• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging

    2015-02-16 01:44:07JingYnGoChen
    Journal of Magnesium and Alloys 2015年3期

    M.G.Jing,H.Yn*,L.Go**,R.S.Chen

    aThe Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    bUniversity of Chinese Academy of Sciences,19Yuquan Road,Beijing 100049,ChinacGeneral Motors China Science Lab,56 Jinwan Road,Pudong,Shanghai 201206,China

    Microstructural evolution of Mg-7Al-2Sn Mg alloy during multi-directional impact forging

    M.G.Jianga,b,H.Yana,*,L.Gaoc,**,R.S.Chena

    aThe Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China

    bUniversity of Chinese Academy of Sciences,19Yuquan Road,Beijing 100049,ChinacGeneral Motors China Science Lab,56 Jinwan Road,Pudong,Shanghai 201206,China

    Multi-directional impact forging(MDIF)was applied to a Mg-7Al-2Sn(wt.%)Mg alloy to investigate its effect on the microstructural evolution.MDIF process exhibited high grain refnement effciency.After MDIF 200 passes,the grain size drastically decreased to 20μm from the initial coarse grains of~500μm due to dynamic recrystallization(DRX).Meanwhile,original grain boundaries remained during MDIF and large numbers of fne spherical β-Mg17Al12particles dynamically precipitated along the original grain boundaries with high Al concentration, acting as effective pinning obstacles for the suppression of DRXed grain growth.Besides,micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.

    Magnesium alloy;Forging;Grain refnement;Dynamic precipitation

    1.Introduction

    Magnesium(Mg)alloys are becoming increasingly attractive for potential application in the automobiles and aerospace industries because of low density and high specifc strength. However,due to the hexagonal close-packed(HCP)structures, Mg alloys usually exhibit undesirable ductility and strength at ambient conditions,which limits their widespread application.

    Grain refnement has proven to be an effective approach to overcome the current drawbacks of Mg alloys.Therefore,various methodshavebeenappliedtoMgalloystoimprovethemechanical properties by grain refnement,such as equal channel angular extrusion(ECAE)[1,2],cyclic extrusion and compression(CEC) [3,4],friction stir processing(FSP)[5,6]and multi-directional forging(MDF)[7,8].Feng et al.[5]reported that FSP resulted in remarkable grain refnement(from coarse as-cast grains to~15μm)in an as-cast AZ91 Mg alloy,thereby improving signifcantly the mechanical properties.Miura et al.[7]applied MDF to an AZ61 Mg alloy and obtained ultrafne grains of~0.6μm,and consequently,an excellent balance of strength and ductility(yield stress of 480 MPa and elongation 5%).However,these methods still stay at laboratory-scale research at the present due to small size of processed sample,complicated processing procedure and expensive equipment,which directly leads to low production effciency and high production costs.In our previous study[9],multidirectional impact forging(MDIF)was newly proposed and successfully applied to an AZ61 Mg alloy.MDIF exhibited high grain refnement effciency,and has proven to be a simple and highly effcient method to synchronously enhance strength and ductility.

    On the other hand,Mg-Al-Sn(AT)Mg alloy[10]was newly designed by General Motors for automotive structural applications and exhibited more balanced mechanical properties and higher thermal stability compared to AZ91 alloy.In this study, therefore,this Mg-7Al-2Sn(wt.%)alloy was subjected to MDIF and the microstructural evolution during MDIF process was investigated in detail.

    Fig.1.Macroscopic morphology of cubic AT72 alloy samples after MDIF(a)20,(b)50,(c)100 and(d)200 passes.

    2.Experimental procedures

    The material used in this study was AT72 Mg alloy(6.88 wt.%Al,1.94 wt.%Sn,0.33 wt.%Mn,and-balance Mg). Cubic block sampleswith a dimension of65 mm× 65 mm×65 mm were machined from as-cast AT72 Mg ingot and solution treated at 420°C for 24 h.Prior to MDIF process, these samples were heated to the processing temperature of 300°C in an electric resistant furnace and kept for 30 min. MDIF process was carried out using an industrial air pneumatic hammer machine according to the procedures described in our previous study[9].In brief,the forging direction was changed by 90°from pass to pass(i.e.X toY to Z to X to…).The cubic samples were MDIFed to different forging passes and fnally cooled down in air.All the MDIFed samples were free from any surface defects as shown in Fig.1.

    Microstructure was observed on the central part of the cubic samples parallel to the last forging direction(LFD),as shown in Fig.2,using optical microscopy(OM)and scanning electron microscopy (SEM,Philips XL30 ESEM-FEG/EDAX) equipped with an attached energy-dispersive X-ray(EDX).The specimens for the microstructural observation were etched with acetic picral(2 g of picric acid,5 ml of acetic acid,5 ml of water and 25 ml of ethanol).

