• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Trends in clinical use of targeted therapy for gastrointestinal cancers

    2015-02-16 09:00:20

    Department of Gastroenterological Surgery, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.

    Trends in clinical use of targeted therapy for gastrointestinal cancers

    Kojiro Eto, Masayuki Watanabe

    Department of Gastroenterological Surgery, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.

    Targeted drugs therapies that block the molecular pathways involved in the development and progression of gastro-intestinal (GI) cancers have recently gained considerable attention. In addition to agents targeting vascular endothelial growth factor (VEGF), epidermal growth factor receptor, the multi-kinase inhibitor, and regorafenib have also become available for the treatment of metastatic colorectal cancer patients. Currently, trastuzumab, an antibody targeting human epidermal growth factor receptor-2 (HER-2), in combination with cytotoxic drugs is considered as the standard treatment for patients with HER-2 positive gastric cancer (GC). The eff cacy of ramucirumab, a human monoclonal antibody that inhibits VEGF from binding to its receptor in GC, has also been recently demonstrated. At present, a great number of novel targeted drugs are in pre-clinical or clinical studies. In this review, we summarize trends in the use of molecularly targeted drugs that have proven to be effective for treating GI cancers, with a focus on emerging strategies for personalized treatment.

    Gastro-intestinal tumors, molecular pathways, molecular targeted drug

    Ⅰntroduction

    Many targeted drugs have been studied to target the molecular pathways involved in the development of gastro-intestinal (GI) cancers. Targeted drugs therapies that block the molecular pathways involved in the development and progression of GI cancers have recently gained considerable attention. Several molecular pathways were reported. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR), the multi-kinase inhibitor, regorafenib, have also become available for the treatment of metastatic colorectal cancer (mCRC) patients. Currently, trastuzumab, an antibody targeting human epidermal growth factor receptor-2 (HER-2), in combination with cytotoxic drugs is considered to be the standard treatment for patients with HER-2 positive gastric cancer (GC). The eff cacy of ramucirumab, a human monoclonal antibody (mAb) that inhibits VEGF from binding to its receptor in GC, has also been recently demonstrated.

    Although the above improvements have reduced GI cancers mortality in the past few decades, there is suff cient evidence suggesting that the majority of patients undergoing drug therapy will not benef t and will instead experience severe and even lethal adverse drug events. Therefore, new and better molecular targeted therapies are needed. At present, a great number of novel targeted drugs are in pre-clinical or clinical studies.

    The aim of this review is to provide a comprehensive overview of the state of art, focusing on the new emerging strategies in the personalized treatment of GI cancers and discussing about the possible implications for GI cancers therapy.

    The Main Pathways Targeted in Gastro-intestinal Tumors

    Many targeted drugs that block the molecular pathways involved in the development and progression of GI tumors have been studied. Some of these agents are most eff cacious in combination with conventional chemotherapy regimens. The molecular targeted drugs that have been approved for the treatment of GI cancers are summarized in Table 1. We have reviewed representative pathways that serve as targets in GI cancers.

    Vascular endothelial growth factor pathway

    Angiogenesis is the process of new capillary formation from pre-existing blood vessels, and itplays an important role in the growth and spread of cancers.[1]Neovascularization promotes tumor growth by supplying nutrients, oxygen and growth factors that promote tumor cell proliferation.[2,3]VEGF was f rst isolated in 1983 as a factor that increases vascular permeability in tumors.[4]The VEGF family of proteins comprises VEGF-A, -B, -C, -D and -E, and structurally resembles the platelet-derived growth factor (PDGF) and placenta growth factor (PLGF) families of proteins. These growth factors bind selectively, but with different aff nity, to at least f ve distinct receptors.[5-7]Many cytokines and growth factors, including PDGF, tumor necrosis factor, transforming growth factor (TGF)-α, TGF-β, f broblast growth factor (FGF)-4, keratinocyte growth factor/FGF-7, EGF, interleukin (IL)-1α, IL-1β, IL-6 and insulin-like growth factor (IGF)-1, are involved in upregulating VEGF gene expression.[8]Overexpression of VEGF has been associated with increased microvessel density, tumor invasion, metastasis and thus with poor prognosis in many types of cancers.[9]

    Epidermal growth factor receptor pathway

    The EGFR family consists of four homologous receptors: The EGFR (ErbB1/EGFR/HER-1), ErbB2 (HER-2/neu), ErbB3 (HER-3) and ErbB4 (HER-4).[10]EGFR is a 170 kDa cell surface tyrosine kinase (TK) transmembrane receptor that initiates signaling cascades leading to cell proliferation, motility, adhesion, invasion, cell survival and angiogenesis.[11]Mutation in the TK domain of the EGFR gene has been found in several types of cancers and has become a therapeutic target in non-small cell lung cancer.[12]Overexpression and/or amplif cation of HER-2 has been observed in various cancers,[13-15]including breast, esophageal and GCs at 7-34% frequency,[16,17]and several studies have shown that HER-2 is an important biomarker and a key driver of tumorigenesis.[18]Therefore, blockade of the EGFR family should lead to the inhibition of cell growth, thereby constituting an effective anti-cancer therapy.[19]However, cross-talk between the various ErbB receptors that may induce drug resistance has been demonstrated.[20]Because the intra-cellular space is vastly complex, targeting more than one signaling pathway or blocking multiple targets within a single pathway may be necessary to effectively suppress cancer growth.

    Phosphatase and tensin homolog-phosphoinositide 3-kinase-AKT-mammalian target of rapamycin pathway

    Phosphoinositide 3-kinases (PI3Ks) are a family of lipid kinases that phosphorylate the 3’-hydroxyl group of phosphoinositides with the conversion of phosphatidylinositol-4, 5-biphosphate to phosphatidylinositol-3, -4, 5-trisphosphate (PIP3). PIP3 is a critical second messenger that activates protein kinase B (AKT) through phosphorylation. Once activated, phospho-AKT phosphorylates up to 100 other proteins, including the mammalian target of rapamycin (mTOR), which is part of the mTOR complex (mTORC) 1 and mTORC 2.[21,22]The activation of mTOR increases cellular proliferation and survival and decreases apoptosis. In normal tissue, this pathway is negatively regulated by the tumor suppressor phosphatase on chromosome 10 (phosphatase and tensin homolog), which targets the lipid products of PI3K for dephosphorylation.[23]

    Ras-Raf-MEK-extra-cellular-signal-regulated kinase pathway (MAPK pathway)

    The Raf/?mitogen-activated protein kinase (MAPK)/ extra-cellular-signal-regulated kinase (ERK) pathway is an important pro-survival signaling pathway, that is, primarily involved in cell growth and survival and regulation of cellular differentiation. This pathway transduces extra-cellular signals from membrane-bound TK receptors, such as EGFR, VEGF receptor (VEGFR), IGF receptor (IGFR), hepatocyte growth factor receptor (c-MET) and PDGF receptor (PDGFR), to the nucleus. Binding of growth factors results in receptor phosphorylation, which activates an adapter molecule complex. This sequence in turn activates the Raf/mitogen/extra-cellular protein kinase (MEK)/ERK pathway, which triggering a cascade of specif c phosphorylation events.[24]Within this pathway, the small GTPase Ras and the serine/threonine kinase Raf are the key signal regulators.[25]Intermediatesignaling is regulated by MEK1 and MEK2, which are responsible for phosphorylating and activating the f nal downstream signaling molecules ERK1 and 2.[23]ERK1/2 regulates cellular activity by acting on more than 100 substrates, both in the cytoplasm and nucleus. Ras also regulates the PI3K/AKT/mTOR, the phospholipase C/protein kinase C, and the Ral guanine nucleotide dissociation stimulator pathways.[26,27]

