• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Penetration efficiency of nanoparticles in a bend of circular cross-section*

    2015-02-16 06:43:31YINZhaoqin尹招琴LINJianzhong林建忠LOUMing婁明
    水動力學研究與進展 B輯 2015年1期

    YIN Zhao-qin (尹招琴), LIN Jian-zhong (林建忠), LOU Ming (婁明)

    Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou 310018, China, E-mail: yinzq@cjlu.edu.cn

    Penetration efficiency of nanoparticles in a bend of circular cross-section*

    YIN Zhao-qin (尹招琴), LIN Jian-zhong (林建忠), LOU Ming (婁明)

    Institute of Fluid Measurement and Simulation, China Jiliang University, Hangzhou 310018, China, E-mail: yinzq@cjlu.edu.cn

    (Received June 23, 2013, Revised August 27, 2013)

    In order to quantify the losses of nanoparticles in a bend of circular cross-section, the penetration efficiency of nanoparticles of sizes ranging from 5.6 nm to 560 nm in diameter is determined as a function of the Dean number, the Schmidt number and the bend angle. It is shown that the effect of the Dean number on the penetration efficiency depends on the particle size. The Dean number has a stronger effect on the penetration efficiency for small particles than for large particles. There exists a critical value of the Dean number beyond which the penetration efficiency turns from increasing to decreasing with the increase of the Dean number, and this critical value is dependent on the particle size and the bend length. The penetration efficiency increases abruptly when the Schmidt number changes from 7 500 to 25 000. Finally, a theoretical relation between the penetration efficiency and the Dean number, the Schmidt number and the bend length is derived.

    nanoparticle, penetration efficiency, bends, measurement, Dean number, Schmidt number

    Introduction

    The particle deposition in bends is important in various scenarios ranging from a ventilation system and an aerosol experiment to human circulation systems[1-4]. Nanoparticles are more diffusible and toxic and would suffer greater losses in their number than larger particles[5,6]. Deposited particles can change the particle number distribution, the size distribution, the total mass concentration and the mean particle size within the bends. Better understanding of the deposition process is important to the applications of the nanoparticle technology.

    Even though the lengths of the flow paths within the bends are usually short, the strong secondary flow inside the bends affects both the particles and the fluid that transports the particles from the core of the flow toward the walls[7], and redistributes the particles across the bend cross-section, greatly enhancing the particle diffusional deposition inside the bends.

    For nanoparticles in bends, the numerical[5]and experimental results[8-10]show that smaller nanoparticles (of diameter less than 50 nm) deposit on the wall surface more easily. Wang et al.[9]studied the nanoparticles of diameters ranging from 5 nm to 15 nm ino 90 bends, and found that the curvature ratio and the Dean number ()De have effects on the nanoparticle penetration efficiency. Yook and Pui[10]studied experimentally the penetration efficiency with particle diameters ranging from 3 nm to 50 nm in coils with the Dean number in the range 211799 De<<, and indicated that the penetration efficiency increased with the increase of the Dean number and the particle size. Lin et al.[11]observed that the effects of the Schmidt number, the bending radius and the Reynolds number on the relative deposition efficiency are different.

    Several factors can cause particles to deposit[12,13]. For nanoparticles, the diffusion instead of the inertia is the main factor in the particle deposition. The Brownian diffusion is an important factor for particles smaller than 100 nm, while both the Brownian and the turbulence diffusions are important for particles larger than 100 nm[9,14]. Therefore, the particle, flow and bend characteristic parameters must be used to describe the property of the particle deposition. The particleStokes number ()St is an important parameter for the particle motion in the Stokesian regime. For nanoparticles, the particle Stokes number is about 10-5in orders of magnitude. So the Schmidt number was used to describe the particle deposition[8,15]. The Schmidt number is a dimensionless number that characterizes the ratio of the mass diffusion and convection processes of the nanoparticles. The strength of the secondary flow in a bend is characterized by the Dean number. For a bend flow, the Dean number plays a role of the “Reynolds number”, i.e.,De=Re/R/ a where Re=2Ua/ν is the flow Reynolds number, ν is kinematic viscosity of the air, U is the mean axial velocity in the bend, R and a are the radius of the bend and the tube, respectively. So the Schmidt number, the Dean number and the bend angle are the main parameters to describe the nanoparticle deposition.