    Fig.2.Schematic illustration of microstructural observation spot in the MDIFed cubic samples.LFD refers to last forging direction.

    3.Results and discussion

    3.1.Microstructures before MDIF process

    Fig.3 shows the microstructures of as-cast AT72 alloy and corresponding EDX results of the second phase particles.The as-cast alloy(Fig.3a)exhibited a typical network eutectic microstructure comprising of α-Mg matrix and coarse eutectic intermetallic phases distributing along the grain boundaries and within the grain interiors.The BSE image(Fig.3b)shows that the coarse eutectic phases distributing at the grain boundaries consisted of second phases A and B.The corresponding EDX results of these second phases reveal that second phases A and B were β-Mg17Al12and Mg2Sn,respectively,which is consistent with the results reported by Luo et al.[10].According to the binary phase diagram[11],the binary eutectic temperatures of Mg17Al12and Mg2Sn phases are 437°C and 562°C,respectively.Higher thermal stability of Mg2Sn phase makes it more diffcult to be dissolved through solution treatment.

    Fig.4a shows the optical microstructure of AT72 alloy after solution treatment at 420°C for 24 h.The grains were dramatically coarsened up to~500μm and network eutectic phases were remarkably dissolved into the Mg matrix,thereby resulting in a supersaturated solid solution.However,it can be seen that some globular or cubic second phase particles still existed within the grain interiors.According to the EDX result in Fig.4b,these remained particles within grain interiors were determined to be Al-Mn second phase rather than Mg2Sn considering the negligible Sn concentration.Different from our expectation,no Mg2Sn phase was detected by EDX analysis. Thus,it can be deduced that Mg2Sn phase was dissolved into the Mg matrix during solution treatment.In Mg-Al alloys, Al-Mn particles are usually observed in the micrograph as globular morphology,which could beAl4Mn[12,13]orAl8Mn5[14,15].These globular or cubic Al-Mn phase particles remained during solution treatment play an important role in the MDIF process,which will be discussed later in detail.

    3.2.Microstructures after MDIF process

    Fig.5 shows the microstructures of MDIFed AT72 alloy with different forging passes.Obviously,the initial coarse grains of~500μm were signifcantly refned due to dynamicrecrystallization(DRX),suggesting the high grain refnement effciency of MDIF process.

    Fig.3.(a)Optical,(b)BSE images of as-cast AT72 alloy and(c,d)corresponding EDX results of the second phase particles indicated in the image(b).

    Fig.4.(a)Optical microstructure of solution treated AT72 alloy and(b)EDX result of the remained particles within grain interiors after solution treatment.

    After 20 forging passes,as shown in Fig.5a and b,grain structure was inhomogeneous and consisted of relatively coarse DRXed grains of~60μm in the regions indicated by the blue circles and fne DRXed grains of~20μm in the regions indicated by the white circles.Jin et al.[16]reported that the uneven rate of DRX at different grains was responsible for the inhomogeneous microstructures.Apparently,the regions containing the coarse and fne grains were separately distributed in different original grains,as indicated by blue and white circles in Fig.5a,which means that these different original grains experienced uneven rate of DRX.Thus,the inhomogeneous grain structure in this work was related to the uneven recrystallization rate due to the different orientations of original grains.Furthermore,our previous study[17]revealed the grain refnement evolution during MDIF in an AZ61 Mg alloy and proposed that the uneven rate of DRX in the early forging passes was ascribed to the activation of different twin types in different original grains.However,the microstructures during initial MDIF process were not studied in this study.

    With increasing forging passes to 50 passes,the relatively coarse DRXed grains in some original grains shown in Fig.5a are consumed by further DRX process(Fig.5c and d).After forging 100 passes,homogenous grain structure in different original grains was achieved and the average grain size of DRXed grains was~35μm(Fig.5e and f).With continuous forging up to 200 passes,homogenous equiaxial DRXed grains of~20μm were achieved(Fig.5g and h),indicating that DRX in different original grains had been nearly completed.This further grain refnement by DRX can be ascribed to continuous change of forging direction from pass to pass during MDIF.The orientation relationship between basal planes of grains and loading direction is always changing unlike rolling process[16],i.e.,the basal plane of some grains is perpendicular to the compression stress,which is not favorable for basal slip due to the nearly zero resolved shear stress.Thus,the dominant basal slip in the relatively coarse grains always stays active during MDIF.Besides, even non-basal slips are likely to operate due to grain refnement and high temperature stimulation(~300°C).Sitdikov et al.[18] reported that the interaction between basal slip dislocations and non-basal slip dislocations facilitates the formation of sub-grain boundaries and such sub-grain boundaries gradually lead to the development of high angle grain boundaries with increasing strain,fnally forming new DRXed grains.Meanwhile combined with the results in our previous study[17],it can be determined thatdiscontinuousDRXmechanismisresponsibleforthefurther grain refnement of the relatively coarse DRXed grains after 20 forging passes,fnally resulting in a homogenous microstructure with grains of~20μm.