    Wnt pathway

    Extensive descriptions of the roles of Wnt signaling in development and disease can be found in recent reviews.[28,29]The canonical Wnt/β-catenin signaling pathway involves the sequestration of β-catenin from a destruction complex, which consists of adenomatous polyposis coli glycogen synthase kinase 3-α, casein kinase 1 and axin. The activation of Wnt/β-catenin signaling is important for both the initiation and progression of cancers in various tissues.[30]Therefore, the disruption of Wnt/β-catenin signaling represents an opportunity for rational cancer chemoprevention and therapy.[30]In CRC, 90% of all tumors have a mutation in a key regulatory factor of the Wnt/β-catenin signaling pathway that results in pathway activation, and up to 80% of tumors exhibit nuclear accumulation of β-catenin.[31-33]

    Nuclear factor-κB pathway

    In recent years, several studies have revealed the connection between inf ammation and carcinogenesis.[34,35]In chronic inf ammation, cytokines and chemokines produced by inf ammatory cells propagate a localized inf ammatory response and enhance the survival of pre-malignant cells by activating the nuclear factor-κB (NF-κB) pathway. NF-κB is aberrantly activated in 50% of CRC patients and those with colitis-associated tumors, and mouse studies have established that NF-κB plays a role in the development of colitis-associated cancer.[36,37]As the NF-κB pathway plays a pivotal role in apoptosis, tumor promotion and maintenance, inhibitors of this signaling pathway would be useful in CRC therapy. Non-steroidal anti-inf ammatory drugs (NSAIDs) exhibit anti-neoplastic activities in the colon.[38]Stimulation of NF-κB expression is inhibited by various NSAIDs, indicating that NSAIDs may act as chemopreventive agents. Several studies, including randomized trials, have shown that regular use of NSAIDs is associated with decreased CRC incidence and mortality.[39,40]

    Clinical Application of Targeted Drugs

    Esophageal cancer

    Esophageal cancer is the eighth most frequent cause of cancer death and is increasing worldwide.[41]This malignancy comprises two major histologic types, esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC and EAC differ substantially in their underlying etiology and tumorigenesis. A tri-modal treatment strategy consisting of radiotherapy, chemotherapy and surgery is standard for patients with local and/or advanced cancer of the esophagus.[42,43]Unfortunately, as the 5-year survival rate remains < 15% the majority of patients at advanced stages of the disease fails to benef t from these treatments,[44]and more effective therapies are eagerly awaited. Therefore, clinical trials of targeted drugs as monotherapy or in combination with conventional chemotherapy have been recently conducted for patients with esophageal cancer. However, a recent randomized Phase III trial demonstrated that the addition of cetuximab, a humanized mouse EGFR mAb, to capecitabine-cisplatin provided no additional benef t to chemotherapy alone in the f rst-line treatment of advanced esophagogastric AC.[45]Similarly, the addition of panitumumab; another EGFR mAb to epirubicin; oxaliplatin and capecitabine did not increase overall survival (OS) of patients with advanced esophagogastric AC.[46]However, nimotuzumab, a humanized EGFR mAb, in combination with standard chemotherapy (cisplatin plus 5-f uorouracil [5-FU]), has shown a good therapeutic response in a pilot study of patients with ESCC.[47]

    VEGF is up-regulated in EAC, and overexpression of VEGF protein has been reported as a negative prognostic marker in ESCC.[9]Therefore, VEGF may be a potential therapeutic target in esophageal cancers. Although Phase II trials demonstrated that the addition of bevacizumab to conventional chemotherapy improved response rates (RRs) in patients with esophagogastric AC,[48]no Phase III trial has demonstrated a survival benef t of bevacizumab.[49]

    The eff cacy of molecular targeted drugs for esophageal cancer is still controversial. Further investigations to elucidate molecular mechanisms of esophageal cancer are needed to establish effective targeted treatment strategies.

    Gastric cancer

    GC is the fourth most commonly diagnosed cancer and the second leading cause of cancer mortality worldwide.[50]Despite the recent progress in cancer treatment, the prognosis of patients with advanced GC remains poor. The understanding of molecular pathways involved in gastric carcinogenesis offers novel treatment options. When compared with chemotherapy alone, the HER-2-targeting antibody trastuzumabin combination with capecitabine/cisplatin was shown to improve the survival of advanced GC patients harboring HER-2 overexpression caused by gene amplif cation.[51]Another agent with promising results in clinical trials is ramucirumab, an antibody targeting VEGFR-2.[52,53]However, clinical trials have failed to demonstrate the benef t of agents targeting EGFR (cetuximab, panitumumab),[45,46]VEGF-A (bevacizumab)[54]or mTOR (everolimus).[55]The results of Phase III trials toevaluate the eff cacy of molecular targeted drugs in GC are summarized in Table 2.

    Trastuzumab

    Trastuzumab is a recombinant humanized mAb directed against the extra-cellular domain of HER-2. Amplif cation or overexpression of HER-2 has been observed in 7-34% of GC.[16,17,56]A recent large-scale Phase III study (the ToGA trial) demonstrated that trastuzumab combined with cisplatin and capecitabine provided a signif cant survival advantage over chemotherapy alone in patients with HER-2-positive GC and conf rming that HER-2 is a crucial therapeutic GC target.[51]The median OS was 13.8 months in the trastuzumab plus chemotherapy group (n = 294) and 11.1 months in the chemotherapy alone group (n = 290; hazard ratio [HR]: 0.74; 95% conf dence interval [CI]: 0.60-0.91; P = 0.0046). In the subgroup with high HER-2 expression (def ned as immunohistochemistry 2+ and f uorescence in situ hybridization positive, immunohistochemistry 3+), the median OS was 16.0 months in the trastuzumab plus chemotherapy group and 11.8 months in the chemotherapy alone group (HR: 0.65; 95% CI: 0.51-0.83). Trastuzumab is the f rst molecularly targeted drug that has been proven eff cacious against GC.

    Ramucirumab

    Ramucirumab is a human mAb that binds to VEGFR-2 and works as a receptor antagonist blocking the binding of VEGF to the receptor. A Phase I trial demonstrated its anti-tumor activity and anti-angiogenic effect over a wide range of doses, suggesting clinical eff cacy.[57]In the REGARD Phase III randomized trial, 355 patients were treated with best supportive care plus ramucirumab or placebo in a second-line setting. Both the median OS (5.2 vs. 3.8 months; HR: 0.776; 95% CI: 0.603-0.998) and the median progression-free survival (PFS) (2.1 vs. 1.3 months; HR: 0.483; 95% CI: 0.376-0.620) were signif cantly longer in the ramucirumab than the placebo group, and the safety prof le of the drug was acceptable.[52]In the RAINBOW Phase III trial, ramucirumab was used as a second-line treatment in addition to paclitaxel (665 patients).[53]The addition of ramucirumab resulted in a signif cant survival benef t; the median OS increased from 7.4 to 9.6 months (HR: 0.807; 95% CI: 0.678-0.962), and the median PFS increased from 2.9 to 4.4 months (HR: 0.635; 95% CI: 0.536-0.752).[53]Currently, a randomized Phase II trial investigating the eff cacy of ramucirumab as a f rst-line treatment in GC is ongoing.[58]

    Colorectal cancer

    Estimated new cases of CRC exceed 1.2 million/year worldwide, with more than 600,000 deaths/year.[59]Liver metastases are observed in 25% of CRC patients at the time of diagnosis and recurrence after surgery is often encountered. The 5-year survival rate of patients with distant metastases diseases is only 10-20%, although that of patients without lymph node metastasis is more than 80%.[60]The majority of CRC occurrences are sporadic, without the existence of family history or genetic pre-disposition, and the etiological factors for CRC tumorigenesis appear to be complex and heterogeneous. There has been signif cant progress in identifying distinct molecular pathways leading to CRC that include either increased function of oncogenes or loss of tumor suppressor genes.[61]Currently, the recent introduction of molecular targeted drugs has improved the treatment of advanced CRC. Cetuximab and panitumumab (EGFR mAbs) and bevacizumab (VEGF, mAb) have ushered in a new era of targeted therapy for CRC.[62-65]Table 3 summarizes molecular targeted drugs used to treat CRC.

