• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overview of genetic and epigenetic alterations in the pathogenesis of esophagogastric junctional adenocarcinoma and esophageal adenocarcinoma: recent f ndings by next generation sequencing

    2015-02-16 09:00:19YuImamuraRyumaTokunaga2KenichiNakamura2HideoBaba2MasayukiWatanabe

    Yu Imamura, Ryuma Tokunaga2, Kenichi Nakamura2, Hideo Baba2, Masayuki Watanabe

    1Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.

    2Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan.

    Overview of genetic and epigenetic alterations in the pathogenesis of esophagogastric junctional adenocarcinoma and esophageal adenocarcinoma: recent f ndings by next generation sequencing

    Yu Imamura1,2, Ryuma Tokunaga2, Kenichi Nakamura2, Hideo Baba2, Masayuki Watanabe1,2

    1Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan.

    2Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan.

    Esophagogastric junctional adenocarcinoma is commonly treated as esophageal adenocarcinoma (EAC) and has dramatically increased in Western countries for several decades. The similar trend has been observed in Asian countries (not in China). Barrett’s esophagus (BE) is a widely accepted precursor of EAC. Recent advances of next-generation sequencing could provide researchers with a better understanding of genetic and epigenetic alterations in the carcinogenesis of EAC. In this review, we have summarized the recently reported major genetic and epigenetic alterations in both BE and EAC. Sonic hedgehog/bone morphogenetic protein axis, which is a key signaling for esophageal development, plays an important role in BE intestinal metaplasia. Single nucleotide polymorphisms related to esophageal organogenesis, such as FOXF1 and FOXP3, are frequently detected in BE patients. During the progression of BE to adenocarcinoma, lacking of normal function of TP53 and CDKN2A by loss of heterozygosity (LOH), mutation, or promoter methylation has been frequently observed. LOH at 9p (coding CDKN2A) is an earlier event to EAC carcinogenesis compared to that at 17q (coding TP53) LOH. In order to further elucidate the pathogenesis of BE and EAC, it will be necessary to analyze these genetic/epigenetic alterations in combination with clinical data in a large-scale cohort.

    Barrett’s esophagus, carcinogenesis, epigenetic, esophageal adenocarcinoma, esophagogastric junctional adenocarcinoma, genetic, intestinal metaplasia

    Ⅰntroduction

    Esophagogastric junctional (EGJ) adenocarcinoma is classif ed as I to III, based on the location of the tumor center or tumor mass, by Rudiger Siewert et al.[1]EGJ cancer is considered to be an esophageal cancer, according to the 7th edition of Union for International Cancer Control tumour, node, metastasis classif cation.[2]EGJ adenocarcinoma/esophageal adenocarcinoma (EAC) has dramatically increased by 600%, mainly in Western countries, over the past few decades, although the current incidence rate shows only a moderate increase.[3]Currently, a similar trend was reported in Asian country.[4]EGJ adenocarcinoma often presents at a late stages despite recent improvements in diagnostic technology and multidisciplinary treatment. The 5-year survival rate is reported to be about 20% and median survival less than one year.[3,5]

    Barrett’s esophagus (BE) is a widely accepted precursor of EGJ adenocarcinoma/EAC, although the reported risk is around 0.5% per year.[6]Epidemiological studies have revealed that adenocarcinomas occur from BE through multistep morphological changes, such as low-grade to high-grade dysplasia.[6,7]BE and EGJ adenocarcinoma/ EAC share poly-genetic/epigenetic alterations.[8]BE can be described as mucosal replacement of normal squamous epithelium with metaplastic columnar mucosa, known as specialized columnar metaplasia, in response to chronic gastroesophageal ref ux disease (GERD).[9]Understanding the pathogenesis of BE and EGJ adenocarcinoma/EAC is important in prevention and thus the development of molecular targeting therapy. Here, we review the pathogenesis of EGJ adenocarcinoma/EAC, including BE, focusing on molecular alterations. We use the term EAC and include EGJ adenocarcinoma.

    Barrett’s Esophagus

    BE is def ned by American Gastroenterological Association as “BE is the condition in which any extent of metaplastic columnar epithelium that predisposes to cancer development replaces the stratif ed squamous epithelium that normally lines the distal esophagus.”[10]This means a specialized columnar epithelium characterized by columnar cells, goblet cells, and a villous-like structure.[11,12]However, another classif cation includes two types of BE. One is “junctional or cardiac type,” consisting of the predominantly foveolar surface containing mucous glands and resembling cardiac mucous glands. Another one is “gastric-fundic type,”containing both parietal and chief cells with atrophic fundic glands.[11-13]Thus, the histological def nition of BE remains controversial.

    The cell of origin of BE has not yet been elucidated. Six cell types are currently considered as potential origins, including transdifferentiation of esophageal squamous cells,[14]gastric cardia cells,[15]esophageal submucosal gland cells,[16]esophageal progenitor cells,[17]circulating bone marrow cells,[18]and residual embryonic cells at squamo-columunar junction (SCJ).[19]

    There are some reports suggesting an association between p63 and intestinal metaplasia. p63 null embryos have idiopathic metaplasia in SCJ.[20]It has been shown that genetic alterations in metaplastic cells in mice lacking p63 were similar to those in human BE.[21]It has also been suggested that epithelium with such genetic changes may originally exist at SCJ. Also, lack of SRY (sex determining region Y) box 2 (SOX2) induces columnar changes in esophageal epithelium in mice models.[22]Both p63 and SOX2 are essential for squamous epithelial formation during organogenesis. Although these f ndings were based on studies using rodent esophagus, there are structural differences in the esophageal between rodents and human. For example, in rodents, the esophagus lacks submucosal glands and SCJ is located in mid-stomach. Therefore, f ndings in rodent models may not be applicable to human BE.

    Molecular and Genetic Alterations Related to Ⅰntestinal Metaplasia and Ⅰntestinal Differentiation

    Sonic hedgehog (SHH)/bone morphogenetic protein (BMP) signaling plays an important role in the development of columnar metaplasia, being associated with organogenesis, especially of the esophageal. These are critical molecules for separating trachea from the esophagus[23]and are involved in the development of cell-renewable epithelium.[24]Expressions of SHH and BMP4 are usually low in human squamous epithelia. In BE tissue, however, SHH/BMP4 signaling induces SRY (sex determining region Y) box 9 (SOX9).[25,26]SOX9 subsequently induces CDX2 and MUC2 expression, which are related to an intestinal phenotype.[27]Furthermore, BMP4 shifts the gene expression prof le of normal squamous cells into columnar cells. Because cytokeratin (CK) is a major cytoskeleton molecule, it can be regarded as a representative phenotype of certain cells. CK 13/14 expressions are highly expressed in squamous cells, whereas CK 7, 8, 18, and 20 expressions elevated in BE epithelium.[28]It has been shown that expression of SOX9, but not CDX2 or BMP4, induces squamous epithelial cells formation toward columnar-like epithelium with expression of CK 8.[29]SHH/BMP signaling were also activated in a mouse model with interleukin-1β overexpression. After one year of continuous inf ammation, intestinal metaplasia occurred at the SCJ, and the gene expression pattern of those metaplastic cells was similar to those in human BE.[30]

    Recent advances of next-generation sequencing have provided the opportunity to elucidate genetic alterations such as single nucleotide polymorphisms (SNPs). The association between SNPs and BE has been clarif ed. It has been reported that chromosomes 2p24 (rs3072), 12q24 (rs2701108), 6p21 (rs9257809), and 16q24 (rs9936833) are related to risk of BE development.[31,32]Among these SNPs, rs9936833 at 16q24 is located close to FOXF1, which is a transcription factor in the SHH signaling pathway. Interestingly, FOXF1 is associated with embryonic development of gastrointestinal tract formation, especially the esophagus.[33]Also, the importance of FOXP3, at 3p14 (rs2687201), which is also known to possess a role in esophageal organogenesis, is based on analyzing datasets of BE or EAC cases.[34]19p13 (rs10419226) and 9p22 (rs11789015), with signif cant relation to BE and EAC, has also been identif ed. rs10419226 SNPs at 19p13 are known as an intronic variant of cAMP-regulated transcriptional co-activators (CRTC1 ). CRTC signaling exerts oncogenic activities when activated by loss of LKB1 through transcriptional activation of LYPD3, which contributes to esophageal tumor progression.[35]rs11789015 SNP at 9p22 is located at the intron region of BARX1. BARX1 is a transcription factor involved in tracheal and foregut organogenesis in developing mouse embryos.[36,37]These f ndings suggest that key molecules in BE development may overlap with those in esophageal development.

