4f75d16s2,while through bonding with Al,the electron confguration of Gd atom changed to 5p5.484f8.475d4.326s1.61,the electron number localized in Gd atom is 17.49,Gd obtained 1.88e per atom.The transfer number of electron is 2.35 in a cell.Similarly,for Al3Gd,The electron number localized in Al is 3.10,Al obtained 0.10e per atom;the electron number localized in Gd atom is 17.71,Gd lost 0.29e per atom.The transfer number of electron is 0.39 in a cell.Hence,judging from the electron’s transfer number we can draw a conclusion that the order of the iconic bond strength of the four intermetallic compounds from weak to strong is:Al3Gd,Al3Y,Al2Y and Al2Gd.

    Table 4Mulliken charge of Al2Y,Al3Y,Al2Gd and Al3Gd.

    Table 5Density of states at Fermi level Df,total number of valence electrons N,cell volume V and metallicity parameter fmof Al2Y,Al3Y,Al2Gd and Al3Gd.

    The metallicities of Al2Y,Al3Y,Al2Gd and Al3Gd are calculated by the following equation[23]:

    where Dfis the DOS value at Fermi level;T is the temperature; kBis the Boltzmann constant;nmand neare the densities of the thermal excited electrons and valence electron in the cell, respectively.neis calculated by ne=N/V,where N is the total number of valence electrons;V is the cell volume.Df,N,V and calculated fmare listed in Table 5,from which we can draw a conclusion that the order of the metallic bond strength of the four intermetallic compounds from weak to strong is:Al3Y Al3Gd,Al2Y andAl2Gd.Al-Gd phases are signifcantly stronger than Al-Y phases because of the existence of 4f electron in Gd atom.

    3.3.Elastic properties

    Elastic constants are often used to characterize the elasticity of materials;it is the most basic physical constants of materials.For cubic crystals,there are three independent elastic constants: C11,C12and C44.To stay stable,their elastic constants must satisfy the following stability conditions[23]:C11?C12>0, C11>0,C44>0,C11+2C12>0.The calculated elastic constants ofAl2Y,Al3Y,Al2Gd andAl3Gd are listed in Table 6.The elastic constants of Al2Y,Al3Y,Al2Gd and Al3Gd satisfy the stability conditions;therefore,they can stably exist.The calculations are in good agreement with the experimental value,indicating that the results are accurate and parameter settings are reliable.

    Table 6Elastic constants(C11,C12and C44)of Al2Y,Al3Y,Al2Gd and Al3Gd.

    Bulk modulus(B),Shear modulus(G),Young’s modulus (E),Poisson’s ratio(ν)and anisotropic coeffcient(A)ofAl-RE intermetallics can be deduced by the following equation[25]:

    The calculated results are listed in Table 7.The bulk modulus B usually characterizes the resistance to deformation under an applied stress,the shear modulus G is a measure of deformation resistant capacity under shear stress[26].The larger the value,the stronger the capacity to resist deformation; Young’s modulus E denotes the stress and strain ratio,andPoisson’s ratio ν denotes the shear capacity of the material,the largerYoung’s modulus is,the tough the material is;the larger the Poisson ratio is,the better the plasticity is[24],it usually range from?1 to 0.5.As can be seen from Table 7,the B,G and E of Al2Y,Al3Y,Al2Gd and Al3Gd similar to each other,and all of them are large values,so they are all strong and hard phases. The small value of ν indicates the brittle nature of the four phases.With the addition of Gd andY elements,the precipitation of fne and dispersed Al-RE phases may remarkably improve the strength of Mg-Al-RE alloys.

    Table 7The bulk modulus(B),shear modulus(G),Young’s modulus(E),elastic constants(Cij),G/B,Poisson’s ratio(ν)and anisotropic coeffcient(A)ofAl2Y,Al3Y,Al2Gd and Al3Gd.