    Besides the grain refnement,another two aspects,i.e.,the original grain boundaries and dynamic precipitation need to be mentioned.Original grain boundaries indicated by white arrows in Fig.5 were easily observed and no tendency of disappearance was detected during the whole MDIF process. Dynamic precipitation in dark color was formed along original grain boundaries as shown in Fig.5.It can be clearly seen in the magnifed images in Fig.6 that fne spherical second phase particles less than 1μm dynamically precipitated near the original grain boundaries.EDX result(Fig.6d)reveals that these globular second phase particles were β-Mg17Al12rather than Mg2Sn.For Mg-Al alloys,it takes up to about 40 h to achieve the complete dissolution of the eutectic β-phase due to low diffusion rate of Al in Mg[19].In this case,solution treatment at 420°C for 24 h could not provide suffcient time for uniform distribution of solute Al atoms into the Mg matrix,resulting in the higherAl concentration near original grain boundaries than within grain interiors.Thus,when samples were subjected to MDIF,β-Mg17Al12phase particles were preferentially formed along original grain boundaries with higher Al concentration regions and spherical shaped particles dynamically precipitated from the energy perspective.Much fner DRXed grains of less than 3μm were observed in Fig.6c,which indicates that homogenously distributed β-Mg17Al12precipitates near originalgrain boundaries were effective pinning obstacles for suppressing the DRXed grain growth.

    Fig.5.Optical microstructures ofAT72 alloy samples after MDIF(a,b)20,(c,d)50,(e,f)100 and(g,h)200 passes.Blue and white circles in(a)indicate the region of coarse and fne grains,respectively.White arrows indicate the original grain boundaries.

    Fig.6.(a)Optical,(b,d)SEM images and(c)corresponding EDX result of dynamic precipitation in AT72 alloy sample after MDIF 200 passes.

    Fig.7 shows the SEM images of micro-cracks and EDX results of the globular or cubic particles in AT72 alloy samples forged to different passes.Apparently,micro-cracks propagated along the globular or cubic particles irrespective of forging passes.EDX results in Fig.7 reveal that these particles were Al-Mn phase,which could beAl4Mn[12,13]orAl8Mn5[14,15]. The corresponding average Al/Mn weight ratio in these particles was around 1.61,which is close to the ratio of 1.96 for Al4Mn.According to the Al-Mn equilibrium phase diagram [11],the concentration of Mn(0.33 wt.%)in AT72 alloy is suffcient to form Al-Mn particles.The melting point of Al-Mn phase is as high as 658°C,which is much higher than that of β-Mg17Al12(437°C)and Mg2Sn phase(562°C).Thus, these globular or cubic Al-Mn particles remained stable during solution treatment due to their higher thermal stability.It can be clearly observed that micro-cracks propagated along theAl-Mn particles aggregated area,which may be related to the progressively accumulated stress during MDIF process.Micro-cracks would be initiated at the interface between the globular or cubic particles and the matrix.With further deformation,microcracks propagated along these particles to release the accumulated stress.The relationship between the micro-cracks and second phase during deformation has been discussed in many studies[5,14,20].Chen et al.[14]reported that micro-cracks nucleated at the interface between the β-Mg17Al12phase and the matrix during tensile deformation,which is ascribed to incompatibility between the body-centered cubic structure of β-Mg17Al12phase and HCP structure of Mg matrix.In this work,micro-cracks were possible due to incompatibility between Al-Mn phase and the Mg matrix.

    4.Conclusions

    In this study,MDIF process was applied to AT72 Mg alloy and the microstructural evolution was investigated.After MDIF 20 passes,inhomogeneous grain structure formed due to uneven rate of DRX in different original grains.With continuous forging up to 200 passes,fully DRXed microstructure was obtained with fne grains of 20μm, suggesting the high grain refnement effciency of MDIF process.Meanwhile,large numbers of fne spherical shaped β-Mg17Al12phase dynamically precipitated along the original grain boundaries with high Al concentration during MDIF, acting as effective pinning obstacles for the suppression of DRXed grain growth.Besides,micro-cracks nucleated during MDIF and propagated along the interface between the remained globular or cubic Al-Mn particles and Mg matrix.

    Acknowledgements

    The authors gratefully acknowledge the fnancial support from General Motors Corporation,the National Basic Research Program of China(973 Program,No.2013CB632202)and National Natural Science Foundation of China(NSFC,No. 51301173).

    Fig.7.SEM images of micro-cracks and EDX results of the globular or cubic particles inAT72 alloy samples after MDIF(a)20,(b)50,(c)100 and(d)200 passes.

