• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Critical mechanical properties and FEA simulation for crashworthiness assessment of a coarse-grained cast AM50 alloy

    2015-02-16 01:44:09XuSimhaGesingLiangLo
    Journal of Magnesium and Alloys 2015年3期

    S.Xu*,C.H.M.Simha,M.Gesing,J.Liang,J.Lo

    CanmetMATERIALS,Natural Resources Canada,183 Longwood Rd S,Hamilton,Ontario L8P 0A5,Canada

    Critical mechanical properties and FEA simulation for crashworthiness assessment of a coarse-grained cast AM50 alloy

    S.Xu*,C.H.M.Simha,M.Gesing,J.Liang,J.Lo

    CanmetMATERIALS,Natural Resources Canada,183 Longwood Rd S,Hamilton,Ontario L8P 0A5,Canada

    A coarse-grainedAM50 alloy was used as a model alloy for investigation of constitutive behaviour,Charpy toughness and effect of stress state on deformation and failure of cast Mg alloys.The results provide critical mechanical properties of a cast AM50 alloy for crashworthiness assessment and development of fnite element simulation techniques.For cast Mg alloys,the effect of strain rate and temperature is larger on tensile strength than on compressive strength because twinning is more extensive in compression than in tension.The effect of strain rate on compressive strength is negligible because twinning activity of the cast Mg alloy is dominant.The load vs.defection of Charpy specimens were measured for modelling,and the effect of loading rate and temperature on load of Charpy specimens is very small because part of the specimen is in compression.The equivalent strain to fracture of the cylindrical round notched tension specimen decreases with increasing stress triaxiality;though for the fat-grooved plane strain specimen,the equivalent fracture strain remains constant over the range of stress triaxiality investigated.Because the two different specimen geometries give rise to different Lode angle values,the test results show that the Lode angle parameter is an important parameter for deformation and fracture of Mg alloys.Finite element simulations of loading of the cylindrical notched-tension and Charpy specimens were carried out using a Lode-angle dependent von Mises model,and were found to provide a reasonable description of the load–displacement curves measured in the tests.For the fat-grooved plane strain specimens,the computations under-predicted the force–displacement response measured.

    Effect of strain rate and temperature;Tensile and compressive;Crash;Simulation;AM50

    1.Introduction

    Magnesium alloys have received special attention in transportation applications since the mid-1990s mainly due to their low density,which has great potential for weight reduction in the transportation industry.To expand the applications of Mg alloys to automotive and rail crash-related applications,assessment of critical mechanical properties and simulation of deformation and fracture behaviours of Mg alloys are essential.In the recent MFERD project[1],tensile and compressive properties for crashworthiness assessment were characterized for fve commercial cast and wrought Mg alloys[2].However, compressive tests were only performed in limited conditions for die casting alloys[3];Charpy and fracture tests were only performed on large extrusions[4].The reason for this is that typical cast Mg alloys for automotive applications are produced using a high pressure die casting(HPDC)process,and the HPDC castings generally have a thin gauge section.For thin gauge castings,tensile tests can be performed conveniently, however,due to problems with specimen preparation and testing(for thin sections),compression,Charpy,and fracture tests are diffcult to conduct,especially when testing a range of strain-rates and temperatures.

    In this work,a squeeze cast AM50 alloy was employed as a model alloy for the investigation of constitutive behaviour,fracture and the effect of stress state on deformation and failure of cast Mg alloys.A variety of mechanical and fracture test specimen types can be prepared from the centre of squeeze cast discs,which are porosity-free and have relatively uniform microstructure.The results provide critical mechanical properties of a cast AM50 alloy for crashworthiness assessment,and load cases for fnite element simulation.Finite element simulations using theAbaqus fnite element software in conjunction with a user-developed subroutine that consisted of a Lode-angle dependent von Mises model was employed to model thedeformation response.Computational results are compared with the experimentally measured force–displacement curves.

    Fig.1.Macrograph of the squeeze cast disc(the thickness is 15 mm).

    2.Material and experimental procedures

    2.1.Material

    The AM50 alloy was manufactured by a squeeze casting process into 90 mm diameter discs 15 mm thick at CanmetMATERIALS.Fig.1 shows a micrograph of the crosssection of a disc.In the centre of the discs,grains are mostly equiaxial and exhibit sizes of up to~2.4 mm.A micrograph in the centre of a disc is shown in Fig.2.The etchant used for solidifcation structure was acetic glycol(20 mL acetic acid, 1 mL HNO3,60 mL ethylene glycol,20 mL water)for 15–20 s. The nominal compositions(measured in weight percent)of the AM50 alloy are 5%Al,0.4%Mn and 95.6%Mg.

    All mechanical and fracture specimens were machined from the centre part of discs and were cut from the plane of the discs.2.2.Tensile and compressive

    The tensile specimens were round tensile dog bones with a gauge length of 25.4 mm and diameter of 6.34 mm.The cylindrical compression specimens were 19.1 mm in height and 6.35 mm in diameter.

    Fig.2.Microstructure in the middle thickness region.

    Tensile and compression tests were conducted using a servohydraulic universal test machine equipped with an environmental chamber for achieving test temperature between 100°C and?142°C.The strain rates used were between 0.00075 s?1and 9 s?1.In compressive tests,Tefon sheet was used as lubricant and applied to the contact surfaces to reduce friction.