    Even though a large number of results about the particle deposition in bends were obtained, most of them were about micro particles in theo90 bends or coils[16,17]. The effects of the Dean number, the Schmidt number and the bend angle on the penetration efficiency of the nanoparticles in a bend remain an unexplored topic of research. With the bend being always the important part of the corrosion and the jam, it is necessary to understand the mechanism of the nanoparticle deposition in the bend. Therefore, the aim of this paper is to study the effects of above factors on the penetration efficiency of nanoparticles, and to derive a theoretical relation between the penetration efficiency and the Dean number, the Schmidt number and the bend length.

    Fig.1 Schematic diagram of the experimental setup

    1. Experimental method

    Measurements of the size and number distributions of nanoparticles are usually made by using instruments such as the electrical low pressure impactors (ELPI), the scanning mobility particle sizers (SMPS), the ultrafine particle condensation counters (UPCC). Most of these instruments have low sampling frequencies relative to that required to characterize the nanoparticle transmission in bends[18]. For example, for the SMPS, it takes 30 s to 180 s to analyze a single scan. In this paper, therefore, the fast mobility particle sizer (FMPS, Model3091, TSI Inc.) system is chosen to measure the size and number distributions of nanoparticles. A sampling frequency of 1 Hz is taken in each measurement. The particles of sizes ranging from 5.6 nm to 560 nm can be measured in 32 channels[19].

    Fig.2 Particle size distribution

    A schematic diagram of the experimental setup is shown in Fig.1. Particles and compressed air are mixed in a pressure chamber. The flow required for the bend is regulated using a valve downstream of the mixing chamber. In order to obtain a fully developed flow profile, each bend has an inlet straight section of a sufficient length. The valves 2, 3, 4 are three way valves used to regulate the fluid flow. When the fluid flows through the valves 1, 2, 4 and FMPS3091, the entrance parameters are measured. While the fluid flows through the valves 1, 2, the bend, the valve 4 and FMPS3091, the exit parameters are measured. The inner radius of the bend ()a is 0.006 m. The sample flow rate is 0.01 m3/min, corresponding to themean velocity of 1.47 m/s .The sampling time of the experiment is 1 min for each measurement. The material of the pipe is polyvinyl chloride.

    The LaVision Aerosol Generator generates polydisperse particles by atomizing vegetable oil into particles. The particles larger than 560 nm are filtered out by the FMPS. The particle Schmidt number varies from 51 to 172 574. To ensure accurate measurements, these experiments are repeated at least three times with essentially the same results. Figure 2 shows the size distributions of the nanoparticles under the air supplied pressure of 0.7 MPa.

    2. Results and discussions

    2.1 Nanoparticle penetration efficiency

    The nanoparticle penetration efficiency ()p in a bend is defined as the ratio of the particle number concentrations at the exit (exit) and the entrance of the test section(entrance)

    The measured penetration efficiencies are shown in Fig.3, where the results given by Yook et al.[10]are also displayed. The data points with error bars are the present results, which are shown to be in agreement with previous results. It can be seen that the penetration efficiency increases with the increase of the Dean number. According to the definition of the Dean number, the penetration efficiency increases with the increase of the Reynolds number or the decrease of the curvature ratio.

    Fig.3 Penetration efficiency compared with previous results

    2.2 Effect of Dean number on the penetration efficiency

    Figures 4 and 5 show the penetration efficiency as a function of the Dean number for different particle sizes. For small and intermediate Dean numbers, the flow can be considered as a laminar flow. As the Dean number increases, the flow turns into a turbulent one. The turn point is 370.

