• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Molecular insights into colorectal cancer stem cell regulation by environmental factors

    2015-02-16 09:00:20,2

    ,2

    1Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.

    2Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, 169857 Singapore.

    Molecular insights into colorectal cancer stem cell regulation by environmental factors

    Daisuke Izumi1, Takatsugu Ishimoto1,2, Yasuo Sakamoto1, Yuji Miyamoto1, Hideo Baba1

    1Department of Gastroenterological Surgery, Graduate School of Medical Science, Kumamoto University, 1-1-1 Honjo, Kumamoto 860-8556, Japan.

    2Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School Singapore, 169857 Singapore.

    Ⅰntroduction

    Colorectal cancer (CRC) is the fourth-leading cause of cancer-related deaths worldwide.[1]Although the incidence of CRC has started to decline in developed countries, it continues to increase in developing countries.[2]Environmental factors, including chronic inf ammation, obesity, metabolism and nutrition, have become recognized as major contributors to the development of CRC.[3-6]Dietary fat intake and obesity have been shown to be signif cantly involved in CRC progression through an increased risk of gene mutation, epigenomic alterations, and effects on the equilibrium of various adipokines.[7-11]Chronic inf ammation is also considered to be a risk factor for CRC,[6]and inf ammatory mediators and substances such as interleukin (IL)-6, tumor necrosis factor-α (TNF-α), and reactive oxygen species have been shown to affect CRC development.[12-15]The clearest link between chronic inf ammation and CRC is seen in patients with inf ammatory bowel disease, which has been reported to promote tumorigenesis by altering the microbial composition in the gut and supporting the expansion of microorganisms with genotoxic capabilities.[16]

    Cancer stem cells (CSCs) are tumor cells that possess capabilities for self-renewal, clonal tumor initiation and clonal long-term repopulation.[17,18]The discovery of colorectal CSCs highlighted the existence of intratumoral heterogeneity, revealing the presence of tumor cells expressing markers characteristic of immature cells and with increased abilities to resist chemotherapy and to seed secondary tumors.[19-21]CSCs were initially considered to be a cell population with well-defined phenotypic and molecular features. However, emerging evidence has revealed that certain cancer cells exhibit plasticity, and can change reversibly from stem to non-stem cells under the regulation of genetic, epigenetic and microenvironmental factors.[22-25]In this review, we focused on accumulating new evidence indicating that microenvironmental factors maintained colorectal CSC properties responsible for promoting tumor development and metastasis.

    Markers for Colorectal CSCs

    CSCs have been isolated from cancer tissues using f ow cytometry with specif c surface markers. Several molecules have been proposed as colorectalCSC markers, including CD133, CD44, CD24, CD166, Lgr-5, and aldehyde dehydrogenase 1 (ALDH1) [Table 1].[26]CD133, a pentaspan transmembrane glycoprotein,[27]was one of the f rst colorectal CSC markers to be identif ed.[19,20]However, although selecting CRC cells based on AC133 positivity, an epitope of the CD133 protein identif es the tumorigenic and clonogenic population.[28]CD133 expression has been detected throughout the normal gastrointestinal tract and is not restricted to the stem cell compartment.[29,30]In addition, both CD133+ and CD133- metastatic CRC cells were able to form new tumors, suggesting that CD133 may not be a reliable marker of CSCs.[29]

    The cell adhesion molecule CD44 has been identif ed as a cell surface marker associated with CSCs in several types of tumor.[31]CD44+ cells exhibited CSC properties, and a single cell could form a sphere in vitro, and a xenograft tumor resembling the original lesion in vitro.[32]Overexpression of CD44 in CRC has been associated with depth of invasion and lymph node involvement and is shown to be an independent predictor of overall survival.[33]Although CD44, like CD133, is not a specif c marker for colorectal CSCs, it is possible that a combination of these two markers may be more reliable for detecting colorectal CSCs than either marker alone.[34]

    In addition to cell surface markers, activities of certain pathways or enzymes may also act as markers of stemness. For instance, normal colorectal stem cells can be identif ed by the activity of ALDH1, a detoxifying enzyme that oxidizes intracellular aldehydes.[35,36]ALDH1+ cells were sparse and restricted to the bottom of normal crypts, where stem cells reside but were increased in number and distributed further up the crypts during progression from normal epithelium to adenoma.[37]In addition, implantation of ALDH1+ colon cancer cells into NOD/SCID mice generated xenograft tumors, whereas ALDH1- cells did not.[37]These f ndings indicate that ALDH1 activity may be a useful colorectal CSC marker.

    Other markers include CD166, epithelial cell adhesion molecule, CD29, CD24, CD26, Msi-1, Lgr-5, and Wnt activity/β-catenin.[38-42]The presence of these molecules has been associated with stemness characteristics both in vitro and in vivo. These markers were also used to enrich isolated CSCs further to enhance their tumorigenic ability. The transcription factors Oct-4 and Sox2 are also promising CSC markers, given their roles in cell renewal. Oct-4 and Sox2 levels have been shown to be elevated in CRC and to correlate with increased CSC proliferation and poor prognosis.[43,44]Other pluripotency genes, Nanog, Lin-28, Klf-4, and c-myc, are regarded as promising surrogate markers, given that they appear to facilitate a shift towards an undifferentiated state.[45]

    Table 1: CRC stem cell markers

    Colorectal CSCs Niche in the Tumor Microenvironment

    Tissue stem cells reside in their surrounding microenvironment, known as the stem cell niche, and play an essential role in maintaining tissue homeostasis through their abilities of self-renewal and differentiation.[46,47]Lgr5+ stem cells in the intestinal crypts are interspersed among terminally differentiated Paneth cells, which act as guardians of the stem cells by providing essential niche signals.[48]The tumor microenvironment surrounding cancer cells contains multiple cell types including immune cells, endothelial cells, and f broblasts, in addition to the extracellular matrix. Recent evidence suggests that cancer cells interact with their microenvironment and each other by secreting growth factors, cytokines, and proteases. Furthermore, the properties of the CSCs depend on the CSC niche, which regulates their proliferation and differentiation, as well as those of the tissue stem cells.