    2.3.Charpy testing

    Standard un-notched and V-notched Charpy specimens (10×10×55 mm)were machined according to ASTM E23 [5].V-notches were machined in through-thickness direction. Un-notched Charpy bars were tested in the same position as the V-notched specimens.Charpy specimens were tested at impact rate(5.1 m/s)in an instrumented Charpy machine and at slow rate using a three-point bend fxture in a servo-hydraulic universal test machine.

    2.4.Round notched tensile(NT)and fat-grooved plane strain testing

    Notched tension specimens are often used to study the effects of constraint(e.g.,stress triaxiality)on deformation and failure.Round notched tensile specimens used are shown in Fig.3 including standard tensile specimen geometry.Notch radius(R)of the NT specimens was 1.5 mm,3 mm and 6 mm.

    Flat-grooved plane strain specimens were prepared and the geometry is shown in Fig.4.Notch radius(R)included 6.35 mm,10 mm,25.4 mm and 63.5 mm.

    Notched tensile tests were performed under a loading rate of 1.125 mm/min at 23°C.

    The two different specimen geometries give rise to different Lode angle values,and thus the test results show the effect of Lode angle on deformation and fracture of the cast Mg alloy.

    3.Results and discussions

    A variety of mechanical and fracture tests were performed to compare the effects of strain rate and temperature on fow strength,to assess Charpy and fracture toughness properties and to investigate effects of stress-state on deformation and fracture properties.

    3.1.Effects of strain rate and temperature on tensile and compressive strength

    Effects of strain rate and temperature(thermal effects)on fow and fracture properties are essential to crashworthiness assessment and simulation.In the MFERD project,effects of strain rate on fow strengths of HPDC AM50 and AM60 alloys were determined[2,3].A HPDC AM60B alloy exhibits less than 20% positive strain rate dependence in tension but approximately only 10%in compression from a quasi-static rate of 0.00075–10 s?1strain rate[3].It is of interest to know if the lower strain-rate dependence in compression than in tension is the case for other cast Mg alloys.

    Examples of tensile and compressive true stress vs.strain curves are shown in Figs.5–8.The effect of strain rate and temperature on tensile fow strength is observable;though on compressive fow strength,the effect is much smaller or negligible.The tensile curves showed approximately power-law shape,which is typical dislocation dominant deformation,while the compressive curve exhibited typical tensile twinningdominant deformation(e.g.,Ref.[2]).

    Table 1Tensile properties of a squeeze cast AM50 at quasi-static rate.*

    Tensile and compressive properties at quasi-static rate and at 100°C and 23°C are listed in Tables 1 and 2,respectively.The fow stress(σ)of a Mg alloy can be written,as the sum of two components,a thermal component,σthermal(related to shortrange obstacles),and an athermal component,σathermal(related to long-range obstacles)[2,6].The quasi-static fow strengths of Mg alloys at 100°C are taken as the athermal strengths and the strength increases at lower temperature and/or higher strain rate are considered as thermal strengths[2,6],i.e.,

    Fig.3.Round notched tensile specimens.

    The effect of strain rate and temperature is a thermal effect and can be described by a rate parameter(R),i.e., R =A +B? T ?ln(5. 3× 107ε˙),where A and B are constants,T is temperature in Kelvin andε˙is strain rate in s?1[2,6].The yield strengths vs.rate parameter of the squeeze castAM50 are plotted in Fig.9including the ftting constants.There is a thermal effect in tension but negligible in compression.Tounderstand the difference between thermal effects of tension and compression,it is important to recognize that twinning is another deformation mechanism in addition to dislocation slip, and that the critical stress of twinning is athermal(i.e.,not sensitive to strain rate and temperature).Twinning is more extensive in compression than in tension of Mg alloys(i.e., dislocation slip is a more signifcant fraction mode of deformation in tension)[7],and this is the case for the AM50 alloy. Metallographic examination on interrupted tensile and compressive tests at a strain of~1.5%showed much more twinning activities in the compressive specimen than in the tensile specimen(Figs.10 and 11).The negligible strain rate sensitivity in compression for this coarse-grained AM50 alloy is due to the dominant twinning deformation mechanism.

    Table 2Compressive yield strength of a squeeze cast AM50 at quasi-static rate.*

    Fig.4.Flat-grooved plane strain specimen geometry.

    Fig.5.Tensile true stress–strain curves at 23°C,showing effect of strain rate.

    Fig.6.Tensile true stress–strain curves at quasi-static rate,showing effect of temperature.

    Fig.7.Compressive true stress–strain curves at 23°C,showing effect of strain rate.

    Fig.8.Select compressive true stress–strain curves showing effect of strainrate and temperature.

    Fig.9.Effect of strain rate and temperature on yield strength of the squeeze cast AM50.

    The effect of strain rate and temperature on yield strength of HPDC AM50[2]shows larger thermal stress than on that of squeeze castAM50(Fig.12).The effect of strain rate decreaseswith increasing grain size due to twinning tendency in coarsegrained alloys,and is also reported in literature(e.g.,Ref.[8]).

    Fig.10.Metallographs of AM50 in tension to a strain of 1.5%.

    Fig.11.Metallograph of AM50 in compression to a strain of 1.5%.

    3.2.Charpy tests

    Standard Charpy testing employed a three-point bend type specimen and the specimen experiences both tensile and compressive stresses simultaneously.The load vs.defection curves of Charpy tests may be used as load cases for fnite element simulations of Mg alloys because effects of notch,loading rate, and stress state may be included in the Charpy results.Figs.13 and 14 show typical load vs.defection curves of the AM50 alloy.The effect of loading rate and temperature on the force–displacement curve is very small because part of the specimen is in compression,though the effect of temperature on fracture and maximum load is evident,i.e.,the higher the temperature, the larger the defection(or the higher the maximum load) because the fracture was attained later and the alloy was strainhardened further(Fig.13).For the Charpy V-notch specimen, the effect of loading rate on the load vs.defection curve is negligible,however,the un-notched specimen showed larger maximum defection at a quasi-static rate than in impact loading(Fig.14).