    Pugh[26]found that shear modulus and bulk modulus ratio (G/B)can refect the characteristics of the material during deformation,where shear modulus and bulk modulus of the material refect the resistance capacity to plastic deformation and resistance capacity to brittle fracture,respectively.The critical value is generally designated at 0.57.If G/B>0.57,the material shows brittle fracture,while if G/B<0.57,the material shows ductile fracture.The smaller the value of C11?C12is,the better the plasticity of material is.C12?C44characterizes the plasticity of materials[27,28],from which positive value indicates that the material is ductile;negative indicates that the material is brittle.As shown in Table 7,the G/B of Al2Y,Al3Y, Al2Gd and Al3Gd phases are larger than 0.5;C11?C12of these four phases are all large positive values;C12?C44of these four phases are all negative values;evidence shows that the four phases are brittle.This result is consistent with the former conclusions.Anisotropic coeffcients are close to 1;therefore, these four phases are all isotropic.The mechanical properties of Al2Y,Al3Y,Al2Gd and Al3Gd phases are similar,which shows that these four phases may have similar performance in Mg-Al-RE alloys.

    3.4.Thermodynamic properties

    Phonon calculations can be carried out to evaluate the enthalpy,entropy,free energy and heat capacity as a function of temperature for approximate quasi-harmonic crystal.The enthalpy E(T),entropy S(T),free energy F(T)and heat capacity Cv(T)are directly given by CASTEP based on the following equations[29]:

    where Etotis the total energy,Ezpis the zero point energy,?is Planck’s constant,kBis Boltzmann’s constant,F(ω)is the phonon density of states and T is temperature.Moreover,the heat capacity curve can be divided into two parts.When at low temperature(T?ΘD),the change of heat capacity follows the law[23,30]:

    Fig.3.The enthalpy E(T),entropy S(T),free energy F(T)ofAl2Y,Al3Y,Al2Gd and Al3Gd.

    When at high temperature(T?ΘD),the change of heat capacity obeys the Dulong–Petit limit:

    Fig.3 shows the calculated thermodynamic properties of Al2Y,Al3Y,Al2Gd and Al3Gd,from which we can obtain that enthalpy andT*entropy monotonously increase as the temperature increases,while free energy monotonously decreases with increasing temperature.There is no intersection in the curve, which indicates that the calculated values at 0 K are reliable and can be used to approximately instead the values at room temperature.The lower the free energy is,the stable the phase is. Therefore,Al2RE are more stable than Al3RE,Al-Y phases arestable than Al-Gd phases as mentioned above.As shown in Fig.4,Cvapproaches 0 as the temperature approaches 0 K, proportional to T3as the T rises at low temperature and converges to Dulong–Petit limit at high temperature,which obeys the change law.The heat capacity ofAl2RE is larger thanAl3RE; therefore,Al2RE phase is more stable thanAl3RE phase in high temperature,thus remarkably improving the elevated temperature strength of magnesium alloys.

    Fig.4.The heat capacity Cv(T)of Al2Y,Al3Y,Al2Gd and Al3Gd.

    4.Conclusions

    (1)From the perspective of formation enthalpy,Al2Y has the stronger forming ability thanAl3Y,Al2Gd has the stronger forming ability than Al3Gd,and Al-Y phases are more stable than Al-Gd phases.

    (2)The result through calculated DOS is in good agreement with the formation enthalpy.The bonding characteristics ofAl2Y,Al3Y,Al2Gd andAl3Gd are all covalent,ionic and metallic bonds.The ionic bond strength of Al-Gd phases is weaker than Al-Y phases;the covalent and metallic bond strengths of Al-Gd phases are stronger than Al-Y phases.

    (3)The elastic properties of Al2Y,Al3Y,Al2Gd and Al3Gd show that these four phases are brittle,hard and isotropic. Their similar mechanical properties may lead to the similar performance in Mg-Al-RE alloys.

    (4)The enthalpy,entropy,free energy of Al2Y,Al3Y,Al2Gd and Al3Gd are monotonously changed as temperature changes.From the perspective of free energy,Al2RE are more stable than Al3RE,Al-Y phases are stable than Al-Gd phases as mentioned above.The calculated Cvobeys the change law,which illustrates the computation is credible in this work.

    Acknowledgements

    This work is supported by the Key Technologies Research and Development Program of Liaoning Province (2013201018).

    [1]B.L.Mordike,Materials Science and Engineering:A 324(2002)103–112.