    Wnt/β-catenin, and Notch are critical signaling for intestinal differentiation. Wnt family is one of the fundamental mechanisms of cell proliferation, polarity, and differentiation.[38]Wnt signaling pathways include Wnt/β-catenin canonical pathway and Wnt/calcium or Wnt/planar cell polarity non-canonical pathway. Among these, Wnt/β-catenin pathway is associated with intestinal type gene expressions.[39,40]Wnt signaling also regulates CDX gene expression, which controls intestinal differentiation, and homeostasis.[41]Notch signalingalso plays an important role in intestinal differentiation in cell proliferation, apoptosis, and normal cell differentiation.[42,43]

    SHH, BMP4, SOX9, and CDX2 are key molecules for the development of intestinal metaplasia. SHH/ BMP4 axis, which is a key signaling for esophageal development, plays an important role in the intestinal metaplasia of BE. In addition, SNPs that are related to esophageal organogenesis, such as FOXF1 and FOXP3, are frequently observed in BE patients [Table 1].

    Genetic Alterations in Progression of BE to EAC

    Few cases of BE will develop high-grade dysplasia or adenocarcinoma. The widely accepted molecular events during progression of BE to adenocarcinoma are loss of normal TP53 and CDKN2A function. Mechanisms underlying this have been explained by loss of heterozygosity (LOH), mutation, or promoter methylation. Tumor suppressor genes, TP53 and CDKN2A, are located at 17p and 9p, respectively.[44]17p LOH occurs frequently in EAC,[45-47]while TP53 mutation possesses malignant transformation potential during EAC carcinogenesis.[48]9p LOH has been reported to be the important factor driving to EAC.[44]Somatic mutation of CDKN2A has also been detected in EAC cases.[49]In addition, tumors harboring promoter methylation in CDKN2A showed a higher risk of EAC progression.[50,51]Although 9p LOH is an earlier event during EAC carcinogenesis compared to 17q LOH, patients with BE harboring 9p LOH experienced much higher incidence of EAC compared to those with 17q LOH.[44]

    Comprehensive genetic analysis has provided new insights in the genetic landscape of BE-to-EAC. One group has shown that most mutations in EAC had already occurred in matched BE, using comprehensive genetic analysis on 11 cases with EAC and 2 of BE. Another group analyzed the mutations in selected 26 genes and reported that around half of the cases with BE without dysplasia already possessed mutations. Also, there was no signif cant difference in frequencies of those mutations between BE without dysplasia, BE with high-grade dysplasia, and EAC.[52]Of note, they also examined associations between frequencies of mutations in the 26 genes and disease stage. They also found that only TP53 and SMAD4 mutations signif cantly increasedwith progression of BE to high-grade dysplasia or EAC. ARID1A is another key molecule driving BE to EAC.[53]ARID1A is a member of SWI/SNF family of chromatin remodeling. This molecule has been examined mainly in gastric cancer and reported to be associated with microsatellite instability.[54,55]ARID1A mutation was detected around 15% of BE with high-grade dysplasia and EAC. The frequency of loss of ARID1A by immunohistochemistry correlated with disease progression from BE to EAC. The EAC cell line, OE33, showed phenotypes of increased proliferation and aggressive invasion, as the gastric cancer cell line also did.[53,54]In addition to ARID1A, the other members of chromatin remodeling factors encoding genes, ARID2, and SMARC4A mutations, were also reported.[56]

    Table 1: Major molecular alterations reported across malignant progression of BE

    Rho family GTPase activation is an important molecule in gastric cancer and EAC. Rho family consists of Cdc2, Rac1, and RhoA. These molecules are master regulators of actin cytoskeleton rearrangements, promote cancer cell invasion, and cell survival. In gastric cancer, a mutation of RhoA is frequently associated with diffuse-type gastric cancer. It has been reported that mutations in ELMO1 and DOCK2 are frequently noted in cases with EAC. These are intracellular mediators of RAC1. ELMO1 and DOCK2 promote tumor cell invasion and seem to be associated with EAC carcinogenesis.[57]It was observed that 6% of EAC cases analyzed had mutations in ELMO1 and 13% in DOCK2. Other genes encoding Rac1 activating enzymes were ECT2 (1%), TIAM1 (3%), TRIO (3%) and VAV2 (1%) although these frequencies were lower than those in ELMO1 and DOCK2. Taken together, around 30% of Rac1- activating mutations occurred in EAC patients. Also reported in EAC were frequent transversions of A to C at AA sites (T to G at TT sites).[56,58]One possible explanation was that low pH due to GERD induces 8-OH-dG, resulting in A to C transversion at AA sites.[59,60]Further studies also needed to clarify this interesting f nding.

    Epigenetic Changes and microRNA Status in BE and EAC

    Recent global methylation prof ling revealed that broad epigenetic alterations occur in both BE and EAC and are associated with carcinogenesis in EAC.[61-64]CpG island promoter hypermethylations are a common feature of cancer, and regulate (traditionally down-regulate) downstream gene expression. On the other hand, DNA hypomethylation increases gene expression.[62]As for specif c CpG island promoter methylations, CDKN2A, APC, CDH1, MGMT, TIMP-3 and ESR1 have been evaluated in several reports.[51,65-68]CDKN2A hypermethylation has been considered to occur in early steps in EAC carcinogenesis. One study suggested that 4 genes, SLC22A18, PIGR, GJA12 and RIN2, were highly methylated in EAC compared to BE.[63]

    Micro RNA (miRNA) is a small non-coding RNA related to post-transcriptional gene expression and silencing. Generally, up-regulation of oncogenic-miRNA or down-regulation of tumor-suppressor miRNA is identif ed as tumor-related miRNAs. Mir-21 up-regulation has been observed in BE and EAC compared with normal squamous cell epithelium and was associated with carcinogenesis.[69]miRNA-194 was also induced in BE and EAC and found to be related to intestinal metaplasia and metastasis.[70,71]miRNA-143, which suppresses transcription of KRAS, was down-regulated in EAC and associated with TP53.[72,73]miRNA-31 and miRNA-375 were found to be down-regulated in EAC and are early and late-stage markers of EAC carcinogenesis.[74]

    Conclusion

    Recent advances of next-generation sequencing have provided researchers with better understanding of genetic and epigenetic alterations in EAC carcinogenesis. However, little study has examined those genetic and epigenetic alterations in combination with clinicopathological factors. In order to elucidate the pathogenesis of BE and EAC and to f nd molecules for biomarkers and targeting therapy, it will be necessary to analyze those genetic alterations in combination with clinical data in a large-scale cohort.