    Bevacizumab

    Bevacizumab, developed in the early 1990s, is a recombinant, humanized immunoglobulin G1 (IgG1) mAb that effectively disrupts the interactions of all isoforms of VEGF-A with VEGFRs.[66]Pre-clinical studies have demonstrated that bevacizumab exhibits a broad range of anti-tumor activity.[67]The AVF2107 study, a trial to investigate the eff cacy of bevacizumab combined with irinotecan, bolus 5-FU and leucovorin (LV) (IFL) for patients with previously untreated mCRC,[63]demonstrated that the addition of bevacizumab to IFL improved the RR and prolonged OS. In anotherPhase III clinical trial performed,[68]patients with mCRC were randomly assigned to receive one of three different irinotecan-containing regimens: irinotecan plus infusional 5-FU and LV (FOLFIRI), modif ed IFL and irinotecan plus oral capecitabine and FOLFIRI plus bevacizumab. This latter group showed a higher RR and a longer PFS and median OS than patients receiving FOLFIRI without bevacizumab. Subsequent trials with oxaliplatin-based regimens produced less robust differences.[69-71]In the Phase III trial NO16966,[71]the effect of capecitabine and oxaliplatin was compared with that of infused 5-FU, LV and oxaliplatin (FOLFOX), with or without bevacizumab. As compared to chemotherapy alone, treatment with bevacizumab in addition to oxaliplatin-based therapy signif cantly improved OS and PFS. Another Phase III trial, the TREE study[70]investigated the tolerability of oxaliplatin in combination with three different 5-FU regimens (continuous infusion, bolus and oral) with or without bevacizumab as a f rst-line therapy. The study showed that as compared to patients who received chemotherapy alone, patients treated with FOLFOX6 plus bevacizumab experienced improvements in overall response, OS and PFS.

    Table 2: Results of completed Phase III trials with molecular targeted therapy in advanced GC

    Table 3: Results of completed Phase III trials with molecular targeted therapy in advanced CRC

    However, there is a controversy regarding the use of adjuvant treatments in CRC. The NSABP PROTOCOL C-08 trial showed that the addition of bevacizumab for 1-year to a modif ed FOLFOX6 adjuvant regimen did not signif cantly prolong disease-free survival (DFS) in Stage II and III CRC.[72]Similarly, the AVANT trial showed that bevacizumab did not prolong DFS when added to adjuvant chemotherapy in resected Stage III CRC, and OS data suggested a potential adverse effect with bevacizumab plus oxaliplatin-based adjuvant therapy.[73]

    Cetuximab

    Cetuximab is a recombinant, chimeric, human/murine IgG1 mAb that binds specif cally to the extra-cellular domain of EGFR in normal and tumor cells, promoting receptor internalization and degradation without receptor phosphorylation and activation.[74]In the pivotal Phase II study, the BOND trial, patients with mCRC were randomized to various treatment groups.[62]As compared to cetuximab alone, the combination of irinotecan and cetuximab signif cantly improved overall patient response, median OS and PFS. Retrospective analysis of KRAS status in the CRYSTAL trial has recently shown statistically signif cant differences in PFS and overall response between patients with wild-type KRAS and those with mutant KRAS treated with FOLFIRI plus cetuximab.[75]In the Phase III study, the FIRE-3, by? Heinemann et al.[76]patients with mCRC were randomly assigned to FOLFIRI plus either cetuximab or bevacizumab. Patients in the cetuximab and bevizumab arms had similar times to disease progression, but those treated with cetuximab had a signif cantly improved OS. One of the problems of cetuximab treatment is an increased risk of severe adverse events. A meta-analysis to investigate severe adverse events in CRC patients, reported the most common severe adverse events to be neutropenia, diarrhea and rash. However, cetuximab was not associated with an increased risk of fatal adverse events.[77]

    Panitumumab

    Panitumumab is a fully human, recombinant IgG2 mAb that binds specif cally and with high aff nity to the extra-cellular domain of EGFR in normal and tumorcells. Through competitive binding to EGFR ligands, panitumumab prevents EGFR dimerization, auto-phosphorylation and signaling, thereby inhibiting proliferation and promoting apoptosis.[78]A Phase III study, the PRIME trial, evaluated the combination of FOLFOX4 with panitumumab or FOLFOX4 alone as f rst-line treatment.[79]As compared to chemotherapy alone, the combination therapy signif cantly improved PFS and increased RR in patients with wild-type KRAS. A non-signif cant increase in OS was also observed. In order to assess the eff cacy and safety of FOLFOX4 with panitumumab as compared to FOLFOX4 alone according to KRAS (exon 2-4) and NRAS (exon 2-4) mutation status, data from the PRIME trial were analyzed.[80]Patients without any Ras mutation who were treated with panitumumab had a signif cantly longer OS and PFS than those treated with chemotherapy alone.

    Regorafenib

    Regorafenib is an inhibitor of PDGFRs, c-KIT, FGF receptor and VEGF1-3.[81]In the pivotal Phase III study, the CORRECT trial, patients with mCRC who had progressed after undergoing treatment with approved drugs were randomly assigned to regorafenib or placebo.[82]As compared to placebo, treatment with regorafenib signif cantly prolonged OS and PFS, suggesting a potential new line of therapy with survival benef ts for patients who have progressed after all standard therapies.

    Af ibercept

    Af ibercept is a recently developed, multiple angiogenic factors trap that inhibits not only VEGF-A, VEGF-B and PLGF, from activating their native receptor (VEGFR-1).[83,84]Af ibercept has a higher VEGF-A binding aff nity than bevacizumab. The velour trial evaluated FOLFIRI plus af ibe receptor FOLFIRI alone after progression on an oxaliplain-based chemotherapy.[85]As compared to chemotherapy alone, the addition of bevacizumab signif cantly improved OS.

    Conclusion

    The clinical application of molecular targeted drugs has improved the survival of patients with GI cancers. We believe that both the identif cation of novel targets and the development of new drugs targeting several important pathways such as c-MET, rearranged during transfection, MEK and IGF/IGFR will contribute to further improvements in treatment results and the realization of personalized treatments for GI cancer.

    Financial support and sponsorship

    Nil.

    Conf icts of interest

    There are no conf icts of interest.

    1. Sarmiento R, Longo R, Gasparini G. Antiangiogenic therapy of colorectal cancer: state of the art, challenges and new approaches. Int J Biol Markers 2012;27:e286-94.

    2. Gavalas NG, Liontos M, Trachana SP, Bagratuni T, Arapinis C, Liacos C, Dimopoulos MA, Bamias A. Angiogenesis-related pathways in the pathogenesis of ovarian cancer. Int J Mol Sci 2013;14:15885-909.

    3. Pang RW, Poon RT. Clinical implications of angiogenesis in cancers. Vasc Health Risk Manag 2006;2:97-108.

    4. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites f uid. Science 1983;219:983-5.

    5. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC. Failure of blood-island formation and vasculogenesis in Flk-1-def cient mice. Nature 1995;376:62-6.