    [1]S.Ding,W.Lee,C.Chang,L.Chang,P.Kao,SCR Mater 59(2008) 1006–1009.

    [2]W.Tang,R.Chen,J.Zhou,E.Han,Mater.Sci.Eng.A 499(2009) 404–410.

    [3]J.Lin,Q.Wang,L.Peng,H.J.Roven,J.Alloys Comp.476(2009) 441–445.

    [4]W.Zhang,Y.Yu,X.Zhang,W.Chen,E.Wang,Mater.Sci.Eng.A 600 (2014)181–187.

    [5]A.Feng,Z.Ma,SCR Mater 56(2007)397–400.

    [6]W.Yuan,R.Mishra,Mater.Sci.Eng.A 558(2012)716–724.

    [7]H.Miura,T.Maruoka,X.Yang,J.J.Jonas,SCR Mater 66(2012)49–51.

    [8]W.Yuan-Zhi,Y.Hong-Ge,C.Ji-Hua,D.Yong-Guo,Z.Su-Qin,S.Bin, Mater.Sci.Eng.A 556(2012)164–169.

    [9]M.G.Jiang,H.Yan,R.S.Chen,Mater.Sci.Eng.A 621(2015)204–211.

    [10]A.A.Luo,P.Fu,L.Peng,X.Kang,Z.Li,T.Zhu,Metall.Mater.Trans.A 43(2012)360–368.

    [11]A.A.Nayeb-Hashemi,J.B.Clark,Phase Diagram of Binary Magnesium Alloys,ASM International,Materials Parks,OH,1988.

    [12]I.A.Yakubtsov,B.J.Diak,C.A.Sager,B.Bhattacharya,W.D.MacDonald, M.Niewczas,Mater.Sci.Eng.A 496(2008)247–255.

    [13]H.Asgari,J.A.Szpunar,A.G.Odeshi,Mater.Des.61(2014)26–34.

    [14]B.Chen,D.-L.Lin,L.Jin,X.-Q.Zeng,C.Lu,Mater.Sci.Eng.A 483–84 (2008)113–116.

    [15]Y.Wang,M.Xia,Z.Fan,X.Zhou,G.E.Thompson,Intermetallics 18 (2010)1683–1689.

    [16]Q.Jin,S.-Y.Shim,S.-G.Lim,SCR Mater 55(2006)843–846.

    [17]M.G.Jiang,H.Yan,R.S.Chen,J.Alloys Comp.650(2015)399–409.

    [18]O.Sitdikov,R.Kaibyshev,Mater.Trans.42(2001)1928–1937.

    [19]S.Kleiner,O.Beffort,P.Uggowitzer,SCR Mater 51(2004)405–410.

    [20]H.Yan,S.Xu,R.Chen,S.Kamado,T.Honma,E.Han,J.Alloys Comp. 566(2013)98–107.

    Received 22 September 2014;revised 17 August 2015;accepted 25 August 2015 Available online 1 October 2015

    *Corresponding author.The Group of Magnesium Alloys and Their Applications,Institute of Metal Research,Chinese Academy of Sciences,62 Wencui Road,Shenyang 110016,China.Tel.:+86 24 23926646;fax:+86 24 23894149.

    E-mail address:hyan@imr.ac.cn(H.Yan).

    **Corresponding author.General Motors China Science Lab,56 Jinwan Road, Pudong,Shanghai 201206,China.Tel.:+86 21 28987160;fax:+86 21 58321165.

    E-mail address:lei.gao@gm.com(L.Gao).

    http://dx.doi.org/10.1016/j.jma.2015.08.005

    2213-9567/?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    ?2015 Production and hosting by Elsevier B.V.on behalf of Chongqing University.