    Fig.4 Penetration efficiency as a function of Dean number for different particle sizes (l/ a=500)

    Fig.5 Penetration efficiency as a function of Dean number for different particle sizes (l/ a=666.7)

    From Fig.4 and 5, it can be seen that the penetration efficiencies increase with the increase of the Dean number when De<400. As the Dean number increases, the penetration efficiency also increases and tends to remain at a constant level for Dp=10.8 nm , while decreases slightly for Dp=107.5 nm and 254.8 nm when De>400, where Dpis the nanoparticle size. This indicates that the effect of the Dean number on the penetration efficiency is dependent on the particles size.

    The penetration efficiency for Dp=8.6 nm increases 20% when De increases from 144.3 to 922.1 for l/ a=500, while the penetration efficiency for Dp>100 nm only increases less than 10% under the same condition. So the Dean number has a stronger effect on the penetration efficiency for small particles (Dp<100 nm)than for large particles (100 nm< Dp<560 nm).

    In the previous studies, only the results for De<370 were obtained, as shown in Fig.3, where the penetration efficiency increases with the increase of the Dean number because the flow is laminar and theBrownian motion dominates the particle diffusion. For De>370, the flow is turbulent and both Brownian and turbulent motions are responsible for the particle diffusion. The turbulent motion has a main effect on the particle diffusion when Dp>100 nm , which would result in an enhancement of the particle deposition and a reduction of the penetration efficiency. There exists a critical value of the Dean number beyond which the penetration efficiency turns from increasing to decreasing with the increase of the Dean number, and this critical value is dependent on the particle size and the bend length. Comparing Fig.4 and Fig.5 it is obvious that the penetration efficiency is larger for a long bend than for a short bend.

    Fig.6 Penetration efficiency as a function of bend angle for different particle sizes

    2.3 Effect of Bend angle on the penetration efficiency The penetration efficiency as a function of bend angle for different particle sizes and Dean numbers are shown in Fig.6, where the dimensionless bend angle θ is defined as

    when R keeps constant, θ is directly proportional to the bend length l. Therefore, a large θ means that the particles stay longer in the bend and have more opportunities to deposit on the surface. On the other hand, when l keeps constant, the decrease of R will enhance the strength of the secondary flow and promote the particle deposition. As shown in Fig.6, the penetration efficiency decreases with the increase of θ, and is obviously larger for large particles than for small particles. The penetration efficiency increases 16% for Dp=10.8 nm , and 10% for Dp=124.1 nm and 254.8 nm when θ increases from 2 to 10.

    2.4 Effect of Schmidt number on the penetration efficiency

    According to the definition of the Schmidt number, =/ScDν, it is inversely proportional to the diffusion coefficient D which is in the range from 8.0× 10-11m2/s to 2.67×10-7m2/s when the particle size changes from 523.3 nm to 6.04 nm. D=kTCc/ 3pDμπ,, where k is the Boltzmann’s constant,cC is the slip correction factor, λ is the particle mean free path, μ is dynamic viscosity of air, and T is the temperature. In the experiment, the Schmidt number changes from 51.7 to 172573 with the increase of the particle size. Figure 7 shows the penetration efficiency as a function of the Schmidt number for different De and θ. In the laminar flow (De=144 and θ=8.3), the results are in agreement with the theory of Friendlander[12]and the experimental results given by Malet[8]. The penetration efficiency is larger in the turbulent flow (=De630 and 554) than in the laminar flow (De=144). The difference of the penetration efficiency in the turbulent and laminar flows becomes small when the Schmidt number is larger than 10 000. There exists a range of the Schmidt number within which the penetration efficiency increases abruptly. The range is from 7 500 to 25 000 in the present study.

    Fig.7 Variation of penetration efficiency with Sc for different De and θ

    2.5 Analytical relation between the penetration efficiency and De, Sc and bend length

    For nanoparticles, the diffusion is the main factor for the particle deposition, including the Brownian diffusion and the turbulence diffusion. Therefore, the particle, flow and bend characteristic parameters must be used to describe the particle deposition. So the Schmidt number, the Dean number and the bend length are used to construct a function of the deposition.