    Financial support and sponsorship

    Nil.

    Conf icts of interest

    There are no conf icts of interest.

    1. Rudiger Siewert J, Feith M, Werner M, Stein HJ. Adenocarcinoma of the esophagogastric junction: results of surgical therapy based on anatomical/topographic classif cation in 1,002 consecutive patients. Ann Surg 2000;232:353-61.

    2. Sobin L, Gospodarowicz M, Wittekind C. International union against cancer. TNM Classif cation of Malignant Tumours. 7th ed. Chichester, NJ: Wiley; 2010.

    3. Hur C, Miller M, Kong CY, Dowling EC, Nattinger KJ, Dunn M, Feuer EJ. T rends in esophageal adenocarcinoma incidence and mortality. Cancer 2013;119:1149-58.

    4. Kusano C, Gotoda T, Khor CJ, Katai H, Kato H, Taniguchi H, Shimoda T. Changing trends in the proportion of adenocarcinoma of the esophagogastric junction in a large tertiary referral center in Japan. J Gastroenterol Hepatol 2008;23:1662-5.

    5. Rubenstein JH, Shaheen NJ. Epidemiology, diagnosis, and management of esophageal adenocarcinoma. Gastroenterology 2015;?doi: 10.1053/j.gastro.2015.04.053.

    6. Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA 2013;310:627-36.

    7. Chandra S, Gorospe EC, Leggett CL, Wang KK. Barrett’s esophagus in 2012: updates in pathogenesis, treatment, and surveillance. Curr Gastroenterol Rep 2013;15:322.

    8. Ek WE, Levine DM, D’Amato M, Pedersen NL, Magnusson PK, Bresso F, Onstad LE, Schmidt PT, Tornblom H, Nordenstedt H, Romero Y, Mayo Clinic Esophageal A, Barrett’s Esophagus Registry C, Chow WH, Murray LJ, Gammon MD, Liu G, Bernstein L, Casson AG, Risch HA, Shaheen NJ, Bird NC, Reid BJ, Corley DA, Hardie LJ, Ye W, Wu AH, Zucchelli M, Spector TD, Hysi P, Vaughan TL, Whiteman DC, MacGregor S, investigators Bs. Germline genetic contributions to risk for esophageal adenocarcinoma, Barrett’s esophagus, and gastroesophageal ref ux. J Natl Cancer Inst 2013;105:1711-8.

    9. Flejou JF. Barrett’s oesophagus: from metaplasia to dysplasia and cancer. Gut 2005;54 Suppl 1:i6-12.

    10. American Gastroenterological A, Spechler SJ, Sharma P, Souza RF, Inadomi JM, Shaheen NJ. American gastroenterological association medical position statement on the management of Barrett’s esophagus. Gastroenterology 2011;140:1084-91.

    11. Spechler SJ, Goyal RK. Barrett’s esophagus. N Engl J Med 1986;315:362-71.

    12. Paull A, Trier JS, Dalton MD, Camp RC, Loeb P, Goyal RK. The histologic spectrum of Barrett’s esophagus. N Engl J Med 1976;295:476-80.

    13. Thompson JJ, Zinsser KR, Enterline HT. Barrett’s metaplasia and adenocarcinoma of the esophagus and gastroesophageal junction. Hum Pathol 1983;14:42-61.

    14. Chang CL, Lao-Sirieix P, Save V, De la Cueva Mendez G, Laskey R, Fitzgerald RC. Retinoic acid-induced glandular differentiation of the oesophagus. Gut 2007;56:906-17.

    15. Bellin C, de Wiza DH, Wiernsperger NF, Rosen P. Generation of reactive oxygen species by endothelial and smooth muscle cells: inf uence of hyperglycemia and metformin. Horm Metab Res 2006;38:732-9.

    16. Marchetti M, Caliot E, Pringault E. Chronic acid exposure leads to activation of the cdx2 intestinal homeobox gene in a long-term culture of mouse esophageal keratinocytes. J Cell Sci 2003;116:1429-36.

    17. Kong J, Nakagawa H, Isariyawongse BK, Funakoshi S, Silberg DG, Rustgi AK, Lynch JP. Induction of intestinalization in human esophageal keratinocytes is a multistep process. Carcinogenesis 2009;30:122-30.

    18. Kalabis J, Wong GS, Vega ME, Natsuizaka M, Robertson ES, Herlyn M, Nakagawa H, Rustgi AK. Isolation and characterization of mouse and human esophageal epithelial cells in 3D organotypic culture. Nat Protoc 2012;7:235-46.

    19. Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS. Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology 1997;112:760-5.

    20. Daniely Y, Liao G, Dixon D, Linnoila RI, Lori A, Randell SH, Oren M, Jetten AM. Critical role of p63 in the development of a normal esophageal and tracheobronchial epithelium. Am J Physiol Cell Physiol 2004;287:C171-81.

    21. Wang X, Ouyang H, Yamamoto Y, Kumar PA, Wei TS, Dagher R, Vincent M, Lu X, Bellizzi AM, Ho KY, Crum CP, Xian W, McKeon F. Residual embryonic cells as precursors of a Barrett’s-like metaplasia. Cell 2011;145:1023-35.

    22. Que J, Luo X, Schwartz RJ, Hogan BL. Multiple roles for Sox2 in the developing and adult mouse trachea. Development 2009;136:1899-907.

    23. Jacobs IJ, Ku WY, Que J. Genetic and cellular mechanisms regulating anterior foregut and esophageal development. Dev Biol 2012;369:54-64.

    24. Ishizuya-Oka A, Hasebe T. Sonic hedgehog and bone morphogenetic protein-4 signaling pathway involved in epithelial cell renewal along the radial axis of the intestine. Digestion 2008;77 Suppl 1:42-7.

    25. Mari L, Milano F, Parikh K, Straub D, Everts V, Hoeben KK,Fockens P, Buttar NS, Krishnadath KK. A pSMAD/CDX2 complex is essential for the intestinalization of epithelial metaplasia. Cell Rep 2014;7:1197-210.

    26. Wang DH, Clemons NJ, Miyashita T, Dupuy AJ, Zhang W, Szczepny A, Corcoran-Schwartz IM, Wilburn DL, Montgomery EA, Wang JS, Jenkins NA, Copeland NA, Harmon JW, Phillips WA, Watkins DN. Aberrant epithelial-mesenchymal hedgehog signaling characterizes Barrett’s metaplasia. Gastroenterology 2010;138:1810-22.

    27. Zhang X, Westerhoff M, Hart J. Expression of SOX9 and CDX2 in nongoblet columnar-lined esophagus predicts the detection of Barrett’s esophagus during follow-up. Mod Pathol 2015;28:654-61.

    28. Van Dop WA, Rosekrans SL, Uhmann A, Jaks V, Offerhaus GJ, van den Bergh Weerman MA, Kasper M, Heijmans J, Hardwick JC, Verspaget HW, Hommes DW, Toftgard R, Hahn H, van den Brink GR. Hedgehog signalling stimulates precursor cell accumulation and impairs epithelial maturation in the murine oesophagus. Gut 2013;62:348-57.

    29. Clemons NJ, Wang DH, Croagh D, Tikoo A, Fennell CM, Murone C, Scott AM, Watkins DN, Phillips WA. Sox9 drives columnar differentiation of esophageal squamous epithelium: a possible role in the pathogenesis of Barrett’s esophagus. Am J Physiol Gastrointest Liver Physiol 2012;303:G1335-46.