    Mesenchymal stem cells (MSCs) have been shown to be recruited into the tumor stroma, and to enhance tumor growth and metastasis in CRC.[49]MSCs are considered as potential precursors of carcinoma-associated fbroblasts (CAFs, also known as tumor-associated f broblasts), which play a key role in tumor progression in various types of cancer, including CRC.[50-52]Carcinoma-cell-derived IL-1 was shown to induce prostaglandin E2 (PGE2) secretion by MSCs, and the resulting PGE2 then acted in an autocrine manner with ongoing paracrine IL-1 signaling to induce expression of cytokines by the MSC, thus creating a CSC niche.[53]A recent study demonstrated that CRC cells can induce adjoining bone-marrow-derived MSCs to exhibit the typical characteristics of CAFs in vitro, and activated Notch signaling mediates transformation of bone-marrow-derived MSCs to CAFs through the downstream TGF-β/Smad signaling pathway.[54]Cytokines secreted by CAFs, including hepatocyte growth factor, osteopontin, and stromal-derived factor 1α, increase CD44v6 expression in colorectal CRCs, which in turn promote migration and metastasis.[55]Another study demonstrated that CSCs were resistant to conventional chemotherapy and that chemoresistance was also increased by CAFs. In this study, chemotherapy-treated human CAFs promoted CSC self-renewal and in vivo tumor growth associated with secretion of cytokines and chemokines, including IL-17A.[56]

    The Wnt/β-catenin signaling pathway has been shown to play critical roles during the transition from normal colorectal mucosa to adenocarcinoma.[57-59]The tumor microenvironment may play a central role in malignant transformation by locally modifying β-catenin activity in tumor cells, thus contributing to tumor growth and cancer stemness.[60]Likewise, myof broblast-secreted factors, especially hepatocyte growth factor, activated Wnt signaling and restored the CSC phenotype in more differentiated tumor cells both in vitro and in vivo.[61]Several studies have reported that CSCs reside in perivascular niches in certain types of cancer.[62-64]Endothelial-cell-derived, soluble Jagged-1 led to Notch activation in colorectal CSC cells in a paracrine manner, thus promoting the CSC phenotype.[65]

    Hypoxia is known to play pivotal roles in cell survival, angiogenesis, tumor invasion and metastasis, and is involved in the maintenance of self-renewal and the undifferentiated state of CSCs in various types of tumors.[66-68]According to a study of colorectal cell line-derived CSCs, hypoxia maintained their stem-like phenotype and prevented differentiation of enterocytes and goblet cells by regulating CDX1 and Notch1.[69]

    Obesity, Nutrients, and Colorectal CSCs Properties

    Obesity and visceral adiposity are closely related to disorders such as diabetes, cardiovascular disease, and increased risk of various cancers, including CRC.[4,70,71]Although a meta-analysis showed that an increase in the body mass index in men was associated with a relative CRC risk of 1.24,[72]the relationship between increased body mass index and CRC risk in women is inconsistent. It is possible that the insulin and the insulin-like growth factor-1 axis may play different roles in colorectal carcinogenesis in men and women.[4,73]

    Visceral obesity is associated with increased inf ltration of inf ammatory cells such as macrophages and T-cells into the adipose tissue, together with low-grade inf ammation.[74-77]Adipose tissues produce various growth factors, hormones, and cytokines known as adipocytokines, including leptin, resistin, visfatin, adiponectin, and numerous inf ammatory mediators such as TNF-α, IL-6, IL-8, IL-10, and IL-1 receptor agonists. These adipose-derived factors have demonstrated an intimate involvement in increased risk of CRC.[4]In addition to adipocytokine-mediated inf ammation, dyslipidemia, insulin resistance, and activation of the renin-angiotensin system may also contribute to CRC development.[78]

    Colorectal CSC clones have been reported to express leptin receptors and to respond to leptin by cell proliferation, activation of the ERK1/2 and PI3K/AKT signaling pathways, enhanced growth in soft agar, and improved sphere formation associated with E-cadherin overexpression. Moreover, leptin counteracted the cytotoxic effects of 5-f uorouracil.[79]Other authors reported that leptin acted as a growth factor for carcinogen-induced colorectal tumors in a mouse model of obesity. They also showed that leptin receptor expression levels were markedly increased in colorectal tumors compared with normal epithelium, in association with activation of Wnt signaling.[80]

    Chronic inf ammation is considered to be a risk factor for CRC, and an obvious association has been demonstrated between the incidence of CRC and inf ammatorybowel diseases, such as ulcerative colitis and Crohn’s disease.[81,82]A recent study showed that the infammatory lipid mediators leukotriene D4 and PGE2 increased the ALDH+ cell population, colony formation capacity, and tumor growth in a xenograft model of colon cancer.[83]

    A high-fat diet can cause changes in the composition of the intestinal microbiota, and affect gut immune and inf ammatory effectors implicated in intestinal tumorigenesis.[84-86]In contrast, omega-3 polyunsaturated fatty acids (PUFAs) have shown substantial benef ts in patients with the chronic inf ammatory disease. In a placebo-controlled, randomized controlled trial, administration of omega-3 PUFAs decreased polyp number, size, and overall burden in patients with familial adenomatous polyposis.[87]Omega-3 PUFAs were shown to inhibit proliferation and angiogenesis, and exert a pro-apoptotic effect in several in vitro models of CRC.[88-91]One possible molecular mechanism involves the G-protein-coupled receptor 120, which functions as an omega-3 fatty acid receptor/sensor in pro-inf ammatory macrophages and mature adipocytes and represses the production of TNF and IL-6, as well as macrophage-induced tissue inf ammation.[92,93]Furthermore, omega-3 PUFAs down-regulated the expression of CRC stem-like cell marker CD133, and up-regulated the colorectal epithelium differentiation markers cytokeratin 20 and mucin 2.[94]A recent study revealed that the low-cytotoxic combination of eicosapentaenoic acid-free fatty acid, epigallocatechin-3-gallate, and grape-seed extract (GSE) inhibited mammalian target of rapamycin signaling and thus reduced cell proliferation and induced apoptosis in CRC cells.[95]GSE pre-treatment of adipocytes decreased their growth-promoting effects on CRC cells. In addition, adipocyte-conditioned media collected after chronic and acute pre-treatment with GSE signif cantly reduced the chemotactic properties of adipocytes toward CRC cell invasion. Finally, GSE decreased the expression of CD44 and inhibited adipocyte-mediated pro-tumorigenic signals in CSC-enriched colonospheres.[96]Overall, these f ndings indicate a close link between obesity and chronic inf ammation, leading to CRC progression through enhanced colorectal CSC properties, whereas some nutrients decrease the expression of CSC markers and attenuate the properties of CSCs.