    Based on the experimental data, an empirical relation between the penetration efficiency and the Dean number, the Schmidt number and the bend length is derived as

    Figure 8 shows the comparison between the ana-lytical relation predicted by Eq.(3) and the experimental data. The results of Yook et al.[10]are expressed as the parameters of the Dean number, the Schmidt number, and the bend length to validate the analytical relation.

    Fig.8 Comparison between Eq.(3) and experimental data

    2.6 Comparison of penetration efficiencies between straight and bend tubes

    The relative penetration efficiency ()η is defined as the ratio of the penetration efficiency in a bend to that in a straight tube with the same length

    Figure 9 shows the penetration efficiency as a function of the particle size with De=142.9. The penetration efficiency in the bend is lower than that in the straight tube because η is less than 1. The values of η are low when Dp<100 nm because fine particles can easily follow the secondary flow and deviate from the core of the flow toward the walls. The values of η keep a slight variation in the range 100 nm< Dp<523.3nm.

    Fig.9 Relative penetration efficiency as a function of particle size

    3. Conclusion

    In order to quantify the losses of nanoparticles in a bend of circular cross-section, the penetration efficiency of the nanoparticles of sizes ranging from 5.6 nm to 560 nm in diameter is determined as a function of the Dean number, the Schmidt number and the bend angle. It is shown that the effect of the Dean number on the penetration efficiency depends on the sizes of the particles. The Dean number has a stronger effect on the penetration efficiency for small particles than for large particles. The turbulent motion has a main effect on particles of diameters larger than 100 nm, resulting in an enhancement of the particle deposition and reduction in the penetration efficiency. There exists a critical value of the Dean number beyond which the penetration efficiency turns from increasing to decreasing with the increase of the Dean number, and this critical value is dependent on the particle size and the bend length. The penetration efficiency decreases with the increase of the tube length. The penetration efficiency is obviously larger for large particles than for small particles, and is larger in the turbulent flow than in the laminar flow. The difference of the penetration efficiency in the turbulent and laminar flows becomes small when the Schmidt number is larger than 10 000. The penetration efficiency increases abruptly when the Schmidt number changes from 7 500 to 25 000. Finally, an analytical relation between the penetration efficiency and the Dean number, the Schmidt number and the bend length is derived.

    [1] KEBLINSKI P., PHILLPOT S. R. E. and CHOI S. U. S. et al. Mechanisms of heat flow in suspensions of nanosized particle (nanofluids)[J]. International Journal of Heat and Mass Transfer, 2002, 45(4): 855-863.

    [2] ZHANG Z., KLEINSTREUER C. and DONOHUE J. F. et al. Comparison of micro- and nano- size particle depositions in a human upper airway model[J]. Journal of Aerosol Science, 2005, 36(2): 211-233.

    [3] HE Y., JIN Y. and CHEN H. et al. Heat transfer and flow behavior of aqueous suspensions of TiO2nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2272-2281.

    [4] MURR L. E., GARZA K. M. Natural and anthropogenic environmental nanoparticles: Their microstructural characterization and respiratory health implications[J]. Atmospheric Environment, 2009, 43(17): 2683-2692.

    [5] SUN Lei, LIN Jian-zhong. and BAO Fu-bin Numerical simulation on the deposition of nanoparticles under laminar conditions[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(6): 676-680.

    [6] KUMAR P., FENNELL P. and SYMONDS J. et al. Treatment of losses of ultrafine aerosol particles in long sampling tubes during ambient measurements[J]. Atmospheric Environment, 2008, 42(38): 8819-8826.

    [7] LIN Jian-zhong, LIN Pen-feng and CHEN Hua-jun. Nanoparticle distribution in a rotating curved pipe considering coagulation and dispersion[J]. Science China: Physics, Mechanics and Astronomy, 2011, 54(8):1502-1513.