    [2]C.L.Mendis,K.Oh-ishi,Y.Kawamura,T.Honma,S.Kamado,K.Hono, Acta Mater.57(2009)749–760.

    [3]Y.Xie,Z.Wang,Z.F.Hou,Script.Mater.68(2013)495–498.

    [4]T.Q.Li,Y.B.Liu,Z.Y.Cao,D.M.Jiang,L.R.Cheng,Materials Science and Engineering:A 527(2010)7808–7811.

    [5]S.Spigarelli,M.E.Mehtedi,D.Ciccarelli,M.Regev,Materials Science and Engineering:A 528(2011)6919–6926.

    [6]A.A.Luo,C.Zhang,A.K.Sachdev,Script.Mater.66(2012)491–494.

    [7]X.Tian,L.M.Wang,J.L.Wang,Y.B.Liu,J.An,Z.Y.Cao,Journal of Alloys and Compounds 465(2008)412–416.

    [8]I.P.Moreno,T.K.Nandy,J.W.Jones,J.E.Allison,T.M.Pollock,Script. Mater.45(2001)1423–1429.

    [9]I.P.Moreno,T.K.Nandy,J.W.Jones,J.E.Allison,T.M.Pollock,Script. Mater.48(2003)1029–1034.

    [10]L.Gao,J.Zhou,Z.M.Sun,R.S.Chen,E.H.Han,Chinese Science Bulletin =Kexue Tongbao 30(2010)2968–2973.

    [11]Y.H.Duan,Y.Sun,M.J.Peng,S.G.Zhou,Journal of Alloys and Compounds 585(0)(2014)587–593.

    [12]J.Dong,W.C.Liu,X.Song,P.Zhang,W.J.Ding,A.M.Korsunsky, Materials Science and Engineering:A 527(2010)6053–6063.

    [13]Y.Harada,D.C.Dunand,Acta Mater.48(2000)3477–3487.

    [14]M.D.Segall,P.J.D.Lindan,M.J.Probert,C.J.Pickard,P.J.Hasnip,S.J. Clark,et al.,Journal of Physics.Condensed Matter:An Institute of Physics Journal 14(11)(2002)2717–2744.

    [15]X.D.Zhang,S.H.Wang,Computational Materials Science 90(2014) 56–60.

    [16]J.P.Perdew,K.Burke,M.Ernzerhof,Phys.Rev.Lett.77(1996) 3865–3868.

    [17]D.Vanderbilt,Phys.Rev.B41(1990)7892–7895.

    [18]X.M.Tao,First-Principles calculations of the thermodynamic properties of rare earth-aluminum and rare earths-magnesium alloys(Ph.D.Thesis), Central South University,2008.

    [19]X.M.Tao,Y.Ouyang,H.S.Liu,Y.P.Feng,Y.Du,Z.P.Jin,Computational Materials Science 44(2008)392–399.

    [20]S.Liu,Y.Du,H.Xu,C.He,J.C.Sehuster,Journal of Alloys and Compounds 414(2006)60–65.

    [21]C.Colinet,A.Pasturel,K.H.J.Busehow,J.Chem.Thermodyn.17(1985) 1133–1139.

    [22]M.C.Gao,A.D.Rollett,M.Widom,Phys.Rev.B 75(2007)174120(8).

    [23]Z.W.Huang,Y.H.Zhao,H.Hou,P.D.Han,Physica.B,Condensed Matter 407(2012)1075–1081.

    [24]R.J.Sehiltz,J.F.Smith Jr.,J.Appl.Phys.45(1974)4681–4685.

    [25]Q.Liu,R.Zhang,Journal of Alloys and Compounds 508(2)(2010) 616–619.

    [26]S.F.Pugh,Philosophical Magazine(Abingdon,England)45(1954) 823–843.

    [27]C.L.Fu,X.D.Wang,Y.Y.Ye,Intermetallics 7(1999)179–184.

    [28]S.Brutti,D.Nguyen-Manh,D.G.Pettifor,P.Manfrinetti,M.Napoletano, F.Canepa,CALPHAD;Computer Coupling of Phase Diagrams and Thermochemistry 33(2009)260–264.

    [29]P.K.Jha,Phys.Rev.B 72(2005)214502.