    Conclusion

    The microenvironment surrounding cancer cells forms the CSC niche, allowing them to give rise to a hierarchy of proliferative and differentiating cells. Targeting the innate pathways and molecules between colorectal CSCs and their environment may thus represent a promising therapeutic strategy, and may provide a complementary approach to conventional therapies that target the malignant cells themselves. Anti-tumorigenic agents related to nutrients in the microenvironment may have particular potential to eliminate the population of colorectal CSCs. Further understanding of the molecular mechanisms underlying the regulation of CSC properties by environmental factors may lead to the development of potential therapeutic targets for patients with CRC.

    Financial support and sponsorship

    Nil.

    Conf icts of interest

    There are no conf icts of interest.

    1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.

    2. Stewart BW, Wild CP. World Cancer Report 2014. Geneva: World Health Organization; 2014.

    3. Akin H, Tozun N. Diet, microbiota, and colorectal cancer. J Clin Gastroenterol 2014;48 Suppl 1:S67-9.

    4. Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut 2013;62:933-47.

    5. Song L, Li Y, He B, Gong Y. Development of Small Molecules Targeting the Wnt Signaling Pathway in Cancer Stem Cells for the Treatment of Colorectal Cancer. Clin Colorectal Cancer 2015. doi: 10.1016/j.clcc.2015.02.001.

    6. Terzic J, Grivennikov S, Karin E, Karin M. Inf ammation and colon cancer. Gastroenterology 2010;138:2101-14.e5.

    7. Li R, Grimm SA, Chrysovergis K, Kosak J, Wang X, Du Y, Burkholder A, Janardhan K, Mav D, Shah R, Eling TE, Wade PA. Obesity, rather than diet, drives epigenomic alterations in colonic epithelium resembling cancer progression. Cell Metab 2014;19:702-11.

    8. Aleksandrova K, Boeing H, Jenab M, Bueno-de-Mesquita HB, Jansen E, van Duijnhoven FJ, Fedirko V, Rinaldi S, Romieu I, Riboli E, Romaguera D, Westphal S, Overvad K, Tjonneland A, Boutron-Ruault MC, Clavel-Chapelon F, Kaaks R, Lukanova A, Trichopoulou A, Lagiou P, Trichopoulos D, Agnoli C, Mattiello A, Saieva C, Vineis P, Tumino R, Peeters PH, Arguelles M, Bonet C, Sanchez MJ, Dorronsoro M, Huerta JM, Barricarte A, Palmqvist R, Hallmans G, Khaw KT, Wareham N, Allen NE, Crowe FL, Pischon T. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis 2012;33:1211-8.

    9. Wong HL, Koh WP, Probst-Hensch NM, Van den Berg D, Yu MC, Ingles SA. Insulin-like growth factor-1 promoter polymorphisms and colorectal cancer: a functional genomics approach. Gut 2008;57:1090-6.

    10. Ochs-Balcom HM, Cicek MS, Thompson CL, Tucker TC, Elston RC, Plummer SJ, Casey G, Li L. Association of vitamin D receptor gene variants, adiposity and colon cancer. Carcinogenesis 2008;29:1788-93.

    11. Brink M, Weijenberg MP, De Goeij AF, Schouten LJ, Koedijk FD, Roemen GM, Lentjes MH, De Bruine AP, Goldbohm RA, Van Den Brandt PA. Fat and K-ras mutations in sporadic colorectal cancer in The Netherlands Cohort Study. Carcinogenesis 2004;25:1619-28.

    12. Guina T, Biasi F, Calfapietra S, Nano M, Poli G. Inf ammatory and redox reactions in colorectal carcinogenesis. Ann N Y Acad Sci 2015;1340:95-103.

    13. Yang X, Zhang F, Wang Y, Cai M, Wang Q, Guo Q, Li Z, Hu R. Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inf amm Bowel Dis 2013;19:1990-2000.

    14. Ullman TA, Itzkowitz SH. Intestinal inf ammation and cancer. Gastroenterology 2011;140:1807-16.

    15. Li Y, de Haar C, Chen M, Deuring J, Gerrits MM, Smits R, Xia B, Kuipers EJ, van der Woude CJ. Disease-related expression of the IL6/STAT3/SOCS3 signalling pathway in ulcerative colitis and ulcerative colitis-related carcinogenesis. Gut 2010;59:227-35.

    16. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM, Fan TJ, Campbell BJ, Abujamel T, Dogan B, Rogers AB, Rhodes JM, Stintzi A, Simpson KW, Hansen JJ, Keku TO, Fodor AA, Jobin C. Intestinal inf ammation targets cancer-inducing activity of the microbiota. Science 2012;338:120-3.

    17. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM. Cancer stem cells - Perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 2006;66:9339-44.

    18. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer 2012;12:133-43.

    19. O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodef cient mice. Nature 2007;445:106-10.

    20. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identif cation and expansion of human colon-cancer-initiating cells. Nature 2007;445:111-5.

    21. Todaro M, Alea MP, Di Stefano AB, Cammareri P, Vermeulen L, Iovino F, Tripodo C, Russo A, Gulotta G, Medema JP, Stassi G. Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 2007;1:389-402.

    22. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 2010;141:583-94.

    23. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014;14:275-91.

    24. Zeuner A, Todaro M, Stassi G, De Maria R. Colorectal cancer stem cells: from the crypt to the clinic. Cell Stem Cell 2014;15:692-705.

    25. Chao CH, Chang CC, Wu MJ, Ko HW, Wang D, Hung MC, Yang JY, Chang CJ. MicroRNA-205 signaling regulates mammary stem cell fate and tumorigenesis. J Clin Invest 2014;124:3093-106.

    26. Vaiopoulos AG, Kostakis ID, Koutsilieris M, Papavassiliou AG. Colorectal cancer stem cells. Stem Cells 2012;30:363-71.

    27. Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. Stem cells in colon cancer. A new era in cancer theory begins. Int J Colorectal Dis 2011;26:1-11.

    28. Kemper K, Grandela C, Medema JP. Molecular identif cation and targeting of colorectal cancer stem cells. Oncotarget 2010;1:387-95.

    29. Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, Chadburn A, Murphy AJ, Valenzuela DM, Gale NW, Thurston G, Yancopoulos GD, D’Angelica M, Kemeny N, Lyden D, Raf i S. CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest 2008;118:2111-20.