    [8] MALET J., ALLOUL L. and MICHIELSEN N. et al. Deposition of nanosized particles in cylindrical tubes under laminar and turbulent flow conditions[J]. Journal Aerosol Science, 2000, 31(3): 335-348.

    [9] WANG J., FLAGAN R. C. and SEINFELD J. H. Diffusional losses in particle sampling systems containing bends and elbows[J]. Journal of Aerosol Science, 2002, 33(6): 843-857.

    [10] YOOK S. J., PUI D. Y. H. Experimental study of nanoparticle penetration efficiency through coils of circular cross-sections[J]. Aerosol Science and Technology, 2006, 40(6): 456-462.

    [11] LIN Jian-zhong, LIN Pen-feng and YU Ming-zhou et al. Nanoparticle transport and coagulation in bends of circular cross section via a new moment method[J]. Chinese Journal of Chemical Engineering, 2010, 18(1): 1-9.

    [12] FRIEDLANDER S. K. Smoke, dust and haze: Fundamentals of aerosol dynamics[M]. London, UK: Oxford University Press, 2000.

    [13] KETZEL M., BERKOWICZ R. Modelling of the fate of ultrafine particles from exhaust pipe to rural background: An analysis of time scales for dilution, coagulation and deposition[J]. Atmospheric Environment, 2004, 38(17): 2639-2652.

    [14] PETTERS T. M., LEITH D. Particle deposition in industrial duct bends[J]. Annals of Occupational Hygiene, 2004, 48(5): 483-490.

    [15] LIN J., LIN P. and CHEN H. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of fluids, 2009, 21(12): 122001.

    [16] JIANG H., LU L. and SUN K. Experimental study and numerical investigation of particle penetration and deposition ino90 bent ventilation ducts[J]. Building and Environment, 2011, 46(11): 2195-2202.

    [17] WILSON S. R., LIU Y. and MATIDA E. A. et al. Aerosol deposition measurements as a function of Reynolds number for turbulent flow in a ninety-degree pipe bend[J]. Aerosol Science and Technology, 2011, 45(3): 364-375.

    [18] CARPENTIERI M., KUMAR P. and ROBINS A. An overview of experimental results and dispersion modeling of nanoparticles in the wake of moving vehicles[J]. Environmental Pollution, 2011, 159(3): 685-693.

    [19] KUMAR P., ROBINS A. and VARDOULAKIS S. et al. A review of the characteristics of nanoparticles in the urban atmosphere and the prospects for developing regulatory controls[J]. Atmospheric Environment, 2010, 44(39): 5035-5052.

    10.1016/S1001-6058(15)60460-7

    * Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11132008).