    Fig.12.Effect of strain rate and temperature on yield strength of the squeeze cast AM50 and HPDC AM50.

    Fig.13.Charpy load vs.defection curve;effect of temperature.

    Charpy absorbed energy(CVN)increased with increasing temperature,especially for un-notched specimens(Fig.15). This shows that the un-notched Charpy specimen is better than theV-notched specimen to detect rate and temperature sensitivity.The ratios of CVN of V-notched to un-notched specimens are 0.26–0.30 for impact tests.

    3.3.Round notched tensile(NT)and fat-grooved plane strain tests

    The stress state of material can infuence deformation,ductility and fracture behaviours.It is well known that stress triaxiality can reduce ductile fracture strain of a material[9,10] because it accelerates the void growth process.Recently, another stress state parameter,the Lode angle,has been applied to analyze deformation and fracture of materials under different loading conditions(e.g.,Refs.[11–13]).In this work,bothround notched tension specimens and fat-grooved tension specimens as employed in Ref.[11]were used to investigate the effects of stress triaxiality and the Lode angle on deformation and fracture of the Mg alloyAM50 and to provide load cases of complex stress state for FE modelling.

    Fig.14.Charpy load vs.defection curve;effect of notch and loading rate.

    Fig.15.Effect of notch and temperature on Charpy absorbed energy.

    At the centre of the necked cross section of a round notched tensile specimen(see Fig.3),which is the fracture initiation site,the Bridgman formula of the stress triaxiality parameter is

    where R is the local radius of a neck in the round bar specimen and r is the radius of the notched section.The fracture strain can be approximately calculated as where r0is the original radius and rfis the radius at fracture of the tension specimen.

    For the fat-grooved plane strain specimens shown in Fig.4, the thickness of the specimen at the groove is 2a0(fxed at 6.36 mm in this work),and radius of the groove is R.The stress triaxiality(η)of the fat-grooved specimen is given as

    The equivalent strain to fracture of a fat-grooved plane strain specimen can be approximated as where a0is the initial half thickness and afis the half fracture ligament thickness of the specimen.The Lode angle parameter of cylindrical notched tension specimen corresponds to the axisymmetric compression,while the Lode angle parameter of the fat-grooved specimen corresponds to plain strain or generalized shear loading conditions[11].

    Fig.16.Load vs.radial displacement of round notched tension specimens.

    The load vs.displacement curves of round NT and fatgrooved plane specimens are shown in Figs.16 and 17,respectively.These are useful load cases for fnite element simulation of deformation and fracture of Mg alloys because they involve different stress triaxiality and Lode angle parameters.

    The round NT tensile specimens cover initial stress triaxiality from approximately 0.5 to 0.8 according to Eq.2.For the fat-grooved specimens,the initial stress triaxiality ranges between 0.61 and 0.84.The tensile strength of the AM50 alloy increases with increasing stress triaxiality as shown in Fig.18 for both NT and fat-grooved specimens.The equivalent strain to fracture of the NT specimen decreases with increasing stress triaxiality(Fig.19),which is in agreement of common observations of metals and alloys;although the effect is smaller in the Mg alloy than in steels[11].At the same time,for the fatgrooved specimen,the equivalent fracture strain remains constant over the range of stress triaxiality investigated,which shows the Lode angle parameter as an important parameter for simulation of deformation and fracture of Mg alloys.Note that the ductile failure strain was found to correlate well with stresstriaxiality for steels as tested using the NT and fat-grooved specimens(e.g.,Ref.[14]).

    Fig.17.Examples of load vs.notch displacement of fat-grooved specimens.

    Fig.18.Average tensile strength vs.initial triaxiality parameter.

    4.FEA deformation simulation

    Finite element computations of the loading of the notched, and Charpy specimens were carried out using theAbaqus fnite element software.A user-defned subroutine based on a Lode angle dependent von Mises model from Ref.[13]was employed to describe the constitutive response of the AM50 alloy.In this model,the behaviour of the fow stress in a standard von Mises plasticity model was modifed and a Lode angle dependence was introduced.In the Lode-angle dependent von Mises model, the fow surface is given as:

    where F represents the yield surface,is the von Mises effective stress and the surfaces of isotropic hardening,σ(k)is the yield and fow strengths in the yield and fow surfaces for isotropic hardening yields(k=1,2,3,etc.indicating increment point)and θ′is an angle related to Lode angle θ as is given below, θ′=±30°for the principle stress axes and θ′=0°for an angle with 30°to the principle stress axes.

    Fig.19.Average equivalent failure strain vs.initial triaxiality parameter.

    This Lode angle dependent von Mises model achieved better simulation results than the conventional von Mises model in modelling the effect of notch,and obtained good agreement with the load–radial displacement response measured in the test.In the current work,the Lode-angle dependent von Mises model is further evaluated by employing the previously developed subroutine to model the notched and the Charpy specimen.The present model does not include damage and failure; consequently,the behaviour beyond maximum load in the experiment is not captured by the simulations.

    Exploiting symmetry,one-eighth models comprising eightnoded continuum elements with reduced integration were used to mesh the spatial domain of the notched-tension tests.Threedimensional models were constructed for the Charpy simulations.An implicit solver was used to integrate the equilibrium equations.The measured tensile properties were used for simplicity because tensile and compressive at room temperature and quasi-static rate are similar for the casting AM50.In all of the simulations for the notched-tension specimens,the load and radial displacement was monitored.