    6. Kawasaki T, Kitsukawa T, Bekku Y, Matsuda Y, Sanbo M, Yagi T, Fujisawa H. A requirement for neuropilin-1 in embryonic vessel formation. Development 1999;126:4895-902.

    7. Fong GH, Rossant J, Gertsenstein M, Breitman ML. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995;376:66-70.

    8. Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor (VEGF) and their receptors. J Cell Sci 2001;114:853-65.

    9. Kleespies A, Guba M, Jauch KW, Bruns CJ. Vascular endothelial growth factor in esophageal cancer. J Surg Oncol 2004;87:95-104.

    10. Gerber HP, McMurtrey A, Kowalski J, Yan M, Keyt BA, Dixit V, Ferrara N. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273:30336-43.

    11. Robinson KW, Sandler AB. EGFR tyrosine kinase inhibitors: difference in eff cacy and resistance. Curr Oncol Rep 2013;15:396-404.

    12. Mitsudomi T. Molecular epidemiology of lung cancer and geographic variations with special reference to EGFR mutations. Transl Lung Cancer Res 2014;3:205-11.

    13. Li Q, Wang D, Li J, Chen P. Clinicopathological and prognostic signif cance of HER-2/neu and VEGF expression in colon carcinomas. BMC Cancer 2011;11:277.

    14. Witton CJ, Reeves JR, Going JJ, Cooke TG, Bartlett JM. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J Pathol 2003;200:290-7.

    15. Reichelt U, Duesedau P, Tsourlakis M, Quaas A, Link BC, Schurr PG, Kaif JT, Gros SJ, Yekebas EF, Marx A, Simon R, Izbicki JR, Sauter G. Frequent homogeneous HER-2 amplif cation in primary and metastatic adenocarcinoma of the esophagus. Mod Pathol 2007;20:120-9.

    16. Gravalos C, Jimeno A. HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol 2008;19:1523-9.

    17. Tanner M, Hollmen M, Junttila TT, Kapanen AI, Tommola S, Soini Y, Helin H, Salo J, Joensuu H, Sihvo E, Elenius K, Isola J. Amplif cation of HER-2 in gastric carcinoma: association with topoisomerase II alpha gene amplif cation, intestinal type, poor prognosis and sensitivity to trastuzumab. Ann Oncol 2005;16:273-8.

    18. Begnami MD, Fukuda E, Fregnani JH, Nonogaki S, Montagnini AL, da Costa WL Jr, Soares FA. Prognostic implications of altered human epidermal growth factorreceptors (HERs) in gastric carcinomas: HER2 and HER3 are predictors of poor outcome. J Clin Oncol 2011;29:3030-6.

    19. Fakih M. Targeting mechanisms of resistance to anti-EGF receptor therapy in KRAS wild-type colorectal cancer: the path to more personalized medicine. Future Oncol 2013;9:551-60.

    20. Bronte G, Terrasi M, Rizzo S, Sivestris N, Ficorella C, Cajozzo M, Di Gaudio F, Gulotta G, Siragusa S, Gebbia N, Russo A. EGFR genomic alterations in cancer: prognostic and predictive values. Front Biosci (Elite Ed) 2011;3:879-87.

    21. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 2006;7:606-19.

    22. Silvestris N, Tommasi S, Petriella D, Santini D, Fistola E, Russo A, Numico G, Tonini G, Maiello E, Colucci G. The dark side of the moon: the PI3K/PTEN/AKT pathway in colorectal carcinoma. Oncology 2009;77 Suppl 1:69-74.

    23. Roberts LR, Gores GJ. Hepatocellular carcinoma: molecular pathways and new therapeutic targets. Semin Liver Dis 2005;25:212-25.

    24. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene 2006;25:3866-84.

    25. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J 2000;351(Pt 2):289-305.

    26. Harden TK, Sondek J. Regulation of phospholipase C isozymes by ras superfamily GTPases. Annu Rev Pharmacol Toxicol 2006;46:355-79.

    27. To MD, Perez-Losada J, Mao JH, Balmain A. Crosstalk between Pten and Ras signaling pathways in tumor development. Cell Cycle 2005;4:1185-8.

    28. Gill S, Loprinzi CL, Sargent DJ, Thome SD, Alberts SR, Haller DG, Benedetti J, Francini G, Shepherd LE, Francois Seitz J, Labianca R, Chen W, Cha SS, Heldebrant MP, Goldberg RM. Pooled analysis of f uorouracil-based adjuvant therapy for stage II and III colon cancer: who benef ts and by how much? J Clin Oncol 2004;22:1797-806.

    29. Fearon ER. Molecular genetics of colorectal cancer. Annu Rev Pathol 2011;6:479-507.

    30. Gupta A, Verma A, Mishra AK, Wadhwa G, Sharma SK, Jain CK. The Wnt pathway: emerging anticancer strategies. Recent Pat Endocr Metab Immune Drug Discov 2013;7:138-47.

    31. Martensson A, Oberg A, Jung A, Cederquist K, Stenling R, Palmqvist R. Beta-catenin expression in relation to genetic instability and prognosis in colorectal cancer. Oncol Rep 2007;17:447-52.

    32. Wanitsuwan W, Kanngurn S, Boonpipattanapong T, Sangthong R, Sangkhathat S. Overall expression of beta-catenin outperforms its nuclear accumulation in predicting outcomes of colorectal cancers. World J Gastroenterol 2008;14:6052-9.

    33. Elzagheid A, Buhmeida A, Korkeila E, Collan Y, Syrjanen K, Pyrhonen S. Nuclear beta-catenin expression as a prognostic factor in advanced colorectal carcinoma. World J Gastroenterol 2008;14:3866-71.

    34. Okayama H, Schetter AJ, Harris CC. MicroRNAs and inf ammation in the pathogenesis and progression of colon cancer. Dig Dis 2012;30 Suppl 2:9-15.

    35. Hagemann T, Balkwill F, Lawrence T. Inf ammation and cancer: a double-edged sword. Cancer Cell 2007;12:300-1.

    36. Greten FR, Eckmann L, Greten TF, Park JM, Li ZW, Egan LJ, Kagnoff MF, Karin M. IKKbeta links inf ammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004;118:285-96.

    37. Kojima M, Morisaki T, Sasaki N, Nakano K, Mibu R, Tanaka M, Katano M. Increased nuclear factor-kB activation in human colorectal carcinoma and its correlation with tumor progression. Anticancer Res 2004;24:675-81.

    38. Shiff SJ, Koutsos MI, Qiao L, Rigas B. Nonsteroidal antiinf ammatory drugs inhibit the proliferation of colon adenocarcinoma cells: effects on cell cycle and apoptosis. Exp Cell Res 1996;222:179-88.

    39. Algra AM, Rothwell PM. Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 2012;13:518-27.

    40. Flossmann E, Rothwell PM. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 2007;369:1603-13.

    41. Zhang Y. Epidemiology of esophageal cancer. World J Gastroenterol 2013;19:5598-606.

    42. Homs MY, v d Gaast A, Siersema PD, Steyerberg EW, Kuipers EJ. Chemotherapy for metastatic carcinoma of the esophagus and gastro-esophageal junction. Cochrane Database Syst Rev 2006; CD004063.

    43. Mauer AM, Kraut EH, Krauss SA, Ansari RH, Kasza K, Szeto L, Vokes EE. Phase II trial of oxaliplatin, leucovorin and f uorouracil in patients with advanced carcinoma of the esophagus. Ann Oncol 2005;16:1320-5.

    44. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003;349:2241-52.

    45. Lordick F, Kang YK, Chung HC, Salman P, Oh SC, Bodoky G, Kurteva G, Volovat C, Moiseyenko VM, Gorbunova V, Park JO, Sawaki A, Celik I, Gotte H, Melezinkova H, Moehler M. Capecitabine and cisplatin with or without cetuximab for patients with previously untreated advanced gastric cancer (EXPAND): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14:490-9.