    30. Quante M, Bhagat G, Abrams JA, Marache F, Good P, Lee MD, Lee Y, Friedman R, Asfaha S, Dubeykovskaya Z, Mahmood U, Figueiredo JL, Kitajewski J, Shawber C, Lightdale CJ, Rustgi AK, Wang TC. Bile acid and inf ammation activate gastric cardia stem cells in a mouse model of Barrett-like metaplasia. Cancer Cell 2012;21:36-51.

    31. Palles C, Chegwidden L, Li X, Findlay JM, Farnham G, Castro Giner F, Peppelenbosch MP, Kovac M, Adams CL, Prenen H, Briggs S, Harrison R, Sanders S, Macdonald D, Haigh C, Tucker A, Love S, Nanji M, DeCaestecker J, Ferry D, Rathbone B, Hapeshi J, Barr H, Moayyedi P, Watson P, Zietek B, Maroo N, Gay L, Underwood T, Boulter L, McMurtry H, Monk D, Patel P, Ragunath K, Al Dulaimi D, Murray I, Koss K, Veitch A, Trudgill N, Nwokolo C, Rembacken B, Atherfold P, Green E, Ang Y, Kuipers EJ, Chow W, Paterson S, Kadri S, Beales I, Grimley C, Mullins P, Beckett C, Farrant M, Dixon A, Kelly S, Johnson M, Wajed S, Dhar A, Sawyer E, Roylance R, Onstad L, Gammon MD, Corley DA, Shaheen NJ, Bird NC, Hardie LJ, Reid BJ, Ye W, Liu G, Romero Y, Bernstein L, Wu AH, Casson AG, Fitzgerald R, Whiteman DC, Risch HA, Levine DM, Vaughan TL, Verhaar AP, van den Brande J, Toxopeus EL, Spaander MC, Wijnhoven BP, van der Laan LJ, Krishnadath K, Wijmenga C, Trynka G, McManus R, Reynolds JV, O’Sullivan J, MacMathuna P, McGarrigle SA, Kelleher D, Vermeire S, Cleynen I, Bisschops R, Tomlinson I, Jankowski J. Polymorphisms near TBX5 and GDF7 are associated with increased risk for Barrett’s esophagus. Gastroenterology 2015;148:367-78.

    32. Su Z, Gay LJ, Strange A, Palles C, Band G, Whiteman DC, Lescai F, Langford C, Nanji M, Edkins S, van der Winkel A, Levine D, Sasieni P, Bellenguez C, Howarth K, Freeman C, Trudgill N, Tucker AT, Pirinen M, Peppelenbosch MP, van der Laan LJ, Kuipers EJ, Drenth JP, Peters WH, Reynolds JV, Kelleher DP, McManus R, Grabsch H, Prenen H, Bisschops R, Krishnadath K, Siersema PD, van Baal JW, Middleton M, Petty R, Gillies R, Burch N, Bhandari P, Paterson S, Edwards C, Penman I, Vaidya K, Ang Y, Murray I, Patel P, Ye W, Mullins P, Wu AH, Bird NC, Dallal H, Shaheen NJ, Murray LJ, Koss K, Bernstein L, Romero Y, Hardie LJ, Zhang R, Winter H, Corley DA, Panter S, Risch HA, Reid BJ, Sargeant I, Gammon MD, Smart H, Dhar A, McMurtry H, Ali H, Liu G, Casson AG, Chow WH, Rutter M, Tawil A, Morris D, Nwokolo C, Isaacs P, Rodgers C, Ragunath K, MacDonald C, Haigh C, Monk D, Davies G, Wajed S, Johnston D, Gibbons M, Cullen S, Church N, Langley R, Griff n M, Alderson D, Deloukas P, Hunt SE, Gray E, Dronov S, Potter SC, Tashakkori-Ghanbaria A, Anderson M, Brooks C, Blackwell JM, Bramon E, Brown MA, Casas JP, Corvin A, Duncanson A, Markus HS, Mathew CG, Palmer CN, Plomin R, Rautanen A, Sawcer SJ, Trembath RC, Viswanathan AC, Wood N, Trynka G, Wijmenga C, Cazier JB, Atherfold P, Nicholson AM, Gellatly NL, Glancy D, Cooper SC, Cunningham D, Lind T, Hapeshi J, Ferry D, Rathbone B, Brown J, Love S, Attwood S, MacGregor S, Watson P, Sanders S, Ek W, Harrison RF, Moayyedi P, de Caestecker J, Barr H, Stupka E, Vaughan TL, Peltonen L, Spencer CC, Tomlinson I, Donnelly P, Jankowski JA, Esophageal Adenocarcinoma Genetics C, Wellcome Trust Case Control C. Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett’s esophagus. Nat Genet 2012;44:1131-6.

    33. Martin V, Shaw-Smith C. Review of genetic factors in intestinal malrotation. Pediatr Surg Int 2010;26:769-81.

    34. Levine DM, Ek WE, Zhang R, Liu X, Onstad L, Sather C, Lao-Sirieix P, Gammon MD, Corley DA, Shaheen NJ, Bird NC, Hardie LJ, Murray LJ, Reid BJ, Chow WH, Risch HA, Nyren O, Ye W, Liu G, Romero Y, Bernstein L, Wu AH, Casson AG, Chanock SJ, Harrington P, Caldas I, Debiram-Beecham I, Caldas C, Hayward NK, Pharoah PD, Fitzgerald RC, Macgregor S, Whiteman DC, Vaughan TL. A genome-wide association study identif es new susceptibility loci for esophageal adenocarcinoma and Barrett’s esophagus. Nat Genet 2013;45:1487-93.

    35. Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B, Tian L, Ucar DA, Shen H, Lu J, Hochwald SN, Kaye FJ, Wu L. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene 2012;31:469-79.

    36. Woo J, Miletich I, Kim BM, Sharpe PT, Shivdasani RA. Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 2011;6:E22493.

    37. Miletich I, Buchner G, Sharpe PT. Barx1 and evolutionary changes in feeding. J Anat 2005;207:619-22.

    38. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 2004;20:781-810.

    39. Yamamoto S, Nakase H, Matsuura M, Honzawa Y, Matsumura K, Uza N, Yamaguchi Y, Mizoguchi E, Chiba T. Heparan sulfate on intestinal epithelial cells plays a critical role in intestinal crypt homeostasis via Wnt/beta-catenin signaling. Am J Physiol Gastrointest Liver Physiol 2013;305:G241-9.

    40. Niehrs C. The complex world of WNT receptor signalling. Nat Rev Mol Cell Biol 2012;13:767-79.

    41. Blache P, van de Wetering M, Duluc I, Domon C, Berta P, Freund JN, Clevers H, Jay P. SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 2004;166:37-47.

    42. Ogaki S, Shiraki N, Kume K, Kume S. Wnt and Notch signals guide embryonic stem cell differentiation into the intestinal lineages. Stem Cells 2013;31:1086-96.

    43. Fortini ME. Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009;16:633-47.

    44. Galipeau PC, Li X, Blount PL, Maley CC, Sanchez CA, Odze RD, Ayub K, Rabinovitch PS, Vaughan TL, Reid BJ. NSAIDs modulate CDKN2A, TP53, and DNA content risk for progression to esophageal adenocarcinoma. PLoS Med 2007;4:E67.

    45. Barrett MT, Galipeau PC, Sanchez CA, Emond MJ, Reid BJ. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplif cation and microsatellite polymorphisms. Oncogene 1996;12:1873-8.