    Results of the computations for the cylindrical NT specimens are presented in Figs.20 and 21.

    Results of the computations for the fat-grooved plane strain notched-tension test are presented in Figs.22 and 23.The computational results show that as the notch radius is increased, the loads predicted by the computations are lower than the loads measured in the experiment.The source of this underprediction could be due to the approximations that were invoked in the implementation of the subroutine[13],or due to the inclusion of the Lode-angle dependence in the fow behaviour.This shows the challenge of numerical simulation of Mg alloys.

    Fig.20.FE simulation of load vs.radial displacement of cylindrical notchedtension test with notch radius of 1.5 mm.

    Fig.21.FE simulation of load vs.radial displacement of cylindrical notchedtension test with notch radius of 6 mm.

    Fig.22.FE simulation of load vs.radial displacement of fat-grooved plane strain tension test with notch radius of 6.35 mm.

    Fig.23.FE simulation of load vs.radial displacement of fat-grooved plane strain tension test with notch radius of 63.5 mm.

    Fig.24.FE simulation of load vs.displacement of un-notched Charpy bar.

    In modelling Charpy testing,the geometries of impact tup and support anvils are consistent with ASTM E23-07.Results of the three-dimensional simulations of the statically loaded un-notched Charpy bar and the notched bar are shown in Figs.24 and 25.Here,the load versus displacement curves from the computations are compared with the experimental curves. The computation captures the load–displacement reasonably well in both un-notched and V-notched Charpy specimens.The“bump”in the static Charpy curves occurs at the point when the material in contact with the anvils yields.On-going work is under way to investigate how to improve the Lode angle dependent von Mises model and to incorporate damage model to simulate Mg deformation and fracture for crash design.

    5.Conclusions

    A variety of mechanical and fracture test specimen types were prepared from the centre of squeeze cast AM50 discs, which are relatively porosity-free.The results provide criticalmechanical properties of a castAM50 alloy for crashworthiness assessment and load cases for development of fnite element simulation.Some conclusions are summarized below.

    Fig.25.FE simulation of load vs.displacement of a CharpyV-notch specimen.

    ?For cast Mg alloys,the effect of strain rate and temperature is larger on tensile strength than on compressive strength because twinning is more extensive in compression than in tension.The effect of strain rate on compressive strength is negligible in this coarse-grained alloy because twinning activity is dominant.

    ?The effect of loading rate and temperature on load of Charpy specimens is very small because part of the specimen is in compression.The fracture ductility of a Charpy specimen is enhanced by an increase in temperature.

    ?The tensile strengths of both NT and fat-grooved specimens increase with increasing stress triaxiality.The equivalent strain to fracture of the NT specimen decreases with increasing stress triaxiality;though for the fat-grooved specimen, the equivalent fracture strain remains constant over the range of stress triaxiality investigated,which shows the Lode angle parameter as an important parameter for simulation of deformation and fracture of Mg alloys.

    ?Finite element simulations,employing a Lode-angle dependent yield function developed earlier,were used to simulate loading of the notched-tension and Charpy specimens.In the cases of cylindrical notched tension and Charpy specimens, the model provided a reasonable account of the experimental results.In contrast,in the fat-grooved plane strain tension plane strain specimens the model under predicted the experimental results.

    Acknowledgements

    This study is part of CanmetMATERIALS(CMAT)projects funded by the Magnesium Front End R&D(MFERD)program provided by Natural Resources Canada through the Program of Energy Research and Development and Transport Canada.We would like to thank Mr.Raul Santos(CMAT)for manufacturing and providing the AM50 alloy,and Ms.Renata Zavadil for metallographic examination.We also would like to thank Dr. M.S.Kozdras,Program Manager of Advanced Materials for Transportation,for his assistance in preparing the project proposal,guidance in performing the work and useful review of the manuscript.

    [1]A.A.Luo,E.Nyberg,K.Sadayappan,W.Shi,in:M.O.Pekguleryuz,N.R. Neelameggham,R.S.Beals,E.A.Nyberg(Eds.),Magnesium Technology Symposium 2008,The Minerals,Metals&Materials Society,2008,pp. 3–10.

    [2]S.Xu,W.R.Tyson,R.Eagleson,R.Zavadil,Z.Liu,P.-L.Mao,et al.,J. Magnes.Alloys 1(2013)275–282.

    [3]D.A.Wagner,S.D.Logan,K.Wang,T.Skszek.FEA predictions and test results from magnesium beams in bending and axial compression.SAE Technical Paper,SAE 2010-01-0405.2010.

    [4]S.Xu,W.R.Tyson,G.Shen,R.Eagleson,A.Balmy.Uniaxial deformation,charpy and fracture toughness testing ofextruded magnesium alloyAM30.SAETechnical Paper,SAE 2010-01-0406.2010.

    [5]ASTM International,ASTM E23-07a,Standard Test Methods for Notched Bar Impact Testing of Metallic Materials,ASTM International, West Conshohocken,PA,USA,2010.

    [6]S.Xu,W.R.Tyson,R.Bouchard,V.Y.Gertsman,J.Mater.Eng.Perform. 18(2009)1091–1101.

    [7]S.Xu,V.Y.Gertsman,J.Li,J.P.Thomson,M.Sahoo,Can.Metall.Q.44 (2)(2005)155–165.