    [30]W.H.Chen,C.F.Yu,K.N.Chiang,H.C.Cheng,Intermetallics 62(2015) 60–68.

    Received 4 June 2015;revised 9 August 2015;accepted 25 August 2015 Available online 1 October 2015

    *Corresponding author.School of Materials Science and Engineering, Shenyang University of Technology,Shenyang 110870,China.Tel.:+86 13591630166;fax:024-25496768.

    E-mail address:chenhonglei250@163.com(H.L.Chen).

    http://dx.doi.org/10.1016/j.jma.2015.08.003

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    亚洲欧美日韩卡通动漫| 国产精品国产三级专区第一集| 2022亚洲国产成人精品| 亚洲美女视频黄频| 国产精品人妻久久久影院| 成年女人永久免费观看视频| 最近中文字幕高清免费大全6| 亚洲高清免费不卡视频| 日本欧美国产在线视频| 亚洲四区av| 国产老妇伦熟女老妇高清| 精品欧美国产一区二区三| 国产美女午夜福利| 能在线免费观看的黄片| 蜜桃亚洲精品一区二区三区| 国产在视频线在精品| 丝袜美腿在线中文| 国产成人91sexporn| 免费电影在线观看免费观看| 中文精品一卡2卡3卡4更新| 国国产精品蜜臀av免费| 丰满少妇做爰视频| 尤物成人国产欧美一区二区三区| 精品国产一区二区三区久久久樱花 | 99久久九九国产精品国产免费| 亚洲欧美精品专区久久| 日日干狠狠操夜夜爽| 婷婷色av中文字幕| 少妇高潮的动态图| 精品久久久久久电影网 | 亚洲中文字幕日韩| 一边亲一边摸免费视频| 中文字幕精品亚洲无线码一区| 亚洲丝袜综合中文字幕| 国产三级中文精品| 观看美女的网站| 少妇人妻精品综合一区二区| 久久久欧美国产精品| 国产乱人视频| 青青草视频在线视频观看| 国产乱来视频区| 18+在线观看网站| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 亚洲成人久久爱视频| 亚洲丝袜综合中文字幕| 国产三级在线视频| 国产黄色小视频在线观看| 桃色一区二区三区在线观看| 亚洲欧美日韩东京热| 亚洲成人中文字幕在线播放| 91精品伊人久久大香线蕉| 女的被弄到高潮叫床怎么办| 国产白丝娇喘喷水9色精品| 色噜噜av男人的天堂激情| 岛国在线免费视频观看| 欧美成人免费av一区二区三区| 久久精品国产亚洲av涩爱| 91av网一区二区| 69人妻影院| 亚洲欧美精品综合久久99| 日韩国内少妇激情av| 国产 一区精品| 视频中文字幕在线观看| 精品久久久久久成人av| 国产老妇女一区| 国产成人91sexporn| 国产精品爽爽va在线观看网站| 亚洲高清免费不卡视频| 亚洲图色成人| 亚洲精华国产精华液的使用体验| 少妇人妻一区二区三区视频| 久久精品久久精品一区二区三区| av黄色大香蕉| 国产高潮美女av| 男女边吃奶边做爰视频| 少妇人妻精品综合一区二区| 欧美激情久久久久久爽电影| 国产成人91sexporn| 午夜免费激情av| 十八禁国产超污无遮挡网站| 五月玫瑰六月丁香| 国产精品精品国产色婷婷| 午夜老司机福利剧场| 人妻系列 视频| 久久久久久久亚洲中文字幕| 国产精品一区二区三区四区免费观看| 久久久亚洲精品成人影院| 亚洲怡红院男人天堂| 国产黄色小视频在线观看| 午夜福利成人在线免费观看| 