    97碰自拍视频| xxxwww97欧美| 看片在线看免费视频| 全区人妻精品视频| 色综合亚洲欧美另类图片| 亚洲av一区综合| 午夜激情福利司机影院| 在线播放无遮挡| 国产精品综合久久久久久久免费| 国产私拍福利视频在线观看| 久久国内精品自在自线图片| 在线播放国产精品三级| 免费av不卡在线播放| 最好的美女福利视频网| 久久精品综合一区二区三区| 精品人妻熟女av久视频| 99热精品在线国产| 一区二区三区高清视频在线| 亚洲av成人av| 一本一本综合久久| 老女人水多毛片| 国语自产精品视频在线第100页| 国产三级在线视频| 国产精品女同一区二区软件 | 人人妻人人澡欧美一区二区| 国产精品三级大全| 国产精华一区二区三区| 国产在视频线在精品| 亚洲av五月六月丁香网| 久久久成人免费电影| 男女视频在线观看网站免费| 级片在线观看| 三级男女做爰猛烈吃奶摸视频| 色噜噜av男人的天堂激情| 男女之事视频高清在线观看| 亚洲av电影不卡..在线观看| 国产黄片美女视频| 免费电影在线观看免费观看| 欧美xxxx黑人xx丫x性爽| 亚洲美女搞黄在线观看 | 欧美日韩精品成人综合77777| 一级毛片久久久久久久久女| 中出人妻视频一区二区| 高清在线国产一区| 国产亚洲精品久久久久久毛片| 精品一区二区免费观看| 精品久久久久久久末码| 免费黄网站久久成人精品| 免费看光身美女| 无遮挡黄片免费观看| 九九热线精品视视频播放| 久99久视频精品免费| 日日夜夜操网爽| 国产高清视频在线播放一区| 国产精品精品国产色婷婷| 一级黄片播放器| 波多野结衣巨乳人妻| 久久久久久九九精品二区国产| 国产男人的电影天堂91| 午夜精品久久久久久毛片777| 免费观看精品视频网站| 亚洲 国产 在线| 久久精品综合一区二区三区| 国产精品伦人一区二区| 免费无遮挡裸体视频| 久久香蕉精品热| 中文亚洲av片在线观看爽| 亚洲最大成人av| 九九在线视频观看精品| 18+在线观看网站| 亚洲第一区二区三区不卡| 搡女人真爽免费视频火全软件 | 性色avwww在线观看| 免费在线观看成人毛片| 国产精品人妻久久久久久| 永久网站在线| 亚洲熟妇熟女久久| 午夜激情欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲自拍偷在线| 噜噜噜噜噜久久久久久91| 中文字幕精品亚洲无线码一区| 成人欧美大片| 男人舔奶头视频| 少妇的逼好多水| 在现免费观看毛片| 色综合婷婷激情| 欧美+亚洲+日韩+国产| 琪琪午夜伦伦电影理论片6080| 99精品久久久久人妻精品| 国产大屁股一区二区在线视频| 波野结衣二区三区在线| 久久久久久久久久黄片| 久9热在线精品视频| 国产色婷婷99| 亚洲 国产 在线| 国国产精品蜜臀av免费| 日本黄色片子视频| 少妇高潮的动态图| 免费电影在线观看免费观看| 国产真实乱freesex| 日日夜夜操网爽| 99久久久亚洲精品蜜臀av| 国产精品一区二区三区四区久久| 精品无人区乱码1区二区| 色综合婷婷激情| 日本五十路高清| a级毛片a级免费在线| 午夜激情欧美在线| 国内精品一区二区在线观看| 香蕉av资源在线| 久久久久国内视频| 国产欧美日韩精品一区二区| 色在线成人网| 啪啪无遮挡十八禁网站| 十八禁国产超污无遮挡网站| 午夜福利高清视频| 少妇裸体淫交视频免费看高清| 美女高潮的动态| 成人永久免费在线观看视频| 久久亚洲精品不卡| 在现免费观看毛片| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 夜夜爽天天搞| 精品久久久久久久久久免费视频| 欧美+亚洲+日韩+国产| 嫩草影院精品99| 桃色一区二区三区在线观看| 亚洲色图av天堂| 男女做爰动态图高潮gif福利片| 国产精品久久视频播放| 联通29元200g的流量卡| 人人妻人人澡欧美一区二区| 毛片一级片免费看久久久久 | 国产一区二区三区av在线 | 亚洲av日韩精品久久久久久密| 国产麻豆成人av免费视频| 中文字幕av在线有码专区| 午夜福利在线在线| 亚洲国产精品成人综合色| 黄色丝袜av网址大全| 熟女电影av网| a级毛片免费高清观看在线播放| x7x7x7水蜜桃| 婷婷亚洲欧美| 亚洲av美国av| aaaaa片日本免费| 欧美人与善性xxx| av国产免费在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲av不卡在线观看| 麻豆成人av在线观看| 99热只有精品国产| 