    30. Karbanova J, Missol-Kolka E, Fonseca AV, Lorra C, Janich P, Hollerova H, Jaszai J, Ehrmann J, Kolar Z, Liebers C, Arl S, Subrtova D, Freund D, Mokry J, Huttner WB, Corbeil D. The stem cell marker CD133 (Prominin-1) is expressed in various human glandular epithelia. J Histochem Cytochem 2008;56:977-93.

    31. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011;19:387-400.

    32. Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y, Chen Q. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res 2008;14:6751-60.

    33. Huh JW, Kim HR, Kim YJ, Lee JH, Park YS, Cho SH, Joo JK. Expression of standard CD44 in human colorectal carcinoma: association with prognosis. Pathol Int 2009;59:241-6.

    34. Haraguchi N, Ohkuma M, Sakashita H, Matsuzaki S, Tanaka F, Mimori K, Kamohara Y, Inoue H, Mori M. CD133+CD44+ population eff ciently enriches colon cancer initiating cells. Ann Surg Oncol 2008;15:2927-33.

    35. Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH. Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 2009;69:8208-15.

    36. Chen Y, Orlicky DJ, Matsumoto A, Singh S, Thompson DC, Vasiliou V. Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochem Biophys Res Commun 2011;405:173-9.

    37. Huang EH, Hynes MJ, Zhang T, Ginestier C, Dontu G, Appelman H, Fields JZ, Wicha MS, Boman BM. Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 2009;69:3382-9.

    38. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H, van den Born M, Danenberg E, Clarke AR, Sansom OJ, Clevers H. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 2009;457:608-11.

    39. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, Shelton AA, Parmiani G, Castelli C, Clarke MF. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A 2007;104:10158-63.

    40. Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, Ng L, Cheung LW, Lan XR, Lan HY, Tan VP, Yau TC, Poon RT, Wong BC. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell 2010;6:603-15.

    41. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009;459:262-5.

    42. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, Perez Alea M, Richel DJ, Stassi G, Medema JP. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A 2008;105:13427-32.

    43. Chang CJ, Chien Y, Lu KH, Chang SC, Chou YC, Huang CS, Chang CH, Chen KH, Chang YL, Tseng LM, Song WS, Wang JJ, Lin JK, Huang PI, Lan YT. Oct4-related cytokine effects regulate tumorigenic properties of colorectal cancer cells. Biochem Biophys Res Commun 2011;415:245-51.

    44. Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, Liu F, Que J, Lan X. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal 2013;25:1264-71.

    45. Saiki Y, Ishimaru S, Mimori K, Takatsuno Y, Nagahara M, Ishii H, Yamada K, Mori M. Comprehensive analysis of the clinical signif cance of inducing pluripotent stemness-related gene expression in colorectal cancer cells. Ann Surg Oncol 2009;16:2638-44.

    46. Schof eld R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25.

    47. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006;311:1880-5.

    48. Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011;469:415-8.

    49. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, Tanaka S, Yasui W, Chayama K. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 2010;127:2323-33.

    50. Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, Carey VJ, Richardson AL, Weinberg RA. Stromal f broblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 2005;121:335-48.

    51. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013;19:1423-37.

    52. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Onoyama M, Ohnishi M, Ohara E, Higashi Y, Tanaka S, Yasui W, Chayama K. Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int J Cancer 2013;132:813-23.

    53. Li HJ, Reinhardt F, Herschman HR, Weinberg RA. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2012;2:840-55.

    54. Peng Y, Li Z, Yang P, Newton IP, Ren H, Zhang L, Wu H, Li Z. Direct contacts with colon cancer cells regulate the differentiation of bone marrow mesenchymal stem cells into tumor associated f broblasts. Biochem Biophys Res Commun 2014;451:68-73.

    55. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, Gulotta G, Dieli F, De Maria R, Stassi G. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 2014;14:342-56.

    56. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A, Gantt GA Jr, Sukhdeo K, DeVecchio J, Vasanji A, Leahy P, Hjelmeland AB, Kalady MF, Rich JN. Chemotherapy activates cancer-associated f broblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 2013;210:2851-72.

    57. Bienz M, Clevers H. Linking colorectal cancer to Wnt signaling. Cell 2000;103:311-20.

    58. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell 2006;127:469-80.

    59. Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990;61:759-67.

    60. Le NH, Franken P, Fodde R. Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. Br J Cancer 2008;98:1886-93.

    61. Vermeulen L, De Sousa EM, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP. Wnt activity def nes colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol 2010;12:468-76.

    62. Butler JM, Kobayashi H, Raf i S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer 2010;10:138-46.

    63. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ. A perivascular niche for brain tumor stem cells. Cancer Cell 2007;11:69-82.

    64. Krishnamurthy S, Dong Z, Vodopyanov D, Imai A, Helman JI, Prince ME, Wicha MS, Nor JE. Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells. Cancer Res 2010;70:9969-78.

    65. Lu J, Ye X, Fan F, Xia L, Bhattacharya R, Bellister S, Tozzi F, Sceusi E, Zhou Y, Tachibana I, Maru DM, Hawke DH, Rak J, Mani SA, Zweidler-McKay P, Ellis LM. Endothelial cells promote the colorectal cancer stem cell phenotype through a soluble form of Jagged-1. Cancer Cell 2013;23:171-85.

    66. Liang D, Ma Y, Liu J, Trope CG, Holm R, Nesland JM, Suo Z. The hypoxic microenvironment upgrades stem-like properties of ovarian cancer cells. BMC Cancer 2012;12:201.

    67. Ma Y, Liang D, Liu J, Axcrona K, Kvalheim G, Stokke T, Nesland JM, Suo Z. Prostate cancer cell lines under hypoxia exhibit greater stem-like properties. PLoS One 2011;6:e29170.

    68. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD, Engh J, Iwama T, Kunisada T, Kassam AB, Pollack IF, Park DM. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 2009;28:3949-59.

    69. Yeung TM, Gandhi SC, Bodmer WF. Hypoxia and lineage specif cation of cell line-derived colorectal cancer stem cells. Proc Natl Acad Sci U S A 2011;108:4382-7.

    70. Lovejoy JC, de la Bretonne JA, Klemperer M, Tulley R. Abdominal fat distribution and metabolic risk factors: effects of race. Metabolism 1996;45:1119-24.

    71. Vongsuvanh R, George J, Qiao L, van der Poorten D. Visceral adiposity in gastrointestinal and hepatic carcinogenesis. Cancer Lett 2013;330:1-10.

    72. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371:569-78.