国产av码专区亚洲av| 亚洲熟妇中文字幕五十中出| 建设人人有责人人尽责人人享有的 | 日韩欧美 国产精品| 丰满乱子伦码专区| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| АⅤ资源中文在线天堂| 婷婷色av中文字幕| 久久精品91蜜桃| 少妇的逼好多水| 中文字幕精品亚洲无线码一区| 欧美人与善性xxx| 五月伊人婷婷丁香| 久久国内精品自在自线图片| 欧美成人午夜免费资源| 欧美日本视频| 国内精品一区二区在线观看| 2022亚洲国产成人精品| 中文精品一卡2卡3卡4更新| 91久久精品国产一区二区成人| 日本黄色片子视频| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 国产成人一区二区在线| 亚洲av二区三区四区| 日本五十路高清| 久久综合国产亚洲精品| 国产 一区 欧美 日韩| 我的老师免费观看完整版| 亚洲精品国产成人久久av| 欧美丝袜亚洲另类| 国产精品野战在线观看| 国产精品一区二区三区四区免费观看| 国产女主播在线喷水免费视频网站 | 国产激情偷乱视频一区二区| 国产成人一区二区在线| 国产精品一区二区性色av| 亚洲怡红院男人天堂| 最近视频中文字幕2019在线8| 日本一二三区视频观看| 日本黄色片子视频| 久久这里有精品视频免费| 波野结衣二区三区在线| av在线观看视频网站免费| 一边亲一边摸免费视频| 好男人在线观看高清免费视频| 99热这里只有是精品50| 全区人妻精品视频| 色吧在线观看| 亚洲av免费高清在线观看| 久久久a久久爽久久v久久| 岛国毛片在线播放| 国产免费一级a男人的天堂| 久久精品国产自在天天线| 国产亚洲午夜精品一区二区久久 | 免费观看a级毛片全部| 午夜亚洲福利在线播放| 蜜桃亚洲精品一区二区三区| 日韩成人伦理影院| 在线观看66精品国产| 日本色播在线视频| 亚洲av一区综合| 国产真实乱freesex| 国产大屁股一区二区在线视频| www.av在线官网国产| 久久99蜜桃精品久久| 长腿黑丝高跟| 最后的刺客免费高清国语| av线在线观看网站| 波野结衣二区三区在线| 草草在线视频免费看| 插阴视频在线观看视频| 久久久久久久亚洲中文字幕| 精品一区二区三区人妻视频| 亚洲欧洲日产国产| 免费黄色在线免费观看| 在线播放无遮挡| 波多野结衣高清无吗| 国产黄a三级三级三级人| 国产精品一区www在线观看| 级片在线观看| 亚洲电影在线观看av| 国产精品人妻久久久影院| 午夜免费激情av| 老师上课跳d突然被开到最大视频| 亚洲国产高清在线一区二区三| 日韩大片免费观看网站 | 国产亚洲av片在线观看秒播厂 | 啦啦啦观看免费观看视频高清| 欧美日韩一区二区视频在线观看视频在线 | 国产av不卡久久| 丝袜美腿在线中文| 久久99热6这里只有精品| 午夜视频国产福利| 天天躁夜夜躁狠狠久久av| 国国产精品蜜臀av免费| 亚洲va在线va天堂va国产| 亚洲国产成人一精品久久久| 久久久久久久久久成人| 国产一区二区三区av在线| 99在线人妻在线中文字幕| 天美传媒精品一区二区| 热99re8久久精品国产| 欧美潮喷喷水| 国产精品一区二区在线观看99 | 免费看a级黄色片| 日韩制服骚丝袜av| 中国国产av一级| 少妇人妻精品综合一区二区| 99久久精品一区二区三区| 国产免费福利视频在线观看| 村上凉子中文字幕在线| 久久久精品欧美日韩精品| 久久精品久久久久久久性| 18+在线观看网站| 成人毛片60女人毛片免费| 午夜a级毛片| 美女xxoo啪啪120秒动态图| 午夜激情欧美在线| 又爽又黄a免费视频| 精品酒店卫生间| 婷婷色麻豆天堂久久 | 在现免费观看毛片| 最近最新中文字幕大全电影3| 看十八女毛片水多多多| 久久热精品热| 婷婷色综合大香蕉| 一夜夜www| 亚洲精品456在线播放app| 