    46. Dunn J, Garde J, Dolan K, Gosney JR, Sutton R, Meltzer SJ, Field JK. Multiple target sites of allelic imbalance on chromosome 17 in Barrett’s oesophageal cancer. Oncogene 1999;18:987-93.

    47. Skacel M, Petras RE, Rybicki LA, Gramlich TL, Richter JE, Falk GW, Goldblum JR. p53 expression in low grade dysplasia in Barrett’s esophagus: correlation with interobserver agreement and disease progression. Am J Gastroenterol 2002;97:2508-13.

    48. Chung SM, Kao J, Hyjek E, Chen YT. p53 in esophageal adenocarcinoma: a critical reassessment of mutation frequency and identif cation of 72Arg as the dominant allele. Int J Oncol 2007;31:1351-5.

    49. Mokrowiecka A, Wierzchniewska-Lawska A, Smolarz B, Romanowicz-Makowska H, Malecka-Panas E. p16 gene mutations in Barrett’s esophagus in gastric metaplasia-intestinal metaplasia-dysplasia-adenocarcinoma sequence. Adv Med Sci 2012;57:71-6.

    50. Hong J, Resnick M, Behar J, Wang LJ, Wands J, DeLellis RA, Souza RF, Spechler SJ, Cao W. Acid-induced p16 hypermethylation contributes to development of esophageal adenocarcinoma via activation of NADPH oxidase NOX5-S. Am J Physiol Gastrointest Liver Physiol 2010;299:G697-706.

    51. Wang JS, Guo M, Montgomery EA, Thompson RE, Cosby H, Hicks L, Wang S, Herman JG, Canto MI. DNA promoter hypermethylation of p16 and APC predicts neoplastic progression in Barrett’s esophagus. Am J Gastroenterol 2009;104:2153-60.

    52. Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, Murtaza M, Ong CA, Lao-Sirieix P, Dunning MJ, Smith L, Smith ML, Anderson CL, Carvalho B, O’Donovan M, Underwood TJ, May AP, Grehan N, Hardwick R, Davies J, Oloumi A, Aparicio S, Caldas C, Eldridge MD, Edwards PA, Rosenfeld N, Tavare S, Fitzgerald RC, Consortium O. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet 2014;46:837-43.

    53. Streppel MM, Lata S, DelaBastide M, Montgomery EA, Wang JS, Canto MI, Macgregor-Das AM, Pai S, Morsink FH, Offerhaus GJ, Antoniou E, Maitra A, McCombie WR. Next-generation sequencing of endoscopic biopsies identif es ARID1A as a tumor-suppressor gene in Barrett’s esophagus. Oncogene 2014;33:347-57.

    54. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, Lim KH, Ong CK, Huang D, Chin SY, Tan IB, Ng CC, Yu W, Wu Y, Lee M, Wu J, Poh D, Wan WK, Rha SY, So J, Salto-Tellez M, Yeoh KG, Wong WK, Zhu YJ, Futreal PA, Pang B, Ruan Y, Hillmer AM, Bertrand D, Nagarajan N, Rozen S, Teh BT, Tan P. Exome sequencing of gastric adenocarcinoma identif es recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012;44:570-4.

    55. Wiegand KC, Sy K, Kalloger SE, Li-Chang H, Woods R, Kumar A, Streutker CJ, Hafezi-Bakhtiari S, Zhou C, Lim HJ, Huntsman DG, Clarke B, Schaeffer DF. ARID1A/BAF250a as a prognostic marker for gastric carcinoma: a study of 2 cohorts. Hum Pathol 2014;45:1258-68.

    56. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shef er E, McKenna A, Carter SL, Cibulskis K, Sivachenko A, Saksena G, Voet D, Ramos AH, Auclair D, Thompson K, Sougnez C, Onofrio RC, Guiducci C, Beroukhim R, Zhou Z, Lin L, Lin J, Reddy R, Chang A, Landrenau R, Pennathur A, Ogino S, Luketich JD, Golub TR, Gabriel SB, Lander ES, Beer DG, Godfrey TE, Getz G, Bass AJ. Exome and whole-genome sequencing of esophageal adenocarcinoma identif es recurrent driver events and mutational complexity. Nat Genet 2013;45:478-86.

    57. Jarzynka MJ, Hu B, Hui KM, Bar-Joseph I, Gu W, Hirose T, Haney LB, Ravichandran KS, Nishikawa R, Cheng SY. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Cancer Res 2007;67:7203-11.

    58. Nones K, Waddell N, Wayte N, Patch AM, Bailey P, Newell F, Holmes O, Fink JL, Quinn MC, Tang YH, Lampe G, Quek K, Loff er KA, Manning S, Idrisoglu S, Miller D, Xu Q, Waddell N, Wilson PJ, Bruxner TJ, Christ AN, Harliwong I, Nourse C, Nourbakhsh E, Anderson M, Kazakoff S, Leonard C, Wood S, Simpson PT, Reid LE, Krause L, Hussey DJ, Watson DI, Lord RV, Nancarrow D, Phillips WA, Gotley D, Smithers BM, Whiteman DC, Hayward NK, Campbell PJ, Pearson JV, Grimmond SM, Barbour AP. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat Commun 2014;5:5224.

    59. Dvorak K, Payne CM, Chavarria M, Ramsey L, Dvorakova B, Bernstein H, Holubec H, Sampliner RE, Guy N, Condon A, Bernstein C, Green SB, Prasad A, Garewal HS. Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus. Gut 2007;56:763-71.

    60. Satou K, Hori M, Kawai K, Kasai H, Harashima H, Kamiya H. Involvement of specialized DNA polymerases in mutagenesis by 8-hydroxy-dGTP in human cells. DNA Repair (Amst) 2009;8:637-42.

    61. Xu E, Gu J, Hawk ET, Wang KK, Lai M, Huang M, Ajani J, Wu X. Genome-wide methylation analysis shows similar patterns in Barrett’s esophagus and esophageal adenocarcinoma. Carcinogenesis 2013;34:2750-6.

    62. Alvarez H, Opalinska J, Zhou L, Sohal D, Fazzari MJ, Yu Y, Montagna C, Montgomery EA, Canto M, Dunbar KB, Wang J, Roa JC, Mo Y, Bhagat T, Ramesh KH, Cannizzaro L, Mollenhauer J, Thompson RF, Suzuki M, Meltzer SJ, Melnick A, Greally JM, Maitra A, Verma A. Widespread hypomethylation occurs early and synergizes with gene amplif cation during esophageal carcinogenesis. PLoS Genet 2011;7:E1001356.

    63. Alvi MA, Liu X, O’Donovan M, Newton R, Wernisch L, Shannon NB, Shariff K, di Pietro M, Bergman JJ, Ragunath K, Fitzgerald RC. DNA methylation as an adjunct to histopathology to detect prevalent, inconspicuous dysplasia and early-stage neoplasia in Barrett’s esophagus. Clin Cancer Res 2013;19:878-88.

    64. Kaz AM, Grady WM, Stachler MD, Bass AJ. Genetic and epigenetic alterations in barrett’s esophagus and esophageal adenocarcinoma. Gastroenterol Clin North Am 2015;44:473-89.

    65. Eads CA, Lord RV, Kurumboor SK, Wickramasinghe K, Skinner ML, Long TI, Peters JH, DeMeester TR, Danenberg KD, Danenberg PV, Laird PW, Skinner KA. Fields of aberrant CpG island hypermethylation in Barrett’s esophagus and associated adenocarcinoma. Cancer Res 2000;60:5021-6.