    73. Yamaji T, Iwasaki M, Sasazuki S, Tsugane S. Gender difference in the association of insulin and the insulin-like growth factor axis with colorectal neoplasia. Int J Obes (Lond) 2012;36:440-7.

    74. Michaud A, Drolet R, Noel S, Paris G, Tchernof A. Visceral fat accumulation is an indicator of adipose tissue macrophage inf ltration in women. Metabolism 2012;61:689-98.

    75. Neels JG, Olefsky JM. Inf amed fat: what starts the f re? J Clin Invest 2006;116:33-5.

    76. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr, Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-808.

    77. Wellen KE, Hotamisligil GS. Obesity-induced inf ammatory changes in adipose tissue. J Clin Invest 2003;112:1785-8.

    78. Ishino K, Mutoh M, Totsuka Y, Nakagama H. Metabolic syndrome: a novel high-risk state for colorectal cancer. Cancer Lett 2013;334:56-61.

    79. Bartucci M, Svensson S, Ricci-Vitiani L, Dattilo R, Biffoni M, Signore M, Ferla R, De Maria R, Surmacz E. Obesity hormone leptin induces growth and interferes with the cytotoxic effects of 5-f uorouracil in colorectal tumor stem cells. Endocr Relat Cancer 2010;17:823-33.

    80. Endo H, Hosono K, Uchiyama T, Sakai E, Sugiyama M, Takahashi H, Nakajima N, Wada K, Takeda K, Nakagama H, Nakajima A. Leptin acts as a growth factor for colorectal tumours at stages subsequent to tumour initiation in murine colon carcinogenesis. Gut 2011;60:1363-71.

    81. Ekbom A, Helmick C, Zack M, Adami HO. Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 1990;323:1228-33.

    82. Saleh M, Trinchieri G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat Rev Immunol 2011;11:9-20.

    83. Bellamkonda K, Sime W, Sjolander A. The impact of inf ammatory lipid mediators on colon cancer-initiating cells. Mol Carcinog 2014 Aug 23. doi: 10.1002/mc.22207.

    84. Schulz MD, Atay C, Heringer J, Romrig FK, Schwitalla S, Aydin B, Ziegler PK, Varga J, Reindl W, Pommerenke C, Salinas-Riester G, Bock A, Alpert C, Blaut M, Polson SC, Brandl L, Kirchner T, Greten FR, Polson SW, Arkan MC. High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature 2014;514:508-12.

    85. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8.

    86. Song M, Garrett WS, Chan AT. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 2015;148:1244-60.e16.

    87. West NJ, Clark SK, Phillips RK, Hutchinson JM, Leicester RJ, Belluzzi A, Hull MA. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut 2010;59:918-25.

    88. Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P. n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and-2 and HIF-1alpha induction pathway. Carcinogenesis 2004;25:2303-10.

    89. Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A, Maggiano N, Ranelletti FO, Palozza P. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-f uorouracil. Cancer Chemother Pharmacol 2005;55:12-20.

    90. Narayanan BA, Narayanan NK, Desai D, Pittman B, Reddy BS. Effects of a combination of docosahexaenoic acid and 1,4-phenylene bis(methylene) selenocyanate on cyclooxygenase 2, inducible nitric oxide synthase and beta-catenin pathways in colon cancer cells. Carcinogenesis 2004;25:2443-9.

    91. Roynette CE, Calder PC, Dupertuis YM, Pichard C. n-3 polyunsaturated fatty acids and colon cancer prevention. Clin Nutr 2004;23:139-51.

    92. Maslowski KM, Mackay CR. Diet, gut microbiota and immune responses. Nat Immunol 2011;12:5-9.

    93. Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inf ammatory and insulin-sensitizing effects. Cell 2010;142:687-98.

    94. De Carlo F, Witte TR, Hardman WE, Claudio PP. Omega-3 eicosapentaenoic acid decreases CD133 colon cancer stem-like cell marker expression while increasing sensitivity to chemotherapy. PLoS One 2013;8:e69760.

    95. D’Angelo L, Piazzi G, Pacilli A, Prossomariti A, Fazio C, Montanaro L, Graziani G, Fogliano V, Munarini A, Bianchi F, Belluzzi A, Bazzoli F, Ricciardiello L. A combination of eicosapentaenoic acid-free fatty acid, epigallocatechin-3-gallate and proanthocyanidins has a strong effect on mTOR signaling in colorectal cancer cells. Carcinogenesis 2014;35:2314-20.

    96. Kumar S, Kumar D, Raina K, Agarwal R, Agarwal C. Functional modif cation of adipocytes by grape seed extract impairs their pro-tumorigenic signaling on colon cancer stem cells and the daughter cancer cells. Oncotarget 2014;5:10151-69.

    Dr. Takatsugu Ishimoto, Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, 169857 Singapore. E-mail: taka1516@kumamoto-u.ac.jp

    Website:

    www.jcmtjournal.com

    10.4103/2394-4722.165532

    This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    For reprints contact: reprints@medknow.com

    How to cite this article: Izumi D, Ishimoto T, Sakamoto Y, Miyamoto Y, Bab H. Molecular insights into colorectal cancer stem cell regulation by environmental factors. J Cancer Metastasis Treat 2015;1:156-62.

    Received: 05-07-2015; Accepted: 21-07-2015.