国产免费男女视频| 午夜福利高清视频| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 亚洲不卡免费看| 免费看光身美女| 国产高潮美女av| 久久99热这里只有精品18| 久久综合国产亚洲精品| 国产美女午夜福利| 国产淫语在线视频| 国产女主播在线喷水免费视频网站 | 日韩一区二区视频免费看| 国产免费一级a男人的天堂| 美女黄网站色视频| 好男人视频免费观看在线| 久久精品国产亚洲网站| 国产探花在线观看一区二区| 精品不卡国产一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美激情在线99| 色尼玛亚洲综合影院| 免费观看在线日韩| 精品一区二区免费观看| 免费观看性生交大片5| 午夜福利成人在线免费观看| 看片在线看免费视频| 色网站视频免费| 亚洲一级一片aⅴ在线观看| 国产成人a∨麻豆精品| 桃色一区二区三区在线观看| 亚洲人成网站在线观看播放| 中文字幕av成人在线电影| АⅤ资源中文在线天堂| 国产亚洲av嫩草精品影院| 欧美97在线视频| 亚洲精品亚洲一区二区| 免费大片18禁| 亚洲国产最新在线播放| 毛片女人毛片| a级一级毛片免费在线观看| 黄片wwwwww| 插阴视频在线观看视频| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 国产成人a∨麻豆精品| 午夜久久久久精精品| 内射极品少妇av片p| 国产精品蜜桃在线观看| 色5月婷婷丁香| 91av网一区二区| 91在线精品国自产拍蜜月| 午夜久久久久精精品| 国产爱豆传媒在线观看| 我要搜黄色片| 亚洲美女搞黄在线观看| 色网站视频免费| 亚洲国产精品专区欧美| 亚洲欧美清纯卡通| 十八禁国产超污无遮挡网站| 一区二区三区高清视频在线| 国产黄色小视频在线观看| 99久久成人亚洲精品观看| 国产免费一级a男人的天堂| 国产av不卡久久| 国语对白做爰xxxⅹ性视频网站| 成年av动漫网址| 亚洲国产精品合色在线| 美女大奶头视频| 免费观看性生交大片5| 国产精品蜜桃在线观看| 欧美+日韩+精品| 久久欧美精品欧美久久欧美| 国国产精品蜜臀av免费| 亚洲综合精品二区| 国产淫语在线视频| 国产免费福利视频在线观看| 亚洲av成人av| 国产精品一区www在线观看| 一级爰片在线观看| 一区二区三区高清视频在线| 久久久久久国产a免费观看| 热99re8久久精品国产| 看黄色毛片网站| 91av网一区二区| 欧美zozozo另类| 99久国产av精品| 久久久久国产网址| av免费观看日本| 亚洲av一区综合| 男人狂女人下面高潮的视频| 欧美激情久久久久久爽电影| 男女下面进入的视频免费午夜| 中国国产av一级| 亚洲精品乱码久久久v下载方式| 久久久久久九九精品二区国产| 亚洲欧美清纯卡通| 欧美日韩一区二区视频在线观看视频在线 | 可以在线观看毛片的网站| 免费不卡的大黄色大毛片视频在线观看 | 国语自产精品视频在线第100页| 久久亚洲精品不卡| 美女内射精品一级片tv| 免费人成在线观看视频色| 亚洲真实伦在线观看| 欧美成人a在线观看| 女人被狂操c到高潮| 岛国毛片在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品永久免费网站| 国产三级中文精品| 99久久无色码亚洲精品果冻| 国产大屁股一区二区在线视频| 国产女主播在线喷水免费视频网站 | 91aial.com中文字幕在线观看| 天天躁日日操中文字幕| 国产精品久久久久久久久免| 熟女电影av网| 欧美性猛交╳xxx乱大交人| 午夜精品国产一区二区电影 | 国国产精品蜜臀av免费| 一区二区三区免费毛片| 午夜精品国产一区二区电影 | 深夜a级毛片| 一夜夜www| 日本一本二区三区精品| ponron亚洲| 