    [8]H.J.Choi,Y.Kim,J.H.Shin,D.H.Bae,Mater.Sci.Eng.A 527A(2010) 1565–1570.

    [9]J.R.Rice,D.M.Tracy,J.Mech.Phys.Solids 17(1969)201–217.

    [10]C.Yan,W.Ma,V.Burg,Y.-W.Mai,M.G.D.Geers,Key Eng.Mater.312 (2006)59–64.

    [11]Y.Bai,X.Teng,T.Wierzbicki,J.Eng.Mater.Technol.131(2009) 021002-1–021002-10.

    [12]H.A.Taiebat,J.P.Carter,Comput.Geotech.35(2008)500–503.

    [13]G.Shen,S.Xu,J.Liang,J.Sollen,SAE Int.J.Mater.Manuf.7(3)(2014) 609–615,doi:10.4271/2014-01-1013.

    [14]J.W.Hancock,D.K.Brown,J.Mech.Phys.Solids 31(1)(1983)1–24.

    Received 5 May 2015;accepted 30 June 2015 Available online 28 September 2015

    *Corresponding author.CanmetMATERIALS,Natural Resources Canada, 183 Longwood Rd S,Hamilton,Ontario L8P 0A5,Canada.Tel.:+905 645 0815;fax:+1 613 9928735.

    E-mail address:sxu@nrcan.gc.ca(S.Xu).

    http://dx.doi.org/10.1016/j.jma.2015.06.001

    2213-9567/Crown Copyright?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.All rights reserved.

    Crown Copyright?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.All rights reserved.