    老司机影院毛片| 伊人久久国产一区二区| 国内精品宾馆在线| 国语对白做爰xxxⅹ性视频网站| 蜜臀久久99精品久久宅男| 国产成人aa在线观看| 欧美精品一区二区大全| 国产视频首页在线观看| 久久久久久人妻| 看非洲黑人一级黄片| av福利片在线观看| 国产欧美日韩精品一区二区| 亚洲人成网站在线播| 99热全是精品| 啦啦啦视频在线资源免费观看| 亚洲av.av天堂| 久久热精品热| 蜜桃久久精品国产亚洲av| 视频中文字幕在线观看| 久久久欧美国产精品| 老女人水多毛片| 久久婷婷青草| 小蜜桃在线观看免费完整版高清| 日韩欧美一区视频在线观看 | 只有这里有精品99| 最近2019中文字幕mv第一页| 成人国产麻豆网| 久久精品国产亚洲av天美| 国产国拍精品亚洲av在线观看| 极品少妇高潮喷水抽搐| 又粗又硬又长又爽又黄的视频| 久久毛片免费看一区二区三区| 麻豆国产97在线/欧美| 国产黄色免费在线视频| 日韩国内少妇激情av| 尤物成人国产欧美一区二区三区| 亚洲欧美清纯卡通| 少妇人妻久久综合中文| 日本黄大片高清| 欧美精品亚洲一区二区| 免费观看av网站的网址| 在线 av 中文字幕| 久久99热这里只有精品18| 国产精品久久久久久久电影| 一级毛片黄色毛片免费观看视频| 大话2 男鬼变身卡| av在线蜜桃| 亚洲av国产av综合av卡| 国产伦理片在线播放av一区| 国产精品熟女久久久久浪| 男女啪啪激烈高潮av片| 欧美xxxx黑人xx丫x性爽| 91狼人影院| 精品少妇黑人巨大在线播放| 国产精品女同一区二区软件| 最近最新中文字幕免费大全7| 男女边摸边吃奶| 成人免费观看视频高清| 日韩欧美一区视频在线观看 | 久久人人爽av亚洲精品天堂 | 亚州av有码| 99久久人妻综合| 精品久久久久久电影网| 成年女人在线观看亚洲视频| 欧美zozozo另类| 18禁裸乳无遮挡免费网站照片| 男人爽女人下面视频在线观看| 欧美xxxx性猛交bbbb| 国产精品一二三区在线看| 国内精品宾馆在线| 成人黄色视频免费在线看| 在线观看一区二区三区激情| 亚洲av电影在线观看一区二区三区| 日本免费在线观看一区| 少妇 在线观看| 国产成人91sexporn| 国产欧美日韩精品一区二区| 亚洲第一av免费看| 久久精品国产鲁丝片午夜精品| 国产日韩欧美亚洲二区| 国产欧美日韩一区二区三区在线 | 国产精品.久久久| 国产成人午夜福利电影在线观看| a级毛色黄片| 看非洲黑人一级黄片| 国产毛片在线视频| 中文乱码字字幕精品一区二区三区| 九九久久精品国产亚洲av麻豆| 日本wwww免费看| 亚洲内射少妇av| 精品久久国产蜜桃| 日本wwww免费看| 一个人看视频在线观看www免费| 青春草国产在线视频| 免费大片18禁| 国产精品一区二区三区四区免费观看| 国产综合精华液| 波野结衣二区三区在线| 一级av片app| 国产精品伦人一区二区| 久久久a久久爽久久v久久| 久久毛片免费看一区二区三区| 精品亚洲成国产av| 亚洲av在线观看美女高潮| 内地一区二区视频在线| 久久午夜福利片| 日韩中字成人| 麻豆乱淫一区二区| 亚洲av福利一区| 老司机影院毛片| 国产欧美日韩一区二区三区在线 | 亚洲国产精品一区三区| 少妇人妻久久综合中文| 全区人妻精品视频| 国产色爽女视频免费观看| 丰满少妇做爰视频| 最黄视频免费看| 久久精品熟女亚洲av麻豆精品| 欧美xxxx黑人xx丫x性爽| 五月伊人婷婷丁香| 两个人的视频大全免费| 边亲边吃奶的免费视频| 国产精品成人在线| 3wmmmm亚洲av在线观看| 国产一区二区三区av在线| 国产精品av视频在线免费观看| 最新中文字幕久久久久| 婷婷色综合大香蕉| 欧美三级亚洲精品| 一级av片app| 久久精品久久精品一区二区三区| 街头女战士在线观看网站| 高清视频免费观看一区二区| 午夜福利高清视频| 国内揄拍国产精品人妻在线| 日韩制服骚丝袜av| 亚洲电影在线观看av| 亚洲av在线观看美女高潮| 毛片一级片免费看久久久久| 亚洲美女视频黄频| 日本黄大片高清| 大又大粗又爽又黄少妇毛片口| 亚洲四区av| 黑人猛操日本美女一级片| 我要看日韩黄色一级片| 久久久精品94久久精品| 国模一区二区三区四区视频| 欧美精品亚洲一区二区| 水蜜桃什么品种好| 特大巨黑吊av在线直播| 伊人久久国产一区二区| 亚洲av不卡在线观看| 2021少妇久久久久久久久久久| 国产伦精品一区二区三区视频9| 色5月婷婷丁香| 国产无遮挡羞羞视频在线观看| 女人十人毛片免费观看3o分钟| 一区二区三区乱码不卡18| 欧美 日韩 精品 国产| 午夜免费观看性视频| 免费看不卡的av| 美女视频免费永久观看网站| 亚洲,一卡二卡三卡| 亚洲怡红院男人天堂| av专区在线播放| 一级黄片播放器| 一二三四中文在线观看免费高清| 成人国产av品久久久| 免费看av在线观看网站| 熟妇人妻不卡中文字幕| 午夜精品国产一区二区电影| 在线免费十八禁| 99久久精品国产国产毛片| 日韩不卡一区二区三区视频在线| 你懂的网址亚洲精品在线观看| 免费看不卡的av| 亚洲人成网站在线播| 国产又色又爽无遮挡免| 两个人的视频大全免费| 精品国产乱码久久久久久小说| av免费在线看不卡| 男女啪啪激烈高潮av片| 伦精品一区二区三区| 国产爽快片一区二区三区| 欧美xxxx黑人xx丫x性爽| 黄片wwwwww| 99视频精品全部免费 在线| 亚洲第一av免费看| 建设人人有责人人尽责人人享有的 | 91久久精品国产一区二区三区| 一级毛片电影观看| 激情五月婷婷亚洲| 99久久综合免费| 亚洲av免费高清在线观看| 国产人妻一区二区三区在| 性色avwww在线观看| 国产一区亚洲一区在线观看| 99精国产麻豆久久婷婷| 欧美97在线视频| 久热久热在线精品观看| 丝袜喷水一区| 精品酒店卫生间| 国产高潮美女av| 午夜福利网站1000一区二区三区| 蜜桃在线观看..