    46. Waddell T, Chau I, Cunningham D, Gonzalez D, Okines AF, Okines C, Wotherspoon A, Saffery C, Middleton G, Wadsley J, Ferry D, Mansoor W, Crosby T, Coxon F, Smith D, Waters J, Iveson T, Falk S, Slater S, Peckitt C, Barbachano Y. Epirubicin, oxaliplatin, and capecitabine with or without panitumumab for patients with previously untreated advanced oesophagogastric cancer (REAL3): a randomised, open-label phase 3 trial. Lancet Oncol 2013;14:481-9.

    47. Ling Y, Chen J, Tao M, Chu X, Zhang X. A pilot study of nimotuzumab combined with cisplatin and 5-FU in patients with advanced esophageal squamous cell carcinoma. J Thorac Dis 2012;4:58-62.

    48. Shah MA, Ramanathan RK, Ilson DH, Levnor A, D’Adamo D, O’Reilly E, Tse A, Trocola R, Schwartz L, Capanu M, Schwartz GK, Kelsen DP. Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma. J Clin Oncol 2006;24:5201-6.

    49. Shah MA, Jhawer M, Ilson DH, Lefkowitz RA, Robinson E, Capanu M, Kelsen DP. Phase II study of modif ed docetaxel, cisplatin, and f uorouracil with bevacizumab in patients with metastatic gastroesophageal adenocarcinoma. J Clin Oncol 2011;29:868-74.

    50. Kamangar F, Dores GM, Anderson WF. Patterns of cancer incidence, mortality, and prevalence across f ve continents: def ning priorities to reduce cancer disparities in different geographic regions of the world. J Clin Oncol 2006;24:2137-50.

    51. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advancedgastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-97.

    52. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, Safran H, dos Santos LV, Aprile G, Ferry DR, Melichar B, Tehfe M, Topuzov E, Zalcberg JR, Chau I, Campbell W, Sivanandan C, Pikiel J, Koshiji M, Hsu Y, Liepa AM, Gao L, Schwartz JD, Tabernero J. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014;383:31-9.

    53. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, Hironaka S, Sugimoto N, Lipatov O, Kim TY, Cunningham D, Rougier P, Komatsu Y, Ajani J, Emig M, Carlesi R, Ferry D, Chandrawansa K, Schwartz JD, Ohtsu A. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol 2014;15:1224-35.

    54. Ohtsu A, Shah MA, Van Cutsem E, Rha SY, Sawaki A, Park SR, Lim HY, Yamada Y, Wu J, Langer B, Starnawski M, Kang YK. Bevacizumab in combination with chemotherapy as f rst-line therapy in advanced gastric cancer: a randomized, double-blind, placebo-controlled phase III study. J Clin Oncol 2011;29:3968-76.

    55. Ohtsu A, Ajani JA, Bai YX, Bang YJ, Chung HC, Pan HM, Sahmoud T, Shen L, Yeh KH, Chin K, Muro K, Kim YH, Ferry D, Tebbutt NC, Al-Batran SE, Smith H, Costantini C, Rizvi S, Lebwohl D, Van Cutsem E. Everolimus for previously treated advanced gastric cancer: results of the randomized, double-blind, phase III GRANITE-1 study. J Clin Oncol 2013;31:3935-43.

    56. Janjigian YY, Werner D, Pauligk C, Steinmetz K, Kelsen DP, Jager E, Altmannsberger HM, Robinson E, Tafe LJ, Tang LH, Shah MA, Al-Batran SE. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: a European and USA International collaborative analysis. Ann Oncol 2012;23:2656-62.

    57. Spratlin JL, Cohen RB, Eadens M, Gore L, Camidge DR, Diab S, Leong S, O’Bryant C, Chow LQ, Serkova NJ, Meropol NJ, Lewis NL, Chiorean EG, Fox F, Youssouf an H, Rowinsky EK, Eckhardt SG. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J Clin Oncol 2010;28:780-7.

    58. Ueda S, Satoh T, Gotoh M, Gao L, Doi T. A phase ib study of safety and pharmacokinetics of ramucirumab in combination with Paclitaxel in patients with advanced gastric adenocarcinomas. Oncologist 2015;20:493-4.

    59. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.

    60. Wieser M, Sauerland S, Arnold D, Schmiegel W, Reinacher-Schick A. Peri-operative chemotherapy for the treatment of resectable liver metastases from colorectal cancer: a systematic review and meta-analysis of randomized trials. BMC Cancer 2010;10:309.

    61. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67.

    62. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 2004;351:337-45.

    63. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griff ng S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F. Bevacizumab plus irinotecan, f uorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004;350:2335-42.

    64. Mayer RJ. Targeted therapy for advanced colorectal cancer-more is not always better. N Engl J Med 2009;360:623-5.

    65. Saltz LB, Meropol NJ, Loehrer PJ Sr, Needle MN, Kopit J, Mayer RJ. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 2004;22:1201-8.

    66. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 1993;362:841-4.

    67. Gerber HP, Ferrara N. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies. Cancer Res 2005;65:671-80.

    68. Fuchs CS, Marshall J, Mitchell E, Wierzbicki R, Ganju V, Jeffery M, Schulz J, Richards D, Souf -Mahjoubi R, Wang B, Barrueco J. Randomized, controlled trial of irinotecan plus infusional, bolus, or oral f uoropyrimidines in f rst-line treatment of metastatic colorectal cancer: results from the BICC-C Study. J Clin Oncol 2007;25:4779-86.

    69. Cassidy J, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Rittweger K, Gilberg F, Saltz L. XELOX vs FOLFOX-4 as f rst-line therapy for metastatic colorectal cancer: NO16966 updated results. Br J Cancer 2011;105:58-64.

    70. Hochster HS, Hart LL, Ramanathan RK, Childs BH, Hainsworth JD, Cohn AL, Wong L, Fehrenbacher L, Abubakr Y, Saif MW, Schwartzberg L, Hedrick E. Safety and eff cacy of oxaliplatin and f uoropyrimidine regimens with or without bevacizumab as f rst-line treatment of metastatic colorectal cancer: results of the TREE Study. J Clin Oncol 2008;26:3523-9.

    71. Saltz LB, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichinitser M, Yang TS, Rivera F, Couture F, Sirzen F, Cassidy J. Bevacizumab in combination with oxaliplatin-based chemotherapy as f rst-line therapy in metastatic colorectal cancer: a randomized phase III study. J Clin Oncol 2008;26:2013-9.

    72. Allegra CJ, Yothers G, O’Connell MJ, Sharif S, Petrelli NJ, Colangelo LH, Atkins JN, Seay TE, Fehrenbacher L, Goldberg RM, O’Reilly S, Chu L, Azar CA, Lopa S, Wolmark N. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 2011;29:11-6.

    73. de Gramont A, Van Cutsem E, Schmoll HJ, Tabernero J, Clarke S, Moore MJ, Cunningham D, Cartwright TH, Hecht JR, Rivera F, Im SA, Bodoky G, Salazar R, Maindrault-Goebel F, Shacham-Shmueli E, Bajetta E, Makrutzki M, Shang A, Andre T, Hoff PM. Bevacizumab plus oxaliplatin-based chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 2012;13:1225-33.

    74. Tabernero J. The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res 2007;5:203-20.

    75. Van Cutsem E, Kohne CH, Hitre E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pinter T, Lim R, Bodoky G, Roh JK, Folprecht G, Ruff P, Stroh C, Tejpar S, Schlichting M, Nippgen J, Rougier P. Cetuximab andchemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 2009;360:1408-17.