日韩强制内射视频| 欧美高清性xxxxhd video| 国产极品精品免费视频能看的| 嫩草影院精品99| 一卡2卡三卡四卡精品乱码亚洲| 国产免费福利视频在线观看| 听说在线观看完整版免费高清| 国产精品永久免费网站| 午夜福利在线在线| 精品久久久久久久末码| 国产探花在线观看一区二区| 久久99蜜桃精品久久| 丰满少妇做爰视频| 亚洲成人久久爱视频| 97热精品久久久久久| 精品久久久久久久人妻蜜臀av| 日本色播在线视频| 一边摸一边抽搐一进一小说| 黄色欧美视频在线观看| 少妇丰满av| 美女高潮的动态| 男女啪啪激烈高潮av片| 毛片女人毛片| 在线a可以看的网站| 最近视频中文字幕2019在线8| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 久久6这里有精品| 国产激情偷乱视频一区二区| 日韩三级伦理在线观看| 亚洲美女搞黄在线观看| 日韩欧美精品v在线| 麻豆成人午夜福利视频| 国产成人freesex在线| 有码 亚洲区| 精品人妻一区二区三区麻豆| 国产一区二区三区av在线| 性色avwww在线观看| 欧美高清成人免费视频www| 亚洲美女视频黄频| 美女高潮的动态| 亚洲精品亚洲一区二区| 亚洲国产色片| 色网站视频免费| 久久精品综合一区二区三区| 国产精品伦人一区二区| 日韩精品青青久久久久久| 亚洲国产精品成人综合色| 国产午夜精品一二区理论片| 国产精品,欧美在线| 亚洲精品456在线播放app| 三级经典国产精品| 国产成年人精品一区二区| 51国产日韩欧美| 夫妻性生交免费视频一级片| 国产精品三级大全| 亚洲不卡免费看| 亚洲精品乱码久久久久久按摩| 国产免费视频播放在线视频 | 超碰97精品在线观看| 亚洲精品aⅴ在线观看| 成人午夜高清在线视频| 欧美成人午夜免费资源| 国内精品美女久久久久久| 日韩av在线大香蕉| 看片在线看免费视频| 久久这里只有精品中国| 能在线免费观看的黄片| 久久久久久久久久成人| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 成人无遮挡网站| 永久网站在线| 最近的中文字幕免费完整| 日本与韩国留学比较| 一级av片app| 久久精品夜夜夜夜夜久久蜜豆| 天堂影院成人在线观看| 长腿黑丝高跟| 在线播放无遮挡| 日本爱情动作片www.在线观看| 久久久久久久久久久免费av| 禁无遮挡网站| 亚洲精品日韩在线中文字幕| 亚洲精品456在线播放app| 亚洲av成人精品一二三区| 国产亚洲av片在线观看秒播厂 | 激情 狠狠 欧美| 国产探花极品一区二区| 毛片一级片免费看久久久久| 身体一侧抽搐| 麻豆av噜噜一区二区三区| 日韩中字成人| 国产亚洲av片在线观看秒播厂 | av视频在线观看入口| 在线a可以看的网站| 国产精品嫩草影院av在线观看| 久久热精品热| 国产精品蜜桃在线观看| 国产精品,欧美在线| 国产欧美日韩精品一区二区| 美女xxoo啪啪120秒动态图| 黄色一级大片看看| 一本一本综合久久| 亚洲精品日韩在线中文字幕| 欧美另类亚洲清纯唯美| 中文精品一卡2卡3卡4更新| 免费av观看视频| 女人十人毛片免费观看3o分钟| 九九在线视频观看精品| 久久亚洲精品不卡| 中文字幕人妻熟人妻熟丝袜美| 国产精品,欧美在线| 国产精品野战在线观看| 国产黄片视频在线免费观看| 亚洲中文字幕日韩| 蜜桃久久精品国产亚洲av| 免费观看a级毛片全部| 麻豆精品久久久久久蜜桃| 汤姆久久久久久久影院中文字幕 | 春色校园在线视频观看| 亚洲成色77777| 色播亚洲综合网| 熟妇人妻久久中文字幕3abv| 国产精品三级大全| 久久人妻av系列| 久久精品夜夜夜夜夜久久蜜豆| a级毛色黄片| 欧美一区二区精品小视频在线| av国产久精品久网站免费入址| 日韩国内少妇激情av| 