免费在线观看成人毛片| 在线a可以看的网站| 97超视频在线观看视频| 免费在线观看成人毛片| 欧美日韩综合久久久久久 | 日本三级黄在线观看| 日本成人三级电影网站| 欧美日韩中文字幕国产精品一区二区三区| 极品教师在线视频| 国产亚洲精品久久久久久毛片| 欧美黑人欧美精品刺激| 女人被狂操c到高潮| 国产毛片a区久久久久| 他把我摸到了高潮在线观看| 国产成人av教育| 熟妇人妻久久中文字幕3abv| 日韩欧美三级三区| 久久99热6这里只有精品| 久久久久久久久久成人| 国产精品人妻久久久影院| 麻豆成人午夜福利视频| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 亚洲av免费在线观看| 乱系列少妇在线播放| 日日摸夜夜添夜夜添av毛片 | 国产色爽女视频免费观看| 国产精品综合久久久久久久免费| 最近中文字幕高清免费大全6 | 深夜a级毛片| 精品久久久久久久末码| 成人精品一区二区免费| 99久久精品热视频| 97超级碰碰碰精品色视频在线观看| 伊人久久精品亚洲午夜| 日韩欧美三级三区| 91精品国产九色| 九九在线视频观看精品| 国产精品女同一区二区软件 | 丰满人妻一区二区三区视频av| 真人一进一出gif抽搐免费| 午夜免费男女啪啪视频观看 | 欧美成人a在线观看| 亚洲三级黄色毛片| 搡女人真爽免费视频火全软件 | 一级av片app| 婷婷精品国产亚洲av| 高清日韩中文字幕在线| 欧美色欧美亚洲另类二区| 日韩,欧美,国产一区二区三区 | 欧美日韩国产亚洲二区| 88av欧美| 精品午夜福利视频在线观看一区| 亚洲成人久久性| 天美传媒精品一区二区| 国产色婷婷99| 草草在线视频免费看| 国产精品嫩草影院av在线观看 | 国产av不卡久久| 夜夜夜夜夜久久久久| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站| 欧美极品一区二区三区四区| 欧美又色又爽又黄视频| 亚洲av免费高清在线观看| 久久久久免费精品人妻一区二区| 国产欧美日韩精品亚洲av| 欧美色欧美亚洲另类二区| 看十八女毛片水多多多| av在线天堂中文字幕| 国产久久久一区二区三区| 悠悠久久av| 在线观看美女被高潮喷水网站| 直男gayav资源| 亚洲av中文av极速乱 | 中文亚洲av片在线观看爽| 成人特级黄色片久久久久久久| 嫩草影院入口| 日本精品一区二区三区蜜桃| 九九热线精品视视频播放| 少妇猛男粗大的猛烈进出视频 | 国产探花在线观看一区二区| 最新中文字幕久久久久| 国产麻豆成人av免费视频| 亚洲av二区三区四区| 国产一区二区在线av高清观看| 欧美中文日本在线观看视频| 一区二区三区高清视频在线| 精品久久久久久久末码| 免费看光身美女| 国产成年人精品一区二区| 免费看av在线观看网站| 美女高潮的动态| 欧美3d第一页| 国产久久久一区二区三区| 麻豆久久精品国产亚洲av| 天美传媒精品一区二区| 午夜日韩欧美国产| 日本精品一区二区三区蜜桃| 色尼玛亚洲综合影院| 嫩草影视91久久| 嫩草影院入口| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 大型黄色视频在线免费观看| 男人和女人高潮做爰伦理| 欧美绝顶高潮抽搐喷水| 色综合站精品国产| 中文字幕久久专区| 日本 av在线| 中文字幕精品亚洲无线码一区| 国产精品亚洲一级av第二区| 日本a在线网址| 黄色欧美视频在线观看| 九九久久精品国产亚洲av麻豆| 国产成人aa在线观看| 国产精品1区2区在线观看.| 成人特级av手机在线观看| 欧美国产日韩亚洲一区| 美女大奶头视频| 最近在线观看免费完整版| 日韩,欧美,国产一区二区三区 | 成年版毛片免费区| 深爱激情五月婷婷| 真人做人爱边吃奶动态| 哪里可以看免费的av片| 国产 一区 欧美 日韩| 日韩欧美精品v在线| 禁无遮挡网站| 又紧又爽又黄一区二区| 岛国在线免费视频观看| 色5月婷婷丁香| 亚洲精品色激情综合| 精品午夜福利视频在线观看一区| 村上凉子中文字幕在线| 欧美xxxx性猛交bbbb| 亚洲成人免费电影在线观看| 免费搜索国产男女视频| 黄色配什么色好看| 色综合站精品国产| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 国产综合懂色| 搡女人真爽免费视频火全软件 | 国产综合懂色| 色综合亚洲欧美另类图片| 亚洲精品456在线播放app | 99热这里只有精品一区| 精品人妻视频免费看| 