    76. Heinemann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerchenmüller C, Kahl C, Seipelt G, Kullmann F, Stauch M, Scheithauer W, Hielscher J, Scholz M, Müller S, Link H, Niederle N, Rost A, H?ffkes HG, Moehler M, Lindig RU, Modest DP, Rossius L, Kirchner T, Jung A, Stintzing S. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as f rst-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, openlabel, phase 3 trial. Lancet Oncol 2014;10:1065-75.

    77. Zhang D, Ye J, Xu T, Xiong B. Treatment related severe and fatal adverse events with cetuximab in colorectal cancer patients: a meta-analysis. J Chemother 2013;25:170-5.

    78. Gravalos C, Cassinello J, Garcia-Alfonso P, Jimeno A. Integration of panitumumab into the treatment of colorectal cancer. Crit Rev Oncol Hematol 2010;74:16-26.

    79. Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Oliner KS, Wolf M, Gansert J. Randomized, phase III trial of panitumumab with infusional f uorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as f rst-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 2010;28:4697-705.

    80. Douillard JY, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J, Rivera F, Kocakova I, Ruff P, Blasinska-Morawiec M, Smakal M, Canon JL, Rother M, Williams R, Rong A, Wiezorek J, Sidhu R, Patterson SD. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 2013;369:1023-34.

    81. Wilhelm SM, Dumas J, Adnane L, Lynch M, Carter CA, Schutz G, Thierauch KH, Zopf D. Regorafenib (BAY 73-4506): a new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int J Cancer 2011;129:245-55.

    82. Grothey A, Van Cutsem E, Sobrero A, Siena S, Falcone A, Ychou M, Humblet Y, Bouche O, Mineur L, Barone C, Adenis A, Tabernero J, Yoshino T, Lenz HJ, Goldberg RM, Sargent DJ, Cihon F, Cupit L, Wagner A, Laurent D. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013;381:303-12.

    83. Chu QS. Af ibercept (AVE0005): an alternative strategy for inhibiting tumour angiogenesis by vascular endothelial growth factors. Expert Opin Biol Ther 2009;9:263-71.

    84. Mitchell EP. Targeted therapy for metastatic colorectal cancer: role of af ibercept. Clin Colorectal Cancer 2013;12:73-85.

    85. Van Cutsem E, Tabernero J, Lakomy R, Prenen H, Prausova J, Macarulla T, Ruff P, van Hazel GA, Moiseyenko V, Ferry D, McKendrick J, Polikoff J, Tellier A, Castan R, Allegra C. Addition of af ibercept to f uorouracil, leucovorin, and irinotecan improves survival in a phase III randomized trial in patients with metastatic colorectal cancer previously treated with an oxaliplatin-based regimen. J Clin Oncol 2012;30:3499-506.

    Dr. Masayuki Watanabe, Department of Gastroenterological Surgery, Cancer Institute Hospital, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan. E-mail: masayuki.watanabe@jfcr.or.jp

    Website:

    www.jcmtjournal.com

    10.4103/2394-4722.166997

    This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    For reprints contact: reprints@medknow.com

    How to cite this article: Eto K, Watanabe M. Trends in clinical use of targeted therapy for gastrointestinal cancers. J Cancer Metastasis Treat 2015;1:163-71.

    Received: 04-08-2015; Accepted: 02-09-2015.