高清av免费在线| 国产色爽女视频免费观看| 日本午夜av视频| 中文字幕精品亚洲无线码一区| 男人舔奶头视频| 国产单亲对白刺激| 成人国产麻豆网| av黄色大香蕉| 国产成人精品婷婷| 18+在线观看网站| 岛国在线免费视频观看| 人人妻人人澡人人爽人人夜夜 | av在线播放精品| 色网站视频免费| 国产麻豆成人av免费视频| 黄片wwwwww| 午夜精品一区二区三区免费看| 最新中文字幕久久久久| 在线观看66精品国产| 久久亚洲国产成人精品v| 亚洲综合精品二区| 秋霞在线观看毛片| 老司机福利观看| 国产又黄又爽又无遮挡在线| 日本一本二区三区精品| 久久久久国产网址| 欧美日本视频| 久久欧美精品欧美久久欧美| 国产淫片久久久久久久久| 国产人妻一区二区三区在| 99久久中文字幕三级久久日本| 国产亚洲91精品色在线| 中国国产av一级| 国产精品精品国产色婷婷| 亚洲国产精品成人久久小说| 中文在线观看免费www的网站| 欧美激情久久久久久爽电影| 在线观看av片永久免费下载| 日韩欧美三级三区| 亚洲精品影视一区二区三区av| 亚洲av不卡在线观看| 亚洲,欧美,日韩| 蜜臀久久99精品久久宅男| 国产亚洲午夜精品一区二区久久 | 亚洲国产欧美人成| 亚洲国产精品成人综合色| 亚洲av免费在线观看| 亚洲熟妇中文字幕五十中出| 舔av片在线| 最近视频中文字幕2019在线8| 春色校园在线视频观看| 18禁动态无遮挡网站| kizo精华| 亚洲精品自拍成人| 97在线视频观看| 日韩欧美精品免费久久| 欧美极品一区二区三区四区| 麻豆成人av视频| 日日啪夜夜撸| 亚洲伊人久久精品综合 | 欧美区成人在线视频| 午夜爱爱视频在线播放| 久久国产乱子免费精品| 国产 一区 欧美 日韩| 九九热线精品视视频播放| 岛国毛片在线播放| 午夜精品在线福利| 日本与韩国留学比较| 久久久久久久久久久丰满| 日本猛色少妇xxxxx猛交久久| 亚洲,欧美,日韩| 午夜福利视频1000在线观看| 久久久午夜欧美精品| 欧美另类亚洲清纯唯美| 国产亚洲91精品色在线| 人妻制服诱惑在线中文字幕| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 中文字幕免费在线视频6| 长腿黑丝高跟| 日韩欧美在线乱码| 亚洲精品影视一区二区三区av| 日韩人妻高清精品专区| 一卡2卡三卡四卡精品乱码亚洲| 国产高清视频在线观看网站| 亚洲,欧美,日韩| 日本欧美国产在线视频| 村上凉子中文字幕在线| 日韩在线高清观看一区二区三区| or卡值多少钱| 老司机影院毛片| 狂野欧美白嫩少妇大欣赏| 26uuu在线亚洲综合色| 欧美97在线视频| 一个人免费在线观看电影| 日本免费在线观看一区| 青春草国产在线视频| 国产精品久久久久久精品电影| 国产淫语在线视频| 亚洲av熟女| 永久免费av网站大全| 婷婷色av中文字幕| 爱豆传媒免费全集在线观看| av在线亚洲专区| 99久国产av精品国产电影| 亚洲成人精品中文字幕电影| 久久久a久久爽久久v久久| av在线天堂中文字幕| 人体艺术视频欧美日本| 人妻系列 视频| 国产精品一及| 国产伦理片在线播放av一区| 午夜福利在线观看吧| 男人舔奶头视频| 国产乱人偷精品视频| or卡值多少钱| 免费观看在线日韩| 久久精品国产99精品国产亚洲性色| 日韩欧美三级三区| 日韩,欧美,国产一区二区三区 | 久久精品人妻少妇| 久久精品国产亚洲av天美| a级毛片免费高清观看在线播放| 黄色日韩在线| 久久人人爽人人片av| 爱豆传媒免费全集在线观看| 成人高潮视频无遮挡免费网站| 国产老妇伦熟女老妇高清| www日本黄色视频网| 国产精品电影一区二区三区| 少妇猛男粗大的猛烈进出视频 | 欧美三级亚洲精品| 亚洲国产成人一精品久久久| 国产一区二区在线av高清观看| 看十八女毛片水多多多| 国产精品一二三区在线看|