    66. Wong DJ, Paulson TG, Prevo LJ, Galipeau PC, Longton G, Blount PL, Reid BJ. p16(INK4a) lesions are common, early abnormalities that undergo clonal expansion in Barrett’s metaplastic epithelium. Cancer Res 2001;61:8284-9.

    67. Brock MV, Gou M, Akiyama Y, Muller A, Wu TT, Montgomery E, Deasel M, Germonpre P, Rubinson L, Heitmiller RF, Yang SC, Forastiere AA, Baylin SB, Herman JG. Prognostic importance of promoter hypermethylation of multiple genes in esophageal adenocarcinoma. Clin Cancer Res 2003;9:2912-9.

    68. Sarbia M, Geddert H, Klump B, Kiel S, Iskender E, Gabbert HE. Hypermethylation of tumor suppressor genes (p16INK4A, p14ARF and APC) in adenocarcinomas of the upper gastrointestinal tract. Int J Cancer 2004;111:224-8.

    69. Smith CM, Watson DI, Michael MZ, Hussey DJ. MicroRNAs, development of Barrett’s esophagus, and progression to esophageal adenocarcinoma. World J Gastroenterol 2010;16:531-7.

    70. Wijnhoven BP, Hussey DJ, Watson DI, Tsykin A, Smith CM, Michael MZ, South Australian Oesophageal Research G. MicroRNA prof ling of Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Surg 2010;97:853-61.

    71. Mees ST, Mardin WA, Wendel C, Baeumer N, Willscher E, Senninger N, Schleicher C, Colombo-Benkmann M, Haier J. EP300-a miRNA-regulated metastasis suppressor gene in ductal adenocarcinomas of the pancreas. Int J Cancer 2010;126:114-24.

    72. Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K. Modulation of microRNA processing by p53. Nature 2009;460:529-33.

    73. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 2009;28:1385-92.

    74. Leidner RS, Ravi L, Leahy P, Chen Y, Bednarchik B, Streppel M, Canto M, Wang JS, Maitra A, Willis J, Markowitz SD, Barnholtz-Sloan J, Adams MD, Chak A, Guda K. The microRNAs, MiR-31 and MiR-375, as candidate markers in Barrett’s esophageal carcinogenesis. Genes Chromosomes Cancer 2012;51:473-9.

    Dr. Yu Imamura, Department of Gastroenterological Surgery, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto, Tokyo 135-8550, Japan. E-mail: yu.imamura@jfcr.or.jp

    Website:

    www.jcmtjournal.com

    10.4103/2394-4722.161620

    This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

    For reprints contact: reprints@medknow.com

    How to cite this article: Imamura Y, Tokunaga R, Nakamura K, Baba H, Watanabe M. Overview of genetic and epigenetic alterations in the pathogenesis of esophagogastric junctional adenocarcinoma and esophageal adenocarcinoma: recent f ndings by next generation sequencing. J Cancer Metastasis Treat 2015;1:123-9.

    Received: 09-06-2015; Accepted: 26-06-2015.