    激情视频va一区二区三区| 亚洲少妇的诱惑av| 免费播放大片免费观看视频在线观看| av国产精品久久久久影院| 如日韩欧美国产精品一区二区三区| 亚洲成色77777| 欧美激情国产日韩精品一区| 国产日韩欧美亚洲二区| 久久精品国产亚洲av天美| 免费日韩欧美在线观看| 777米奇影视久久| 亚洲成色77777| 男女高潮啪啪啪动态图| 久久久a久久爽久久v久久| www.色视频.com| a级片在线免费高清观看视频| 97精品久久久久久久久久精品| 亚洲精品自拍成人| 男人爽女人下面视频在线观看| 国产欧美亚洲国产| 91aial.com中文字幕在线观看| 国产成人精品一,二区| 国产精品熟女久久久久浪| 黄色毛片三级朝国网站| 五月开心婷婷网| 亚洲精品久久成人aⅴ小说| 亚洲欧美中文字幕日韩二区| 七月丁香在线播放| 考比视频在线观看| 一个人免费看片子| 亚洲国产精品国产精品| 丰满饥渴人妻一区二区三| 国产精品熟女久久久久浪| 99久久综合免费| 一二三四中文在线观看免费高清| 国产成人a∨麻豆精品| 黄片播放在线免费| 亚洲精品色激情综合| 亚洲成av片中文字幕在线观看 | 99re6热这里在线精品视频| 一区二区日韩欧美中文字幕 | 日产精品乱码卡一卡2卡三| 国产成人精品婷婷| 在线 av 中文字幕| 亚洲三级黄色毛片| 日韩一本色道免费dvd| 国产一区亚洲一区在线观看| 老司机亚洲免费影院| 新久久久久国产一级毛片| 看十八女毛片水多多多| 菩萨蛮人人尽说江南好唐韦庄| xxxhd国产人妻xxx| 纯流量卡能插随身wifi吗| 国产成人一区二区在线| 男女边摸边吃奶| 欧美精品国产亚洲| 国产 精品1| 免费少妇av软件| 寂寞人妻少妇视频99o| 日日撸夜夜添| 2021少妇久久久久久久久久久| 欧美日韩av久久| 国产精品一区www在线观看| 交换朋友夫妻互换小说| 久久久久久久久久久久大奶| 久久人妻熟女aⅴ| 亚洲一码二码三码区别大吗| 日韩伦理黄色片| 91久久精品国产一区二区三区| 成人无遮挡网站| 欧美精品亚洲一区二区| 亚洲伊人色综图| 新久久久久国产一级毛片| 欧美成人午夜免费资源| 久久人人97超碰香蕉20202| 婷婷成人精品国产| 欧美成人精品欧美一级黄| 国产亚洲一区二区精品| 亚洲国产成人一精品久久久| 成人午夜精彩视频在线观看| 中文欧美无线码| 丰满迷人的少妇在线观看| 一级黄片播放器| 人妻 亚洲 视频| 国产女主播在线喷水免费视频网站| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 亚洲三级黄色毛片| 欧美日韩成人在线一区二区| 午夜福利视频精品| 又黄又爽又刺激的免费视频.| 99视频精品全部免费 在线| 99热网站在线观看| 国产精品嫩草影院av在线观看| 一级爰片在线观看| 久久免费观看电影| 久久99热这里只频精品6学生| 热re99久久精品国产66热6| 免费在线观看完整版高清| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 亚洲精品日本国产第一区| 亚洲综合精品二区| 国产成人精品福利久久| 尾随美女入室| 亚洲一码二码三码区别大吗| 少妇的丰满在线观看| 99久久中文字幕三级久久日本| 成年美女黄网站色视频大全免费| 国产精品一区二区在线观看99| 免费女性裸体啪啪无遮挡网站| 日产精品乱码卡一卡2卡三| 亚洲精品久久久久久婷婷小说| 国产成人精品久久久久久| 波野结衣二区三区在线| av福利片在线| 国产成人免费无遮挡视频| av不卡在线播放| 夜夜爽夜夜爽视频| 亚洲激情五月婷婷啪啪| 高清不卡的av网站| 国产色爽女视频免费观看| av.在线天堂| 国国产精品蜜臀av免费| 亚洲精品第二区| 免费在线观看完整版高清| 国产一区二区三区av在线| www.色视频.com| 99久久精品国产国产毛片| 成人二区视频| 国产乱人偷精品视频| 哪个播放器可以免费观看大片| 亚洲熟女精品中文字幕| 亚洲天堂av无毛| 国产国拍精品亚洲av在线观看| 两个人看的免费小视频| 99久久综合免费| 飞空精品影院首页| 永久网站在线| 青青草视频在线视频观看| 狠狠精品人妻久久久久久综合| 人妻一区二区av| 欧美bdsm另类| 在线 av 中文字幕| 不卡视频在线观看欧美| 国产成人精品婷婷| 纯流量卡能插随身wifi吗| 欧美日韩综合久久久久久| xxx大片免费视频| 水蜜桃什么品种好| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 午夜91福利影院| 午夜影院在线不卡| 亚洲精品乱码久久久久久按摩| 综合色丁香网| 国产日韩欧美在线精品| 成人手机av| 少妇猛男粗大的猛烈进出视频| 国产乱人偷精品视频| 永久免费av网站大全| 亚洲精品国产色婷婷电影| 亚洲av综合色区一区| 成人免费观看视频高清| 97在线视频观看| 99热全是精品| 欧美日本中文国产一区发布| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区三区在线| 成年美女黄网站色视频大全免费| 男女高潮啪啪啪动态图| 18禁观看日本| 欧美精品一区二区大全| 国产成人a∨麻豆精品| 黑人巨大精品欧美一区二区蜜桃 | 日本猛色少妇xxxxx猛交久久| 国产日韩欧美视频二区| 香蕉丝袜av| 午夜久久久在线观看| 亚洲av综合色区一区| 国产高清不卡午夜福利| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 成人手机av| 欧美日韩国产mv在线观看视频| 男女无遮挡免费网站观看| 免费高清在线观看视频在线观看| 亚洲精品国产av成人精品| 一区二区日韩欧美中文字幕 | av女优亚洲男人天堂| 丰满迷人的少妇在线观看| 亚洲伊人色综图| 美女大奶头黄色视频| 校园人妻丝袜中文字幕| 日本91视频免费播放| 亚洲精品自拍成人| 一级毛片我不卡| 成年女人在线观看亚洲视频| 国产极品粉嫩免费观看在线| a 毛片基地| 黄色配什么色好看| 九色成人免费人妻av| 欧美丝袜亚洲另类| 国产精品久久久久久久电影| 人人妻人人添人人爽欧美一区卜| 亚洲三级黄色毛片| 草草在线视频免费看| 水蜜桃什么品种好| 99视频精品全部免费 在线| 高清av免费在线| 飞空精品影院首页| 亚洲激情五月婷婷啪啪| 老司机亚洲免费影院| 热99久久久久精品小说推荐| 亚洲av.av天堂| 少妇 在线观看| 国产成人精品福利久久| 中国国产av一级| 成年av动漫网址| 美女大奶头黄色视频| 热re99久久国产66热| 国产免费又黄又爽又色| 国产国语露脸激情在线看| 国产老妇伦熟女老妇高清| 欧美人与善性xxx| 女人精品久久久久毛片| 黄色 视频免费看| 免费观看av网站的网址| 欧美精品av麻豆av| 欧美97在线视频| 五月伊人婷婷丁香| 在线免费观看不下载黄p国产| 国产成人精品在线电影| 免费大片18禁| 考比视频在线观看| 国产精品人妻久久久影院| 久久99热6这里只有精品| 精品国产一区二区三区久久久樱花| 久久ye,这里只有精品| 九九爱精品视频在线观看| 日韩av不卡免费在线播放| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 少妇人妻久久综合中文| 熟女人妻精品中文字幕| 插逼视频在线观看| 免费观看无遮挡的男女| 免费人成在线观看视频色| 欧美日韩精品成人综合77777| 亚洲欧美一区二区三区国产| 永久网站在线| 午夜老司机福利剧场| 久久av网站| 中国三级夫妇交换| 久久人人97超碰香蕉20202| 国产精品国产三级专区第一集| 好男人视频免费观看在线| 免费看不卡的av| 18禁裸乳无遮挡动漫免费视频| 国产69精品久久久久777片| 日本免费在线观看一区| 美女福利国产在线| 欧美人与善性xxx| 成人黄色视频免费在线看| 国产av国产精品国产| 天天影视国产精品| 1024视频免费在线观看| 在线观看免费高清a一片| 国产精品国产av在线观看| 七月丁香在线播放| 亚洲美女搞黄在线观看| 69精品国产乱码久久久| 韩国高清视频一区二区三区| a级毛片在线看网站| 一区二区三区乱码不卡18| 精品少妇黑人巨大在线播放| 狂野欧美激情性xxxx在线观看| 日本91视频免费播放| 婷婷色综合大香蕉| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 久久青草综合色| 日本91视频免费播放| 亚洲久久久国产精品| 国产熟女欧美一区二区| 亚洲国产精品专区欧美| 青青草视频在线视频观看| 秋霞在线观看毛片| 国产精品久久久av美女十八| 大陆偷拍与自拍| 精品国产乱码久久久久久小说| 国产精品一区二区在线不卡| 免费日韩欧美在线观看| 乱人伦中国视频| 黄色配什么色好看| 亚洲国产av新网站| 亚洲 欧美一区二区三区| 中文字幕亚洲精品专区| 亚洲中文av在线| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 免费在线观看黄色视频的| 三级国产精品片| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| 亚洲 欧美一区二区三区| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 91成人精品电影| 欧美bdsm另类| 久久精品久久久久久久性| 日韩av在线免费看完整版不卡| 高清欧美精品videossex| 成人免费观看视频高清| 校园人妻丝袜中文字幕| 伦精品一区二区三区| www.