    老熟妇仑乱视频hdxx| 成人亚洲精品一区在线观看| 国产不卡一卡二| 欧美亚洲日本最大视频资源| 热99国产精品久久久久久7| 亚洲精品av麻豆狂野| 欧美日韩av久久| 国产日韩一区二区三区精品不卡| 亚洲免费av在线视频| 高清毛片免费观看视频网站 | 午夜福利免费观看在线| 久热这里只有精品99| 乱人伦中国视频| 国产高清视频在线播放一区| 国产精品免费视频内射| 女人爽到高潮嗷嗷叫在线视频| 免费一级毛片在线播放高清视频 | 一区在线观看完整版| 国产黄色免费在线视频| 日本a在线网址| 亚洲成av片中文字幕在线观看| 日韩成人在线观看一区二区三区| 成人特级黄色片久久久久久久| 精品福利观看| www日本在线高清视频| 黄色毛片三级朝国网站| www.熟女人妻精品国产| aaaaa片日本免费| 一边摸一边抽搐一进一小说| 欧美激情高清一区二区三区| 另类亚洲欧美激情| 男女午夜视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲va日本ⅴa欧美va伊人久久| 精品国内亚洲2022精品成人| 欧美中文综合在线视频| 日本撒尿小便嘘嘘汇集6| 麻豆av在线久日| 高清黄色对白视频在线免费看| 丝袜美腿诱惑在线| 国产欧美日韩精品亚洲av| 婷婷六月久久综合丁香| 国产在线观看jvid| 国产深夜福利视频在线观看| 变态另类成人亚洲欧美熟女 | 精品国产乱子伦一区二区三区| 国产av一区在线观看免费| 精品久久蜜臀av无| 十分钟在线观看高清视频www| 亚洲人成电影免费在线| 久久香蕉激情| 欧美成狂野欧美在线观看| 在线观看午夜福利视频| 久久性视频一级片| 男人的好看免费观看在线视频 | 亚洲av成人av| 亚洲视频免费观看视频| 日本 av在线| 国产主播在线观看一区二区| 波多野结衣av一区二区av| 不卡一级毛片| 亚洲欧美激情在线| 黄网站色视频无遮挡免费观看| 亚洲色图av天堂| 成人永久免费在线观看视频| 老司机亚洲免费影院| av电影中文网址| 国产成人精品久久二区二区免费| 日韩大尺度精品在线看网址 | 最新在线观看一区二区三区| 色婷婷av一区二区三区视频| 久99久视频精品免费| 欧美日韩一级在线毛片| 男人的好看免费观看在线视频 | 高潮久久久久久久久久久不卡| 无限看片的www在线观看| 亚洲精品在线美女| 午夜a级毛片| 久久久久久久午夜电影 | 成人特级黄色片久久久久久久| 国产成人系列免费观看| 日韩成人在线观看一区二区三区| 大型黄色视频在线免费观看| 女人被躁到高潮嗷嗷叫费观| 757午夜福利合集在线观看| 欧美日韩国产mv在线观看视频| 日日摸夜夜添夜夜添小说| 日日夜夜操网爽| 精品高清国产在线一区| 啦啦啦在线免费观看视频4| 可以在线观看毛片的网站| 久久 成人 亚洲| 亚洲激情在线av| 在线观看免费视频网站a站| avwww免费| 在线观看免费视频网站a站| 国产免费av片在线观看野外av| 亚洲激情在线av| 99热只有精品国产| 人人妻人人爽人人添夜夜欢视频| 亚洲精品美女久久av网站| 啦啦啦 在线观看视频| 成人亚洲精品一区在线观看| 国产三级黄色录像| 天天添夜夜摸| 丝袜美腿诱惑在线| 亚洲一区二区三区欧美精品| 91国产中文字幕| 国产成人一区二区三区免费视频网站| 久9热在线精品视频| 18禁黄网站禁片午夜丰满| 国产极品粉嫩免费观看在线| 在线观看日韩欧美| 无人区码免费观看不卡| 99久久国产精品久久久| 亚洲成a人片在线一区二区| 亚洲国产中文字幕在线视频| 亚洲精品国产一区二区精华液| 正在播放国产对白刺激| 制服人妻中文乱码| 亚洲在线自拍视频| 午夜免费鲁丝| 久久国产亚洲av麻豆专区| 黑人操中国人逼视频| 中文字幕高清在线视频| 成人永久免费在线观看视频| 成年版毛片免费区| 国产精品免费视频内射| 欧美+亚洲+日韩+国产| 91成人精品电影| 日韩成人在线观看一区二区三区| 日韩 欧美 亚洲 中文字幕| 欧美老熟妇乱子伦牲交| 日本精品一区二区三区蜜桃| 国产成人精品在线电影| 女性生殖器流出的白浆| 极品教师在线免费播放| а√天堂www在线а√下载| 久久精品国产亚洲av高清一级| 亚洲av第一区精品v没综合| 在线看a的网站| 少妇裸体淫交视频免费看高清 | 国产男靠女视频免费网站| 色在线成人网| 久久天堂一区二区三区四区| 国产精品二区激情视频| 淫秽高清视频在线观看| 51午夜福利影视在线观看| 久久久国产成人免费| 国产精品偷伦视频观看了| 日韩大码丰满熟妇| 麻豆国产av国片精品| 视频区图区小说| 久久久久国产一级毛片高清牌| 久久久久精品国产欧美久久久| xxxhd国产人妻xxx| 午夜日韩欧美国产| 91九色精品人成在线观看| 亚洲精品一卡2卡三卡4卡5卡| 不卡一级毛片| 新久久久久国产一级毛片| 在线观看免费视频网站a站| av视频免费观看在线观看| 美女高潮喷水抽搐中文字幕| av有码第一页| 国产精品av久久久久免费| 满18在线观看网站| 亚洲色图 男人天堂 中文字幕| 欧美成狂野欧美在线观看| av福利片在线| 首页视频小说图片口味搜索| 国产精品永久免费网站| 人人妻人人添人人爽欧美一区卜| 国产高清videossex| 日本黄色日本黄色录像| 成人国语在线视频| 久久 成人 亚洲| 纯流量卡能插随身wifi吗| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美av亚洲av综合av国产av| 他把我摸到了高潮在线观看| 成在线人永久免费视频| 精品免费久久久久久久清纯| 丝袜人妻中文字幕| 精品无人区乱码1区二区| 国产av一区在线观看免费| 午夜91福利影院| 久久精品国产清高在天天线| 亚洲精品一区av在线观看| av视频免费观看在线观看| 国产精品日韩av在线免费观看 | 淫秽高清视频在线观看| 99riav亚洲国产免费| 午夜老司机福利片| 精品久久久久久成人av| 欧美最黄视频在线播放免费 | 欧美日本亚洲视频在线播放| 他把我摸到了高潮在线观看| 国产亚洲精品久久久久5区| 男人操女人黄网站| 亚洲国产中文字幕在线视频| 丝袜美足系列| 激情视频va一区二区三区| 亚洲国产精品999在线| 成年人免费黄色播放视频| 