    一区二区日韩欧美中文字幕 | 美女脱内裤让男人舔精品视频| 美女国产高潮福利片在线看| 中文字幕最新亚洲高清| 国产精品成人在线| 精品熟女少妇av免费看| 日韩成人伦理影院| 亚洲国产毛片av蜜桃av| 婷婷成人精品国产| 国产老妇伦熟女老妇高清| 国产成人av激情在线播放| 国产亚洲欧美精品永久| 精品国产一区二区久久| 婷婷色综合大香蕉| 一本色道久久久久久精品综合| www.色视频.com| 免费高清在线观看视频在线观看| 日本免费在线观看一区| 黄色一级大片看看| 赤兔流量卡办理| 国产精品久久久av美女十八| 香蕉精品网在线| 水蜜桃什么品种好| 人妻少妇偷人精品九色| 热re99久久国产66热| 欧美国产精品一级二级三级| 一级毛片 在线播放| 免费在线观看黄色视频的| 69精品国产乱码久久久| av在线观看视频网站免费| 亚洲精品久久久久久婷婷小说| 日本黄大片高清| 永久网站在线| 免费女性裸体啪啪无遮挡网站| av有码第一页| 成人免费观看视频高清| 18+在线观看网站| 欧美97在线视频| 免费看av在线观看网站| 晚上一个人看的免费电影| 国产老妇伦熟女老妇高清| 91久久精品国产一区二区三区| 日韩三级伦理在线观看| 亚洲伊人久久精品综合| 欧美亚洲 丝袜 人妻 在线| 日本av免费视频播放| 亚洲激情五月婷婷啪啪| 99精国产麻豆久久婷婷| 99re6热这里在线精品视频| 免费黄频网站在线观看国产| 99热这里只有是精品在线观看| 精品久久久精品久久久| 久久综合国产亚洲精品| 大片电影免费在线观看免费| 欧美bdsm另类| 亚洲一区二区三区欧美精品| 免费高清在线观看日韩| 久久亚洲国产成人精品v| 国产日韩欧美亚洲二区| 韩国高清视频一区二区三区| 欧美国产精品va在线观看不卡| 热99国产精品久久久久久7| 国产精品久久久久成人av| 一级毛片我不卡| 人妻人人澡人人爽人人| 成人无遮挡网站| 夜夜骑夜夜射夜夜干| 亚洲精品日本国产第一区| 99热全是精品| 国产亚洲一区二区精品| 人妻系列 视频| 亚洲精品成人av观看孕妇| 国产精品国产三级国产专区5o| 国产精品久久久久久精品古装| 在线观看www视频免费| 欧美成人午夜精品| 国产成人aa在线观看| 国产成人aa在线观看| 亚洲精品第二区| 亚洲av免费高清在线观看| 午夜老司机福利剧场| 亚洲综合精品二区| av国产精品久久久久影院| 日日摸夜夜添夜夜爱| 青春草亚洲视频在线观看| 中国三级夫妇交换| 一级片'在线观看视频| 啦啦啦在线观看免费高清www| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲综合色网址| 国产成人精品婷婷| 国产黄色免费在线视频| 免费观看av网站的网址| 一二三四在线观看免费中文在 | 国产av码专区亚洲av| 人人妻人人澡人人看| 看十八女毛片水多多多| 丝袜喷水一区| 人妻少妇偷人精品九色| 久久99热这里只频精品6学生| 精品国产一区二区久久| 黑丝袜美女国产一区| 高清视频免费观看一区二区| 久久精品国产a三级三级三级| 精品国产国语对白av| 少妇的丰满在线观看| 日韩中字成人| 美女脱内裤让男人舔精品视频| 久久精品国产亚洲av涩爱| 人妻一区二区av| 男人添女人高潮全过程视频| 久久久精品区二区三区| 大片免费播放器 马上看| 成人影院久久| 久久人人爽人人爽人人片va| 黑人欧美特级aaaaaa片| 久久久精品94久久精品| 日韩制服骚丝袜av| 99香蕉大伊视频| 成人毛片a级毛片在线播放| 插逼视频在线观看| 80岁老熟妇乱子伦牲交| 高清在线视频一区二区三区| 熟女人妻精品中文字幕| 免费观看性生交大片5| 多毛熟女@视频| 久久久久精品久久久久真实原创| 亚洲精品视频女| 久久精品人人爽人人爽视色| 精品人妻在线不人妻| 精品人妻一区二区三区麻豆| 久久久久久久国产电影| 欧美 亚洲 国产 日韩一| 天堂8中文在线网| 午夜老司机福利剧场| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美在线一区| 中文字幕人妻熟女乱码| 美女主播在线视频| 91aial.com中文字幕在线观看| 亚洲精品视频女| 狠狠婷婷综合久久久久久88av| kizo精华| 18+在线观看网站| 99国产精品免费福利视频| 少妇人妻精品综合一区二区| 精品少妇内射三级| 久久精品久久精品一区二区三区| 免费观看a级毛片全部| 熟女电影av网| 亚洲精品视频女| 日本免费在线观看一区| 插逼视频在线观看| 80岁老熟妇乱子伦牲交| 国产色爽女视频免费观看| 亚洲精品第二区| 国产免费一区二区三区四区乱码| 亚洲内射少妇av| 国产成人精品婷婷| 亚洲伊人久久精品综合| 国产精品偷伦视频观看了| 欧美日韩成人在线一区二区| a级片在线免费高清观看视频| 亚洲精品久久午夜乱码| 一级a做视频免费观看| av免费在线看不卡| 日本免费在线观看一区| 亚洲人成77777在线视频| 亚洲,欧美精品.| 亚洲精品456在线播放app| 欧美亚洲日本最大视频资源| 丝袜脚勾引网站| av电影中文网址| 亚洲精品久久午夜乱码| 亚洲情色 制服丝袜| 在线天堂最新版资源| 男女下面插进去视频免费观看 | 国产成人av激情在线播放| 国产亚洲最大av| 成年美女黄网站色视频大全免费| 成年女人在线观看亚洲视频| 18+在线观看网站| 国语对白做爰xxxⅹ性视频网站| 亚洲精品色激情综合| 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 日韩av在线免费看完整版不卡| 亚洲精品456在线播放app| 精品一区二区三区四区五区乱码 | 成人国产麻豆网| 1024视频免费在线观看| 如日韩欧美国产精品一区二区三区| 全区人妻精品视频| 麻豆乱淫一区二区| 精品久久久精品久久久| 久久精品aⅴ一区二区三区四区 | 在线观看三级黄色| 精品亚洲成国产av| 日韩精品免费视频一区二区三区 | 亚洲色图综合在线观看| 99九九在线精品视频| 精品福利永久在线观看| 午夜福利,免费看| 咕卡用的链子| 午夜福利,免费看| 韩国高清视频一区二区三区| 最近最新中文字幕大全免费视频 | 看免费成人av毛片| 午夜免费观看性视频| tube8黄色片| 乱码一卡2卡4卡精品| 在线观看一区二区三区激情| 内地一区二区视频在线| 久热久热在线精品观看| 又黄又爽又刺激的免费视频.| 秋霞伦理黄片| av黄色大香蕉| 晚上一个人看的免费电影| 国产爽快片一区二区三区| 精品一区二区三卡| 午夜精品国产一区二区电影| www日本在线高清视频| 多毛熟女@视频| 九色成人免费人妻av| 日韩av免费高清视频| √禁漫天堂资源中文www| 精品一区二区免费观看| 最黄视频免费看| 又粗又硬又长又爽又黄的视频| 亚洲欧美成人综合另类久久久| 看非洲黑人一级黄片| 男女下面插进去视频免费观看 | 看十八女毛片水多多多| 91午夜精品亚洲一区二区三区| 国产免费一级a男人的天堂| 国产成人精品无人区| 国产成人精品无人区| 你懂的网址亚洲精品在线观看| 国产av精品麻豆| 国产黄频视频在线观看| 香蕉国产在线看| 国产精品秋霞免费鲁丝片| 日韩精品有码人妻一区| 人人妻人人澡人人看| 亚洲精品,欧美精品| 国产激情久久老熟女| 久久久久久久精品精品| 一级a做视频免费观看| 最新的欧美精品一区二区| 夜夜爽夜夜爽视频| 日本91视频免费播放| 久久av网站| 黄网站色视频无遮挡免费观看| 国产成人欧美| 午夜精品国产一区二区电影| 婷婷色综合www| 亚洲国产精品999| 久久久久国产网址| 免费看光身美女| 国产永久视频网站| 丝袜人妻中文字幕| 亚洲一区二区三区欧美精品| 99视频精品全部免费 在线| 精品国产乱码久久久久久小说| 亚洲激情五月婷婷啪啪| 91午夜精品亚洲一区二区三区| 2022亚洲国产成人精品| 最近最新中文字幕免费大全7| 精品少妇久久久久久888优播| av国产久精品久网站免费入址| 中文乱码字字幕精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 午夜福利影视在线免费观看| 免费大片18禁| 校园人妻丝袜中文字幕| 国产成人av激情在线播放| 最近中文字幕高清免费大全6| 高清欧美精品videossex| 久久久久久久国产电影| 午夜影院在线不卡| 亚洲,欧美精品.