午夜爱爱视频在线播放| 我的老师免费观看完整版| 99九九线精品视频在线观看视频| 亚洲精品乱码久久久v下载方式| 欧美又色又爽又黄视频| 亚洲人与动物交配视频| 两个人的视频大全免费| 午夜免费激情av| 成人高潮视频无遮挡免费网站| 久久精品综合一区二区三区| 亚洲三级黄色毛片| 亚洲熟妇中文字幕五十中出| 久久人妻av系列| 一a级毛片在线观看| 韩国av在线不卡| 三级国产精品欧美在线观看| 日本一二三区视频观看| 久久香蕉精品热| 一个人观看的视频www高清免费观看| 日韩欧美在线乱码| 男女边吃奶边做爰视频| 啦啦啦观看免费观看视频高清| 99久久精品热视频| 久久久久久久久久久丰满 | bbb黄色大片| av.在线天堂| 夜夜爽天天搞| 国产乱人伦免费视频| 91在线精品国自产拍蜜月| 欧美高清成人免费视频www| 精品久久久久久久久av| 免费在线观看日本一区| 国产高清视频在线观看网站| 精品久久久噜噜| 日韩欧美一区二区三区在线观看| 亚洲久久久久久中文字幕| 日韩中字成人| 成熟少妇高潮喷水视频| 欧美bdsm另类| 精品久久久久久成人av| 男人舔女人下体高潮全视频| 一卡2卡三卡四卡精品乱码亚洲| 村上凉子中文字幕在线| 91精品国产九色| 亚洲国产精品sss在线观看| 亚洲一区高清亚洲精品| 亚洲欧美日韩无卡精品| 精品午夜福利视频在线观看一区| avwww免费| 91麻豆av在线| 成人国产麻豆网| 内地一区二区视频在线| 国产精品av视频在线免费观看| 特大巨黑吊av在线直播| 国产高清激情床上av| 人妻久久中文字幕网| 午夜福利欧美成人| 精品99又大又爽又粗少妇毛片 | 国产成人a区在线观看| 九九久久精品国产亚洲av麻豆| 亚洲精品乱码久久久v下载方式| 精品国产三级普通话版| 国产av一区在线观看免费| www.色视频.com| 免费黄网站久久成人精品| 精品久久久久久久久亚洲 | АⅤ资源中文在线天堂| 啦啦啦韩国在线观看视频| 亚洲国产欧洲综合997久久,| 成人欧美大片| 最近视频中文字幕2019在线8| 在线观看舔阴道视频| 露出奶头的视频| 赤兔流量卡办理| 国国产精品蜜臀av免费| 尾随美女入室| 天美传媒精品一区二区| 看十八女毛片水多多多| 嫁个100分男人电影在线观看| 欧美区成人在线视频| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 日韩亚洲欧美综合| 男人舔奶头视频| 国产视频内射| 亚洲精品日韩av片在线观看| 亚洲av不卡在线观看| 午夜a级毛片| 亚洲图色成人| 亚洲一级一片aⅴ在线观看| 国产aⅴ精品一区二区三区波| 91麻豆精品激情在线观看国产| 久久国产精品人妻蜜桃| 欧美精品国产亚洲| 天堂av国产一区二区熟女人妻| 亚洲精品国产成人久久av| 午夜日韩欧美国产| 嫩草影院新地址| 国产精品乱码一区二三区的特点| 亚洲五月天丁香| 欧美日韩综合久久久久久 | .国产精品久久| a在线观看视频网站| 国产极品精品免费视频能看的| 国产欧美日韩一区二区精品| 日韩一本色道免费dvd| 麻豆精品久久久久久蜜桃| 自拍偷自拍亚洲精品老妇| 91精品国产九色| 国产主播在线观看一区二区| 十八禁国产超污无遮挡网站| 国产一区二区亚洲精品在线观看| 91在线观看av| 亚洲七黄色美女视频| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 91久久精品电影网| 国产精品美女特级片免费视频播放器| 日本五十路高清| 成年女人毛片免费观看观看9| 97人妻精品一区二区三区麻豆| 成熟少妇高潮喷水视频| 日韩欧美三级三区| 少妇的逼水好多| 少妇裸体淫交视频免费看高清| 婷婷亚洲欧美| 亚洲最大成人手机在线| 国产乱人视频| 如何舔出高潮| 国产91精品成人一区二区三区| 成人综合一区亚洲| 淫秽高清视频在线观看| 国内精品一区二区在线观看| 国产成人影院久久av| 亚洲中文字幕一区二区三区有码在线看| 熟女人妻精品中文字幕| 日本与韩国留学比较| 国产v大片淫在线免费观看| 黄色女人牲交| 成人综合一区亚洲| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 久久九九热精品免费| 91午夜精品亚洲一区二区三区 | 99热只有精品国产| 免费一级毛片在线播放高清视频| 俄罗斯特黄特色一大片| 欧美最新免费一区二区三区| 亚洲国产色片| 深夜a级毛片| 国产精品永久免费网站| 十八禁网站免费在线| 91在线观看av| 最近最新免费中文字幕在线| 