欧美成人性av电影在线观看| 一区在线观看完整版| 色尼玛亚洲综合影院| 搡老熟女国产l中国老女人| 国产一区二区三区视频了| 亚洲欧美日韩无卡精品| 男女床上黄色一级片免费看| 日本a在线网址| 国产精品美女特级片免费视频播放器 | 国产精品野战在线观看 | 免费高清在线观看日韩| 日韩大码丰满熟妇| 久久草成人影院| 人人妻人人添人人爽欧美一区卜| av电影中文网址| 中文亚洲av片在线观看爽| 亚洲美女黄片视频| 99精品欧美一区二区三区四区| 日本免费a在线| 欧美乱妇无乱码| 一级片'在线观看视频| 可以在线观看毛片的网站| 亚洲精品成人av观看孕妇| 村上凉子中文字幕在线| 国产三级黄色录像| 久久久久国内视频| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区在线不卡| 咕卡用的链子| 天天躁夜夜躁狠狠躁躁| 免费在线观看完整版高清| 国产成人精品无人区| 国产国语露脸激情在线看| 91大片在线观看| 亚洲欧洲精品一区二区精品久久久| 又黄又粗又硬又大视频| 国产精品免费视频内射| 国产xxxxx性猛交| 一个人免费在线观看的高清视频| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 美国免费a级毛片| 乱人伦中国视频| 精品久久久久久久毛片微露脸| 日日干狠狠操夜夜爽| 老司机午夜十八禁免费视频| 亚洲在线自拍视频| 午夜两性在线视频| av在线播放免费不卡| 日韩视频一区二区在线观看| 男人操女人黄网站| 久久人人爽av亚洲精品天堂| 老司机在亚洲福利影院| 亚洲精品一区av在线观看| 免费高清视频大片| 成年人黄色毛片网站| 黄色丝袜av网址大全| 高清欧美精品videossex| www.自偷自拍.com| 久久久国产精品麻豆| 国产精品成人在线| 免费av中文字幕在线| 久久久久国产精品人妻aⅴ院| 天天影视国产精品| 99精国产麻豆久久婷婷| 欧美精品一区二区免费开放| 高清在线国产一区| 老司机亚洲免费影院| 久久久久亚洲av毛片大全| 90打野战视频偷拍视频| 欧美日韩一级在线毛片| 人人妻人人添人人爽欧美一区卜| 亚洲 欧美 日韩 在线 免费| 亚洲成人国产一区在线观看| 久久亚洲真实| 一级片'在线观看视频| 免费日韩欧美在线观看| 亚洲少妇的诱惑av| 国产三级黄色录像| 国产色视频综合| 国产在线精品亚洲第一网站| 亚洲欧美激情在线| 国产蜜桃级精品一区二区三区| 久久人妻熟女aⅴ| 最新在线观看一区二区三区| 在线观看舔阴道视频| 999精品在线视频| 亚洲第一青青草原| 午夜福利在线观看吧| 欧美日韩亚洲国产一区二区在线观看| 成人永久免费在线观看视频| 国产av在哪里看| 亚洲激情在线av| 啪啪无遮挡十八禁网站| 亚洲男人的天堂狠狠| 欧美 亚洲 国产 日韩一| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 午夜福利影视在线免费观看| 日韩精品免费视频一区二区三区| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址 | 国产精品亚洲一级av第二区| 欧美在线黄色| 51午夜福利影视在线观看| 少妇的丰满在线观看| 热re99久久国产66热| 人人妻,人人澡人人爽秒播| 天堂中文最新版在线下载| 极品人妻少妇av视频| 久久 成人 亚洲| 男人舔女人的私密视频| 极品教师在线免费播放| 亚洲成a人片在线一区二区| 午夜91福利影院| www.自偷自拍.com| videosex国产| 真人一进一出gif抽搐免费| 高清在线国产一区| 国产精品98久久久久久宅男小说| av中文乱码字幕在线| 国产免费现黄频在线看| 丝袜美腿诱惑在线| 久久久久九九精品影院| 日本wwww免费看| 亚洲avbb在线观看| 色老头精品视频在线观看| 亚洲国产精品999在线| 午夜亚洲福利在线播放| 国产成人欧美在线观看| 在线观看舔阴道视频| 色在线成人网| 国产av精品麻豆| 人人妻人人澡人人看| 成人精品一区二区免费| 亚洲av成人不卡在线观看播放网| 亚洲,欧美精品.| 在线观看午夜福利视频| 国产片内射在线| 国产精品99久久99久久久不卡| 国产又爽黄色视频| 久久久久久久久久久久大奶| 91老司机精品| 午夜两性在线视频| 另类亚洲欧美激情| 免费搜索国产男女视频| 丰满人妻熟妇乱又伦精品不卡| 欧美 亚洲 国产 日韩一| 亚洲成人精品中文字幕电影 | 99精品久久久久人妻精品| 欧美久久黑人一区二区| 成人特级黄色片久久久久久久| 免费av毛片视频| 国产黄色免费在线视频| 91大片在线观看| 一边摸一边做爽爽视频免费| 国产免费av片在线观看野外av| 午夜免费激情av| 成人18禁高潮啪啪吃奶动态图| 国产无遮挡羞羞视频在线观看| 天堂动漫精品| 视频区图区小说| 亚洲欧美一区二区三区久久| 精品人妻1区二区| 日本免费a在线| 高清av免费在线| 亚洲精品一卡2卡三卡4卡5卡| 国产精品免费一区二区三区在线| 国产精品偷伦视频观看了| 午夜免费鲁丝| 色在线成人网| 久久九九热精品免费| xxx96com| 12—13女人毛片做爰片一| 91成年电影在线观看| 精品国产一区二区久久| 免费在线观看视频国产中文字幕亚洲| 在线观看一区二区三区激情| 51午夜福利影视在线观看| 免费久久久久久久精品成人欧美视频| 国产视频一区二区在线看| 亚洲熟妇中文字幕五十中出 | 在线观看66精品国产| 国产91精品成人一区二区三区| 久久午夜亚洲精品久久| 国产1区2区3区精品| 嫩草影视91久久| 电影成人av| 淫妇啪啪啪对白视频| ponron亚洲| 嫩草影院精品99| 久久久国产一区二区| 中文亚洲av片在线观看爽| 88av欧美| 桃色一区二区三区在线观看| 老司机在亚洲福利影院| 99国产精品免费福利视频| 国产精品秋霞免费鲁丝片| 99国产精品99久久久久| 久久国产乱子伦精品免费另类| а√天堂www在线а√下载| 久久久久久久久免费视频了| 黄色 视频免费看| 国产精品日韩av在线免费观看 | 操出白浆在线播放| 男男h啪啪无遮挡| 成人三级黄色视频| a级毛片在线看网站| 