| 国产色婷婷99| 亚洲国产精品999| av网站免费在线观看视频| 1024视频免费在线观看| 国产麻豆69| 亚洲欧美成人综合另类久久久| 日本猛色少妇xxxxx猛交久久| 亚洲精品国产av成人精品| 日韩免费高清中文字幕av| 亚洲国产色片| 亚洲精品日本国产第一区| 在线免费观看不下载黄p国产| 丰满饥渴人妻一区二区三| 欧美成人午夜免费资源| 久久久久精品人妻al黑| 亚洲,欧美,日韩| 黄色配什么色好看| 久久女婷五月综合色啪小说| 精品人妻在线不人妻| 免费av不卡在线播放| 在线天堂最新版资源| 久久久久精品人妻al黑| 亚洲性久久影院| 国产成人精品福利久久| 全区人妻精品视频| 69精品国产乱码久久久| 久久精品久久久久久噜噜老黄| 亚洲av福利一区| av一本久久久久| 日韩成人av中文字幕在线观看| 少妇的丰满在线观看| 爱豆传媒免费全集在线观看| 美国免费a级毛片| 久久国产亚洲av麻豆专区| 亚洲精品第二区| 18禁动态无遮挡网站| 欧美精品亚洲一区二区| 最近的中文字幕免费完整| 国产色婷婷99| 久久久久国产网址| 国产永久视频网站| 久久人人爽人人片av| 三上悠亚av全集在线观看| 天天影视国产精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 精品一区在线观看国产| 亚洲国产日韩一区二区| 免费av不卡在线播放| 欧美日韩成人在线一区二区| 十分钟在线观看高清视频www| 夫妻午夜视频| 啦啦啦视频在线资源免费观看| 9191精品国产免费久久| 三上悠亚av全集在线观看| av黄色大香蕉| 欧美人与善性xxx| 中文字幕人妻丝袜制服| 日日撸夜夜添| 99九九在线精品视频| 美女视频免费永久观看网站| 亚洲精品一区蜜桃| 日本欧美视频一区| 国产成人精品无人区| 日韩伦理黄色片| 欧美国产精品一级二级三级| 美女福利国产在线| 热re99久久精品国产66热6| 日韩,欧美,国产一区二区三区| 制服丝袜香蕉在线| 成人国产av品久久久| 在线观看免费高清a一片| 亚洲精品第二区| 国产色婷婷99| 国产一区二区三区综合在线观看 | 亚洲国产av新网站| 有码 亚洲区| 精品少妇久久久久久888优播| 在线亚洲精品国产二区图片欧美| 老熟女久久久| 亚洲欧美成人精品一区二区| 色网站视频免费| 一区二区三区精品91| 欧美精品av麻豆av| 黄色毛片三级朝国网站| 欧美精品亚洲一区二区| 亚洲图色成人| 亚洲性久久影院| 全区人妻精品视频| 人成视频在线观看免费观看| 国产精品无大码| 2018国产大陆天天弄谢| 日日摸夜夜添夜夜爱| 国产精品久久久久久精品古装| 久久狼人影院| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| 2018国产大陆天天弄谢| 99久久综合免费| 在线免费观看不下载黄p国产| 精品亚洲乱码少妇综合久久| a级毛片在线看网站| 18禁裸乳无遮挡动漫免费视频| 黑人猛操日本美女一级片| 黄色怎么调成土黄色| 一本大道久久a久久精品| 久久精品夜色国产| 两个人免费观看高清视频| av有码第一页| 22中文网久久字幕| 一级a做视频免费观看| 一二三四中文在线观看免费高清| 欧美国产精品va在线观看不卡| 欧美成人精品欧美一级黄| 日韩电影二区| 中文字幕人妻丝袜制服| 2022亚洲国产成人精品| 校园人妻丝袜中文字幕| 久久精品夜色国产| 极品少妇高潮喷水抽搐| 欧美人与善性xxx| 22中文网久久字幕| 视频中文字幕在线观看| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 成人免费观看视频高清| 国产精品偷伦视频观看了| av国产精品久久久久影院| 麻豆精品久久久久久蜜桃| 成年动漫av网址| 夫妻性生交免费视频一级片| 日韩伦理黄色片| 九色亚洲精品在线播放| 老熟女久久久| 99re6热这里在线精品视频| 欧美精品人与动牲交sv欧美| 丰满乱子伦码专区| 亚洲国产最新在线播放| 国产精品久久久久久久久免| 尾随美女入室| 超色免费av| 精品卡一卡二卡四卡免费| 韩国高清视频一区二区三区| 午夜免费男女啪啪视频观看| 男女边摸边吃奶| 午夜激情久久久久久久| 99热这里只有是精品在线观看| 亚洲第一av免费看| 波野结衣二区三区在线| 99热国产这里只有精品6| 国产精品欧美亚洲77777| 免费看av在线观看网站| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 不卡视频在线观看欧美| 91午夜精品亚洲一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲精品国产色婷婷电影| 午夜av观看不卡| 久久99蜜桃精品久久| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久精品精品| 9热在线视频观看99| 成年人免费黄色播放视频| 国产一区二区三区av在线| 亚洲欧洲日产国产| 少妇熟女欧美另类| 国产成人精品在线电影| 一区在线观看完整版| 青春草亚洲视频在线观看| 亚洲欧美日韩另类电影网站| 久久精品aⅴ一区二区三区四区 | 校园人妻丝袜中文字幕| 亚洲国产欧美日韩在线播放| 熟女电影av网| 久久 成人 亚洲| 十八禁高潮呻吟视频| 亚洲精品美女久久av网站| 成人亚洲精品一区在线观看| 男人操女人黄网站| 亚洲色图综合在线观看| 精品久久久精品久久久| 蜜桃国产av成人99| 亚洲国产日韩一区二区| 国产av精品麻豆| 夫妻性生交免费视频一级片| 大香蕉久久成人网| 精品久久久精品久久久| av线在线观看网站| 欧美激情极品国产一区二区三区 | 国产一区二区三区av在线| 午夜老司机福利剧场| 精品人妻一区二区三区麻豆| 大香蕉久久网| 男人操女人黄网站| 国产精品久久久久成人av| 久久精品国产亚洲av天美| 亚洲av电影在线进入| 国产极品粉嫩免费观看在线| 男人爽女人下面视频在线观看| 久久久a久久爽久久v久久| 女性生殖器流出的白浆| 日本午夜av视频| av在线播放精品| 国产一区有黄有色的免费视频| 欧美日韩一区二区视频在线观看视频在线| 99久久中文字幕三级久久日本| 午夜老司机福利剧场| 亚洲欧美清纯卡通| 日本91视频免费播放| 国产国语露脸激情在线看| 99久久精品国产国产毛片| 男人添女人高潮全过程视频| 中文字幕人妻熟女乱码| 免费观看无遮挡的男女| 高清在线视频一区二区三区| 国产福利在线免费观看视频| 一二三四中文在线观看免费高清| 高清毛片免费看| 国产精品一区二区在线观看99| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 十八禁网站网址无遮挡| 少妇人妻 视频| av女优亚洲男人天堂| 美女中出高潮动态图| 亚洲综合色惰| 美女国产高潮福利片在线看| 国产成人午夜福利电影在线观看| 精品午夜福利在线看| 自线自在国产av| 国产成人欧美| 久久久久精品人妻al黑| 亚洲国产av影院在线观看| 亚洲精品国产av成人精品| 看免费成人av毛片| 18禁裸乳无遮挡动漫免费视频| a 毛片基地| 日韩成人伦理影院| 日韩av免费高清视频| 999精品在线视频| 制服丝袜香蕉在线| 午夜91福利影院| 亚洲欧美色中文字幕在线| 国产极品天堂在线| 国产精品久久久久久精品电影小说| 人妻 亚洲 视频| 成人黄色视频免费在线看| av国产精品久久久久影院| 内地一区二区视频在线| 香蕉丝袜av| 91精品国产国语对白视频| 青春草视频在线免费观看| 免费高清在线观看视频在线观看| 视频在线观看一区二区三区| 久久热在线av| 久久婷婷青草| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 国产深夜福利视频在线观看| 26uuu在线亚洲综合色| 美女福利国产在线| 亚洲国产毛片av蜜桃av| 制服诱惑二区| 精品少妇内射三级| 欧美精品高潮呻吟av久久| 精品国产露脸久久av麻豆| 国产av国产精品国产| 亚洲国产精品国产精品| 香蕉丝袜av| 91久久精品国产一区二区三区| 美女中出高潮动态图| 五月伊人婷婷丁香| 国精品久久久久久国模美| 麻豆精品久久久久久蜜桃| 美女大奶头黄色视频| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 不卡视频在线观看欧美| 日本wwww免费看| 亚洲欧美中文字幕日韩二区| 日韩精品免费视频一区二区三区 | 日韩成人伦理影院| 两性夫妻黄色片 | 少妇的逼好多水| 国产精品久久久久成人av| 日本欧美视频一区| 日本与韩国留学比较| 亚洲,一卡二卡三卡| 国产色爽女视频免费观看| 亚洲av男天堂| 精品一区二区三区视频在线| 欧美人与善性xxx| 亚洲精品色激情综合| 久久久国产欧美日韩av| 国产成人精品久久久久久| 亚洲情色 制服丝袜| 精品亚洲成国产av| 亚洲一级一片aⅴ在线观看| 欧美3d第一页| 成人亚洲精品一区在线观看| 日日摸夜夜添夜夜爱| 亚洲第一av免费看| 免费观看a级毛片全部| 成人二区视频| 欧美日韩一区二区视频在线观看视频在线| 欧美精品av麻豆av| 亚洲精品中文字幕在线视频| av在线观看视频网站免费| 春色校园在线视频观看| 午夜免费观看性视频| 欧美精品国产亚洲| 另类精品久久| 国产有黄有色有爽视频| 久久久久人妻精品一区果冻| 亚洲国产精品国产精品| 在线观看免费日韩欧美大片| 成人无遮挡网站| 国产av一区二区精品久久| 国产激情久久老熟女| 中文字幕制服av| 久久久亚洲精品成人影院| 最近的中文字幕免费完整| 精品酒店卫生间| 最近最新中文字幕免费大全7| 国产在线一区二区三区精| 成人毛片60女人毛片免费| 色视频在线一区二区三区| 18禁动态无遮挡网站| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 人人妻人人澡人人爽人人夜夜| 国产免费一区二区三区四区乱码| 亚洲性久久影院| 精品久久蜜臀av无|