熟女人妻精品国产 | 国产视频首页在线观看| 成年动漫av网址| 日日撸夜夜添| 老熟女久久久| 久久久久久伊人网av| 午夜精品国产一区二区电影| 中文字幕人妻熟女乱码| 国产精品久久久久久久久免| 亚洲熟女精品中文字幕| 如何舔出高潮| 99香蕉大伊视频| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 欧美精品av麻豆av| 国产又色又爽无遮挡免| 亚洲av电影在线观看一区二区三区| 高清在线视频一区二区三区| 日本vs欧美在线观看视频| 三上悠亚av全集在线观看| av播播在线观看一区| 精品一区二区三区视频在线| 成年美女黄网站色视频大全免费| 2021少妇久久久久久久久久久| 老司机影院毛片| 美女xxoo啪啪120秒动态图| 另类亚洲欧美激情| 国产高清国产精品国产三级| h视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 新久久久久国产一级毛片| 欧美bdsm另类| 亚洲精品中文字幕在线视频| 国产精品成人在线| 韩国高清视频一区二区三区| 日本色播在线视频| 久久久久久人人人人人| 免费在线观看黄色视频的| 美女视频免费永久观看网站| 亚洲国产av新网站| 999精品在线视频| 国产黄频视频在线观看| 欧美丝袜亚洲另类| 欧美日韩视频精品一区| 国产亚洲一区二区精品| 日本av免费视频播放| 国产乱来视频区| 亚洲一区二区三区欧美精品| 少妇人妻精品综合一区二区| 亚洲精品久久久久久婷婷小说| 欧美xxxx性猛交bbbb| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 永久网站在线| a级毛片黄视频| 欧美xxⅹ黑人| 中文乱码字字幕精品一区二区三区| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 最近最新中文字幕大全免费视频 | 国产极品天堂在线| 天堂俺去俺来也www色官网| 这个男人来自地球电影免费观看 | 女性被躁到高潮视频| 精品熟女少妇av免费看| 精品久久久精品久久久| 亚洲,欧美,日韩| 亚洲av.av天堂| 欧美丝袜亚洲另类| 人妻一区二区av| 欧美日韩精品成人综合77777| 欧美国产精品va在线观看不卡| 精品国产一区二区三区四区第35| 99精国产麻豆久久婷婷| 丰满乱子伦码专区| 自线自在国产av| 满18在线观看网站| 日本爱情动作片www.在线观看| 成年av动漫网址| 大话2 男鬼变身卡| 亚洲,一卡二卡三卡| 妹子高潮喷水视频| 亚洲av日韩在线播放| 成人影院久久| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 中文字幕最新亚洲高清| 熟妇人妻不卡中文字幕| 午夜福利网站1000一区二区三区| 久久人人爽av亚洲精品天堂| 亚洲图色成人| 1024视频免费在线观看| 9191精品国产免费久久| 国产精品国产av在线观看| 免费播放大片免费观看视频在线观看| 亚洲欧美中文字幕日韩二区| 尾随美女入室| 亚洲综合色网址| 高清在线视频一区二区三区| 国产一区亚洲一区在线观看| 午夜免费观看性视频| 激情五月婷婷亚洲| 尾随美女入室| 中文字幕av电影在线播放| 久久久久久久久久久免费av| 午夜福利影视在线免费观看| 国产免费福利视频在线观看| 久久久久国产精品人妻一区二区| 久久99精品国语久久久| 欧美日韩亚洲高清精品| 精品国产一区二区久久| 丝袜喷水一区| 国产精品欧美亚洲77777| 久久久精品免费免费高清| 青春草亚洲视频在线观看| 亚洲精华国产精华液的使用体验| 久久99热这里只频精品6学生| 精品酒店卫生间| 国产成人a∨麻豆精品| 欧美日韩综合久久久久久| 人妻人人澡人人爽人人| 天天操日日干夜夜撸| 欧美xxxx性猛交bbbb| 国产精品国产三级专区第一集| 欧美3d第一页| 亚洲美女视频黄频| 精品一区二区三卡| 久久影院123| 欧美日本中文国产一区发布| av国产久精品久网站免费入址| 亚洲人成77777在线视频| 亚洲欧美清纯卡通| 国产精品 国内视频| 黄网站色视频无遮挡免费观看| 黄片无遮挡物在线观看| 欧美成人午夜免费资源| 午夜激情久久久久久久| 亚洲人成网站在线观看播放| 看免费av毛片| 久久久久国产网址| 亚洲精品国产av成人精品| 母亲3免费完整高清在线观看 | 精品久久国产蜜桃| 亚洲精品一区蜜桃| 91国产中文字幕| 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 国产毛片在线视频| 满18在线观看网站| 丰满少妇做爰视频| h视频一区二区三区| av又黄又爽大尺度在线免费看| 美女内射精品一级片tv| 午夜福利乱码中文字幕| 黑人高潮一二区| 日韩制服丝袜自拍偷拍| 91aial.com中文字幕在线观看| 在线 av 中文字幕| 久久人妻熟女aⅴ| 毛片一级片免费看久久久久| 亚洲精华国产精华液的使用体验| 99热网站在线观看| 久久久久久人人人人人| 国产极品天堂在线| 亚洲国产精品成人久久小说| 亚洲成人av在线免费| 国产成人免费无遮挡视频| 欧美激情国产日韩精品一区| 午夜激情久久久久久久| 国产亚洲av片在线观看秒播厂| 汤姆久久久久久久影院中文字幕| av女优亚洲男人天堂| 久久人妻熟女aⅴ| 国语对白做爰xxxⅹ性视频网站| 欧美激情极品国产一区二区三区 | 国产在线一区二区三区精| 91国产中文字幕| 国产精品国产三级国产专区5o| 欧美精品一区二区大全| 免费日韩欧美在线观看| 午夜日本视频在线| 男人舔女人的私密视频| 啦啦啦在线观看免费高清www| 18+在线观看网站| 日本爱情动作片www.在线观看| 精品国产一区二区三区久久久樱花| 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 日本欧美视频一区| 国产综合精华液| 色网站视频免费| 熟女人妻精品中文字幕| 看非洲黑人一级黄片| 欧美精品高潮呻吟av久久| 美女xxoo啪啪120秒动态图| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 五月伊人婷婷丁香| 男女午夜视频在线观看 | 尾随美女入室| 精品国产国语对白av| 久久久亚洲精品成人影院| 香蕉精品网在线| 亚洲av福利一区| 欧美老熟妇乱子伦牲交| 亚洲综合精品二区| 亚洲精品久久久久久婷婷小说| 亚洲国产精品国产精品| 丰满乱子伦码专区| 黑丝袜美女国产一区| 久久人人爽人人片av| 亚洲美女视频黄频| 精品人妻在线不人妻| 免费大片18禁| 日本免费在线观看一区| 亚洲av综合色区一区| 日韩中文字幕视频在线看片| 99国产精品免费福利视频| 99久国产av精品国产电影| 国产精品成人在线| 巨乳人妻的诱惑在线观看| 久久99热这里只频精品6学生| 日本黄大片高清| 香蕉精品网在线| 国产亚洲欧美精品永久| 久久鲁丝午夜福利片| 女性被躁到高潮视频| 少妇被粗大猛烈的视频| 一区二区日韩欧美中文字幕 | 色5月婷婷丁香| 一区二区三区乱码不卡18| a级毛片在线看网站| 国产无遮挡羞羞视频在线观看| 亚洲熟女精品中文字幕| 国产在线一区二区三区精| 亚洲成人av在线免费| 色婷婷av一区二区三区视频| 免费黄网站久久成人精品| 亚洲欧美成人综合另类久久久| 在线亚洲精品国产二区图片欧美| 国产精品秋霞免费鲁丝片| 成人综合一区亚洲| 成人漫画全彩无遮挡| 久久久国产精品麻豆| 国产片特级美女逼逼视频| 91aial.com中文字幕在线观看| 99久久人妻综合| 大片电影免费在线观看免费| 国产精品不卡视频一区二区| 91在线精品国自产拍蜜月| 99视频精品全部免费 在线| 国内精品宾馆在线| 亚洲精品日韩在线中文字幕| 成年av动漫网址| 五月玫瑰六月丁香| 考比视频在线观看| 国产免费视频播放在线视频| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久精品电影小说| av在线观看视频网站免费| 亚洲图色成人| 日韩av免费高清视频| 国产成人一区二区在线| 嫩草影院入口| 黑丝袜美女国产一区| 下体分泌物呈黄色| 欧美日韩成人在线一区二区| 三上悠亚av全集在线观看| 一本色道久久久久久精品综合| a级片在线免费高清观看视频| 国产成人a∨麻豆精品| 国产免费福利视频在线观看| 亚洲欧美中文字幕日韩二区| 一级,二级,三级黄色视频| 久久99热6这里只有精品| 五月伊人婷婷丁香| 涩涩av久久男人的天堂| 免费久久久久久久精品成人欧美视频 | 久久久久精品性色| 在线观看免费日韩欧美大片| 久久人人97超碰香蕉20202| 777米奇影视久久| 18禁国产床啪视频网站| 最近中文字幕高清免费大全6| 国产高清不卡午夜福利| 男人爽女人下面视频在线观看| 亚洲精品,欧美精品| 国产欧美日韩一区二区三区在线| 日日撸夜夜添| av视频免费观看在线观看| 一区二区三区四区激情视频| 狠狠婷婷综合久久久久久88av| 黄色视频在线播放观看不卡| 欧美精品一区二区大全| a 毛片基地| 欧美日韩精品成人综合77777| 乱码一卡2卡4卡精品| www.色视频.com|