国产成人av激情在线播放| 国产野战对白在线观看| 日韩人妻精品一区2区三区| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线美女| 99精国产麻豆久久婷婷| 黑人猛操日本美女一级片| 久久久久久人人人人人| 一夜夜www| 最近最新中文字幕大全电影3 | 国产午夜精品久久久久久| 精品一区二区三区四区五区乱码| 曰老女人黄片| 亚洲精品一二三| 日本wwww免费看| 老司机在亚洲福利影院| 十八禁网站免费在线| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 国产精品自产拍在线观看55亚洲| 亚洲人成电影观看| 亚洲男人的天堂狠狠| 国产视频一区二区在线看| 亚洲中文av在线| 人妻久久中文字幕网| 999久久久精品免费观看国产| 久久久久久大精品| 精品久久久久久成人av| 身体一侧抽搐| 久久中文字幕一级| 国产精品永久免费网站| 午夜精品国产一区二区电影| 欧美日韩亚洲综合一区二区三区_| 在线播放国产精品三级| 老熟妇仑乱视频hdxx| 一夜夜www| 欧美最黄视频在线播放免费 | 久久久水蜜桃国产精品网| 亚洲人成伊人成综合网2020| 国产亚洲av高清不卡| 在线观看午夜福利视频| 一级,二级,三级黄色视频| 午夜久久久在线观看| 黑人巨大精品欧美一区二区蜜桃| 黄色视频,在线免费观看| 色综合欧美亚洲国产小说| 亚洲全国av大片| 夜夜爽天天搞| 亚洲色图综合在线观看| 欧美av亚洲av综合av国产av| 亚洲一区二区三区欧美精品| 免费一级毛片在线播放高清视频 | av天堂在线播放| 俄罗斯特黄特色一大片| 熟女少妇亚洲综合色aaa.| 女同久久另类99精品国产91| 日本免费a在线| 精品久久久久久久久久免费视频 | 亚洲精品一二三| 国产精品秋霞免费鲁丝片| 一级黄色大片毛片| www.999成人在线观看| 精品午夜福利视频在线观看一区| 国产无遮挡羞羞视频在线观看| 久久中文字幕人妻熟女| 国产aⅴ精品一区二区三区波| av天堂在线播放| 中国美女看黄片| 看片在线看免费视频| 久久亚洲精品不卡| 69精品国产乱码久久久| 九色亚洲精品在线播放| 少妇裸体淫交视频免费看高清 | 99在线视频只有这里精品首页| 色婷婷久久久亚洲欧美| 在线免费观看的www视频| 欧美丝袜亚洲另类 | 看免费av毛片| 18禁观看日本| 国内毛片毛片毛片毛片毛片| 99精品在免费线老司机午夜| 久久精品国产亚洲av香蕉五月| 如日韩欧美国产精品一区二区三区| 9191精品国产免费久久| 一区福利在线观看| 69精品国产乱码久久久| 欧美日韩精品网址| 91成年电影在线观看| 黑人欧美特级aaaaaa片| 午夜福利欧美成人| 一区二区三区精品91| 91九色精品人成在线观看| 巨乳人妻的诱惑在线观看| 欧美乱妇无乱码| 成年版毛片免费区| 国产精品爽爽va在线观看网站 | 欧美 亚洲 国产 日韩一| 午夜免费观看网址| 日本一区二区免费在线视频| 久热爱精品视频在线9| 淫秽高清视频在线观看| www国产在线视频色| 午夜免费成人在线视频| 国产欧美日韩一区二区精品| 老司机在亚洲福利影院| 中文字幕另类日韩欧美亚洲嫩草| 久久热在线av| 精品国产美女av久久久久小说| 久久草成人影院| 亚洲精品在线观看二区| 波多野结衣一区麻豆| 曰老女人黄片| 国产精品av久久久久免费| 99精品在免费线老司机午夜| 宅男免费午夜| 色尼玛亚洲综合影院| 久久久久亚洲av毛片大全| 国产精品成人在线| 手机成人av网站| 视频区欧美日本亚洲| 在线播放国产精品三级| 国产在线观看jvid| 精品无人区乱码1区二区| 久久婷婷成人综合色麻豆| 亚洲五月天丁香| 免费日韩欧美在线观看| 色综合站精品国产| 久久人人爽av亚洲精品天堂| 婷婷六月久久综合丁香| 精品欧美一区二区三区在线| 18禁观看日本| 丁香六月欧美| 级片在线观看| 99re在线观看精品视频| 制服人妻中文乱码| 日韩欧美国产一区二区入口| 制服诱惑二区| 国产亚洲精品久久久久久毛片| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 国产一区二区在线av高清观看| 一级毛片女人18水好多| 亚洲成人国产一区在线观看| 多毛熟女@视频| 国产高清激情床上av| 亚洲欧美精品综合久久99| 巨乳人妻的诱惑在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品综合久久久久久久免费 | 好看av亚洲va欧美ⅴa在| 一进一出好大好爽视频| 法律面前人人平等表现在哪些方面| 免费看a级黄色片| 免费在线观看亚洲国产| 村上凉子中文字幕在线| 国产成人一区二区三区免费视频网站| 精品一区二区三区视频在线观看免费 | 在线观看一区二区三区激情| 欧美丝袜亚洲另类 | 国产又色又爽无遮挡免费看| 别揉我奶头~嗯~啊~动态视频| 欧美日韩av久久| 免费搜索国产男女视频| 老司机在亚洲福利影院| 久久人妻熟女aⅴ| 免费在线观看视频国产中文字幕亚洲| 琪琪午夜伦伦电影理论片6080| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看| 黑人欧美特级aaaaaa片| 美女高潮喷水抽搐中文字幕| 久久热在线av| www.999成人在线观看| 国产成人av激情在线播放| 99精品欧美一区二区三区四区| 两个人看的免费小视频| 天堂动漫精品| 久久 成人 亚洲| videosex国产| 亚洲午夜理论影院| 极品教师在线免费播放| 欧美乱码精品一区二区三区| 国内毛片毛片毛片毛片毛片| 一本综合久久免费| 亚洲精品中文字幕一二三四区| 搡老熟女国产l中国老女人| 99精国产麻豆久久婷婷| 国产成+人综合+亚洲专区| 国内毛片毛片毛片毛片毛片| 欧美人与性动交α欧美软件| 精品国产乱码久久久久久男人| 日韩免费高清中文字幕av| 久久人妻熟女aⅴ| 欧美乱色亚洲激情| 极品教师在线免费播放| 在线观看舔阴道视频| 99国产综合亚洲精品| 免费一级毛片在线播放高清视频 | 日韩欧美一区二区三区在线观看| 亚洲精品国产一区二区精华液| 免费少妇av软件| 久久草成人影院|