91久久精品电影网| 久久草成人影院| 日日撸夜夜添| 精品一区二区三区视频在线| 国产高潮美女av| 夜夜夜夜夜久久久久| 日韩精品有码人妻一区| 久久久精品大字幕| 露出奶头的视频| 亚洲国产精品合色在线| videossex国产| 日本黄大片高清| 少妇人妻精品综合一区二区 | 两性午夜刺激爽爽歪歪视频在线观看| 久久久久国内视频| 嫩草影视91久久| 老司机福利观看| 国产91精品成人一区二区三区| 国产精品野战在线观看| 欧美成人性av电影在线观看| 亚洲第一区二区三区不卡| 很黄的视频免费| av国产免费在线观看| 老女人水多毛片| 久久久久久大精品| 精品福利观看| 国产淫片久久久久久久久| 国产三级中文精品| 欧美极品一区二区三区四区| 亚洲av成人av| 天天一区二区日本电影三级| 日本欧美国产在线视频| 午夜福利在线在线| 国产av一区在线观看免费| 精品久久久久久久久av| 欧美激情久久久久久爽电影| 国产欧美日韩一区二区精品| 国产91精品成人一区二区三区| 日日摸夜夜添夜夜添小说| 校园人妻丝袜中文字幕| 精品一区二区三区视频在线观看免费| 美女 人体艺术 gogo| 日韩中字成人| 国产探花在线观看一区二区| 狠狠狠狠99中文字幕| 国产亚洲精品久久久久久毛片| 在线免费观看不下载黄p国产 | 窝窝影院91人妻| 校园人妻丝袜中文字幕| 国产极品精品免费视频能看的| 亚洲成a人片在线一区二区| 日韩精品有码人妻一区| 联通29元200g的流量卡| 一夜夜www| 国产熟女欧美一区二区| 国产成人av教育| 日本 av在线| 成人欧美大片| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 久久精品国产亚洲网站| 久久精品国产清高在天天线| 日韩欧美在线乱码| 欧美成人一区二区免费高清观看| 日韩人妻高清精品专区| 一卡2卡三卡四卡精品乱码亚洲| 日韩欧美三级三区| 欧美人与善性xxx| 日韩高清综合在线| 2021天堂中文幕一二区在线观| 亚洲不卡免费看| 女生性感内裤真人,穿戴方法视频| 久久久久国产精品人妻aⅴ院| 精品欧美国产一区二区三| 美女大奶头视频| 99热这里只有是精品50| 日本爱情动作片www.在线观看 | 久久久成人免费电影| 久久久久久久久中文| 99久久无色码亚洲精品果冻| 亚洲成人久久性| 久久草成人影院| 欧美精品国产亚洲| 成人永久免费在线观看视频| 美女cb高潮喷水在线观看| 亚洲精品在线观看二区| 国产大屁股一区二区在线视频| 国产一区二区三区在线臀色熟女| 国产老妇女一区| 国产亚洲欧美98| 美女高潮喷水抽搐中文字幕| 免费av观看视频| 久久亚洲真实| 午夜福利在线在线| 最近最新中文字幕大全电影3| 亚洲性夜色夜夜综合| 日本黄色视频三级网站网址| 成年女人毛片免费观看观看9| 天堂√8在线中文| 看免费成人av毛片| 精品一区二区三区视频在线| 成人国产麻豆网| 人妻丰满熟妇av一区二区三区| 国产黄a三级三级三级人| 日韩欧美在线乱码| 最近中文字幕高清免费大全6 | 波多野结衣高清作品| 欧美一区二区亚洲| 国产午夜精品论理片| 午夜亚洲福利在线播放| 黄色日韩在线| 一本一本综合久久| 日韩精品青青久久久久久| 18禁黄网站禁片午夜丰满| 嫩草影视91久久| aaaaa片日本免费| 国产真实伦视频高清在线观看 | 国产熟女欧美一区二区| 国产亚洲精品久久久com| 精品一区二区三区视频在线观看免费| 亚洲四区av| 久久久久久九九精品二区国产| 51国产日韩欧美| 99国产极品粉嫩在线观看| 麻豆av噜噜一区二区三区| 五月伊人婷婷丁香| 亚洲av不卡在线观看| 国产免费av片在线观看野外av| 观看免费一级毛片| АⅤ资源中文在线天堂| 少妇的逼水好多| 超碰av人人做人人爽久久| 伊人久久精品亚洲午夜| 一个人观看的视频www高清免费观看| .国产精品久久| 禁无遮挡网站| 日韩人妻高清精品专区| 亚洲人成伊人成综合网2020| 少妇人妻一区二区三区视频| 免费黄网站久久成人精品| 免费电影在线观看免费观看| 大又大粗又爽又黄少妇毛片口| 久久久久久国产a免费观看| 在线观看舔阴道视频| 一个人观看的视频www高清免费观看| 国产女主播在线喷水免费视频网站 | 女的被弄到高潮叫床怎么办 | 国产毛片a区久久久久| 麻豆成人午夜福利视频| 亚洲综合色惰| 成人高潮视频无遮挡免费网站| 99热6这里只有精品| 国产精品一区二区三区四区久久| 婷婷精品国产亚洲av| 欧美中文日本在线观看视频| 成年女人永久免费观看视频| 亚洲中文字幕日韩|