| 又爽又黄a免费视频| 国产精品熟女久久久久浪| 国产亚洲最大av| 国产精品福利在线免费观看| 国产精品一区二区在线观看99| 精品亚洲成a人片在线观看 | av在线蜜桃| 精品国产乱码久久久久久小说| 久久久精品94久久精品| 国产精品一区二区在线不卡| 久久国内精品自在自线图片| 免费看日本二区| 国产91av在线免费观看| 午夜精品国产一区二区电影| 国产黄色视频一区二区在线观看| 亚洲内射少妇av| 91狼人影院| 欧美丝袜亚洲另类| 干丝袜人妻中文字幕| 日韩电影二区| 熟女电影av网| 高清日韩中文字幕在线| 久久 成人 亚洲| 国产精品国产三级国产专区5o| 久久精品国产亚洲av天美| 日韩国内少妇激情av| 久久久欧美国产精品| 六月丁香七月| 99九九线精品视频在线观看视频| 99久久中文字幕三级久久日本| 男女啪啪激烈高潮av片| 99re6热这里在线精品视频| 99热这里只有是精品50| 80岁老熟妇乱子伦牲交| 国产成人a区在线观看| 亚洲色图av天堂| 男女啪啪激烈高潮av片| 国产精品秋霞免费鲁丝片| 欧美bdsm另类| 91久久精品电影网| 日韩一区二区三区影片| 亚洲欧美日韩卡通动漫| 午夜免费鲁丝| 国产亚洲91精品色在线| 色哟哟·www| 一区二区三区乱码不卡18| 国模一区二区三区四区视频| 六月丁香七月| 有码 亚洲区| 丰满少妇做爰视频| 天堂俺去俺来也www色官网| 中文字幕精品免费在线观看视频 | 黄色一级大片看看| 精品视频人人做人人爽| 久久国产精品男人的天堂亚洲 | 国产精品爽爽va在线观看网站| 国产精品一区二区在线不卡| 男女国产视频网站| 狂野欧美激情性xxxx在线观看| 亚洲av成人精品一二三区| 一区二区三区精品91| 男人舔奶头视频| 国产免费一级a男人的天堂| 欧美日韩精品成人综合77777| 国产有黄有色有爽视频| 亚洲国产精品999| 国产日韩欧美亚洲二区| 亚洲av在线观看美女高潮| 在线观看人妻少妇| 成人一区二区视频在线观看| 日韩成人伦理影院| 欧美激情极品国产一区二区三区 | 精品亚洲成国产av| 国产伦精品一区二区三区四那| 欧美人与善性xxx| 欧美三级亚洲精品| 国产高潮美女av| 亚洲真实伦在线观看| 免费播放大片免费观看视频在线观看| 亚洲一级一片aⅴ在线观看| 一本—道久久a久久精品蜜桃钙片| 高清av免费在线| 99九九线精品视频在线观看视频| 卡戴珊不雅视频在线播放| 久久国内精品自在自线图片| 在线免费观看不下载黄p国产| 干丝袜人妻中文字幕| 国产深夜福利视频在线观看| 欧美97在线视频| 高清视频免费观看一区二区| 欧美最新免费一区二区三区| 3wmmmm亚洲av在线观看| 国产精品人妻久久久影院| av一本久久久久| 亚洲精品国产色婷婷电影| 国国产精品蜜臀av免费| 女性被躁到高潮视频| 中文字幕精品免费在线观看视频 | 国产成人免费无遮挡视频| av卡一久久| 最近2019中文字幕mv第一页| 看免费成人av毛片| a级毛片免费高清观看在线播放| 精品亚洲成国产av| 日韩制服骚丝袜av| 国产精品蜜桃在线观看| 欧美精品一区二区免费开放| 最近2019中文字幕mv第一页| 中文字幕av成人在线电影| 免费看日本二区| 日韩人妻高清精品专区| 精品一区二区三区视频在线| 交换朋友夫妻互换小说| a 毛片基地| 制服丝袜香蕉在线| 老司机影院成人| 国产有黄有色有爽视频| 春色校园在线视频观看| 久久人妻熟女aⅴ| 亚洲国产最新在线播放| 大陆偷拍与自拍| 午夜福利视频精品| 黄色日韩在线| 亚洲国产最新在线播放| 国产av码专区亚洲av| 亚洲aⅴ乱码一区二区在线播放| 99国产精品免费福利视频| 我要看日韩黄色一级片| av视频免费观看在线观看| 高清av免费在线| 国产成人a区在线观看| 高清日韩中文字幕在线| tube8黄色片| 日日撸夜夜添| 国产高清三级在线| 丰满人妻一区二区三区视频av| 亚洲国产精品国产精品| 99久久精品热视频| 国产大屁股一区二区在线视频| 菩萨蛮人人尽说江南好唐韦庄| 国产爽快片一区二区三区| 亚洲成人中文字幕在线播放| 中文字幕制服av| av国产免费在线观看| 亚洲精品456在线播放app| 亚洲美女黄色视频免费看| 99热这里只有是精品在线观看| 日韩av在线免费看完整版不卡| 性色avwww在线观看| 亚洲最大成人中文| 一本色道久久久久久精品综合| 日本黄色片子视频| 色网站视频免费| 噜噜噜噜噜久久久久久91| a级一级毛片免费在线观看| 精品久久国产蜜桃| 免费看不卡的av| 久久ye,这里只有精品| 国产欧美日韩精品一区二区| 国产国拍精品亚洲av在线观看| a级毛色黄片| 一级爰片在线观看| 国产一区二区三区av在线| 在现免费观看毛片| 日本黄大片高清| 老司机影院成人| 国产av一区二区精品久久 | 精品久久久久久久末码| 色网站视频免费| 多毛熟女@视频| 国产精品麻豆人妻色哟哟久久| 99久久中文字幕三级久久日本| 男人爽女人下面视频在线观看| 午夜福利网站1000一区二区三区| 欧美xxxx性猛交bbbb| 精品国产露脸久久av麻豆| 一本久久精品| 亚洲色图av天堂| 国产精品一区二区在线不卡| 18+在线观看网站| 成人国产麻豆网| 久久久久久久久久久丰满| 欧美亚洲 丝袜 人妻 在线| 少妇 在线观看| 国产黄片美女视频| videossex国产| 尾随美女入室| 一区二区三区四区激情视频| 伦精品一区二区三区| 一级毛片久久久久久久久女| 亚洲av中文字字幕乱码综合| 亚洲精品国产色婷婷电影| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| 王馨瑶露胸无遮挡在线观看| 尤物成人国产欧美一区二区三区| 性色av一级| 久久久久网色| 亚洲av不卡在线观看| 日本免费在线观看一区| 欧美国产精品一级二级三级 | 老司机影院毛片| 搡女人真爽免费视频火全软件| 欧美成人一区二区免费高清观看| 国产成人a区在线观看| 亚洲av男天堂| 18禁裸乳无遮挡免费网站照片| 观看免费一级毛片| 哪个播放器可以免费观看大片| 黄色怎么调成土黄色| 18禁动态无遮挡网站| 大陆偷拍与自拍| 亚洲av福利一区| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久成人| 国产精品一区二区在线不卡| 黄色配什么色好看| 丰满少妇做爰视频| 成人亚洲精品一区在线观看 | 亚洲人成网站在线播| 亚洲精品日韩在线中文字幕| 青春草国产在线视频| 身体一侧抽搐| 插阴视频在线观看视频| 看免费成人av毛片| 欧美日韩国产mv在线观看视频 | 中国国产av一级| 国产色婷婷99| 在线观看国产h片| 99久久精品一区二区三区| 成人漫画全彩无遮挡| 尤物成人国产欧美一区二区三区| 精品午夜福利在线看| 亚洲国产成人一精品久久久| 亚洲国产精品专区欧美| av线在线观看网站| 97超视频在线观看视频| 九九爱精品视频在线观看| 各种免费的搞黄视频| 纯流量卡能插随身wifi吗| 亚洲综合色惰| 在线亚洲精品国产二区图片欧美 | 伊人久久精品亚洲午夜| 欧美日韩视频高清一区二区三区二| 精品一品国产午夜福利视频| 日韩三级伦理在线观看| 人人妻人人看人人澡| 免费不卡的大黄色大毛片视频在线观看| 精品一区二区三卡| 一本—道久久a久久精品蜜桃钙片| 精品视频人人做人人爽| 国产成人91sexporn| 精品视频人人做人人爽| 十分钟在线观看高清视频www | 乱系列少妇在线播放| 国产成人freesex在线| 欧美日韩国产mv在线观看视频 | av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看| 色婷婷久久久亚洲欧美| 欧美日韩一区二区视频在线观看视频在线| 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 在线免费观看不下载黄p国产| 国产精品福利在线免费观看| 91精品国产九色| 高清日韩中文字幕在线| 久久精品国产鲁丝片午夜精品| 又粗又硬又长又爽又黄的视频| 欧美变态另类bdsm刘玥| 免费av中文字幕在线| 日本黄色日本黄色录像| 综合色丁香网| 美女脱内裤让男人舔精品视频| 97精品久久久久久久久久精品| 国产爱豆传媒在线观看| 特大巨黑吊av在线直播| 亚洲自偷自拍三级| 97超碰精品成人国产| 97超视频在线观看视频| 日韩成人伦理影院| 日韩欧美精品免费久久| av在线蜜桃| 在线 av 中文字幕| 亚洲熟女精品中文字幕| a 毛片基地| 日本午夜av视频| 国产在线一区二区三区精| 美女主播在线视频| 国产色婷婷99| 成人18禁高潮啪啪吃奶动态图 | 亚洲色图综合在线观看| 色5月婷婷丁香| 国模一区二区三区四区视频| 大香蕉久久网| 久久久久网色| 久久国产精品大桥未久av | 久久精品久久久久久久性| 搡女人真爽免费视频火全软件| 婷婷色av中文字幕| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 青春草亚洲视频在线观看| 午夜免费观看性视频| 高清不卡的av网站| 国产熟女欧美一区二区| 高清欧美精品videossex| 日日啪夜夜撸| 国产中年淑女户外野战色| 一区二区av电影网| av线在线观看网站| 免费av中文字幕在线| 99热这里只有是精品50| 黄色怎么调成土黄色| h日本视频在线播放| 好男人视频免费观看在线| 日韩av在线免费看完整版不卡| 乱系列少妇在线播放| 99热国产这里只有精品6| 夜夜爽夜夜爽视频| 日韩三级伦理在线观看| 亚洲在久久综合| 99久国产av精品国产电影| 亚洲第一区二区三区不卡| 免费看av在线观看网站| xxx大片免费视频| 国产乱人偷精品视频| 日韩强制内射视频| 99视频精品全部免费 在线| 久久午夜福利片| 日日啪夜夜撸| 老师上课跳d突然被开到最大视频| 菩萨蛮人人尽说江南好唐韦庄| 国产午夜精品一二区理论片| 日本av手机在线免费观看| 伦理电影大哥的女人| 国产美女午夜福利| 网址你懂的国产日韩在线| 熟女人妻精品中文字幕| 亚洲怡红院男人天堂| 中文在线观看免费www的网站| 久久ye,这里只有精品| 欧美区成人在线视频| 精品久久久久久久末码| 只有这里有精品99| 丝袜喷水一区| 国产亚洲91精品色在线| 国产精品一区二区三区四区免费观看| 国产精品一区www在线观看| 日韩伦理黄色片| 中文字幕制服av| 亚洲内射少妇av| 国产白丝娇喘喷水9色精品| 少妇人妻精品综合一区二区| 久久久亚洲精品成人影院| 在线亚洲精品国产二区图片欧美 | 日韩一本色道免费dvd| 亚洲精品一区蜜桃| 99久久中文字幕三级久久日本| 国产成人a区在线观看| 欧美国产精品一级二级三级 | 色婷婷久久久亚洲欧美| 看非洲黑人一级黄片| 最近2019中文字幕mv第一页| 亚洲综合色惰| 在线精品无人区一区二区三 | tube8黄色片| 免费观看性生交大片5| 国产精品人妻久久久久久| 婷婷色综合www| 免费观看a级毛片全部| 久久久久久人妻| 国产高清国产精品国产三级 | 高清不卡的av网站| 国产成人精品福利久久| 亚洲欧美日韩另类电影网站 | 日韩亚洲欧美综合| 天堂中文最新版在线下载| 久久久久久久大尺度免费视频| 一级a做视频免费观看| 亚洲人成网站在线观看播放| 日韩免费高清中文字幕av| 91aial.com中文字幕在线观看| 纯流量卡能插随身wifi吗| 国产视频首页在线观看| 久久久久久久久久人人人人人人| 日韩亚洲欧美综合| 国产精品秋霞免费鲁丝片| 在线观看人妻少妇| 亚洲色图综合在线观看| 99国产精品免费福利视频| 国产精品99久久99久久久不卡 | 日韩视频在线欧美| 一二三四中文在线观看免费高清| 亚洲中文av在线| 麻豆精品久久久久久蜜桃| 亚洲精品视频女| 精品亚洲成国产av| av国产精品久久久久影院| 黄色日韩在线| 亚洲精品中文字幕在线视频 | 寂寞人妻少妇视频99o| 欧美 日韩 精品 国产| 狂野欧美激情性xxxx在线观看| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩视频高清一区二区三区二| 国产伦在线观看视频一区| 国产 精品1| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口|