    Biography: YIN Zhao-qin (1976-), Female, Ph. D., Associate Professor

    LIN Jian-zhong, E-mail: mecjzlin@zju.edu.cn

    亚洲av免费在线观看| 国产精品久久电影中文字幕| 精品久久国产蜜桃| 国产一区二区在线av高清观看| 欧美一区二区国产精品久久精品| 中文字幕熟女人妻在线| 嫩草影院新地址| 日本欧美国产在线视频| 久久精品夜色国产| 亚洲精品456在线播放app| 亚洲国产成人一精品久久久| 中文字幕免费在线视频6| 男女那种视频在线观看| 亚洲性久久影院| 久久鲁丝午夜福利片| 网址你懂的国产日韩在线| 免费观看在线日韩| 亚洲电影在线观看av| 亚洲色图av天堂| kizo精华| 国产在线男女| 国产91av在线免费观看| 在线播放国产精品三级| 久久久久久久国产电影| 亚洲欧美清纯卡通| 欧美激情在线99| av卡一久久| 国产精品精品国产色婷婷| 久久精品影院6| 国产av不卡久久| 欧美性猛交黑人性爽| 青青草视频在线视频观看| 亚洲国产最新在线播放| 嫩草影院入口| 视频中文字幕在线观看| 六月丁香七月| 午夜精品在线福利| 成年女人永久免费观看视频| 亚洲av免费在线观看| 日韩大片免费观看网站 | 一边亲一边摸免费视频| 久久久久久大精品| 九色成人免费人妻av| 亚洲av男天堂| 日本猛色少妇xxxxx猛交久久| 中文字幕熟女人妻在线| 免费观看性生交大片5| 免费搜索国产男女视频| 国模一区二区三区四区视频| 久久国内精品自在自线图片| 少妇人妻精品综合一区二区| 国产一级毛片在线| 老司机福利观看| 国产日韩欧美在线精品| 国产激情偷乱视频一区二区| 联通29元200g的流量卡| 欧美潮喷喷水| 亚洲国产日韩欧美精品在线观看| 天天一区二区日本电影三级| 国产精品一区二区三区四区免费观看| h日本视频在线播放| 黄色日韩在线| 国产精品国产高清国产av| 国产探花极品一区二区| 亚洲成av人片在线播放无| 赤兔流量卡办理| 国产在线男女| 伦理电影大哥的女人| 夜夜看夜夜爽夜夜摸| 欧美最新免费一区二区三区| 一个人看的www免费观看视频| 欧美+日韩+精品| 国产精品1区2区在线观看.| 色网站视频免费| 国产高潮美女av| 男人舔奶头视频| 久久国产乱子免费精品| 少妇人妻一区二区三区视频| 亚洲精品日韩av片在线观看| 免费播放大片免费观看视频在线观看 | 99热这里只有精品一区| 午夜精品国产一区二区电影 | 日韩av在线免费看完整版不卡| 免费看a级黄色片| 成人国产麻豆网| 最新中文字幕久久久久| 国产欧美另类精品又又久久亚洲欧美| 亚洲一级一片aⅴ在线观看| a级毛片免费高清观看在线播放| 一区二区三区免费毛片| 麻豆精品久久久久久蜜桃| 天堂网av新在线| 伦精品一区二区三区| 高清视频免费观看一区二区 | 亚洲无线观看免费| 国产精品1区2区在线观看.| 亚洲精品日韩在线中文字幕| 日日撸夜夜添| 国产一区亚洲一区在线观看| 麻豆国产97在线/欧美| 观看美女的网站| 最近手机中文字幕大全| 少妇熟女欧美另类| 国产综合懂色| 岛国毛片在线播放| 午夜福利高清视频| 国产精品福利在线免费观看| 亚洲成人中文字幕在线播放| 草草在线视频免费看| 五月伊人婷婷丁香| 久久久久久久久大av| 国产亚洲91精品色在线| 亚洲国产欧美人成| 欧美成人a在线观看| 熟女人妻精品中文字幕| 国产在线一区二区三区精 | 久久久亚洲精品成人影院| av播播在线观看一区| 黑人高潮一二区| 亚洲av一区综合| 久久国内精品自在自线图片| 欧美3d第一页| 久久久a久久爽久久v久久| 91精品一卡2卡3卡4卡| 国产精品1区2区在线观看.| av在线观看视频网站免费| 美女国产视频在线观看| 男女国产视频网站| 午夜福利视频1000在线观看| 国产精品久久久久久精品电影小说 | 成人av在线播放网站| 超碰97精品在线观看| 乱码一卡2卡4卡精品| 赤兔流量卡办理| 国产高清不卡午夜福利| 久久99蜜桃精品久久| 国产亚洲91精品色在线| 少妇裸体淫交视频免费看高清| 久久久国产成人免费| 亚洲美女搞黄在线观看| 日韩在线高清观看一区二区三区| 网址你懂的国产日韩在线| 国产精品综合久久久久久久免费| 国产成人91sexporn| 国产黄a三级三级三级人| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 熟女人妻精品中文字幕| 亚洲不卡免费看| 亚洲成人久久爱视频| 99在线视频只有这里精品首页| 午夜精品在线福利| 中文字幕免费在线视频6| 18+在线观看网站| 最近中文字幕2019免费版| 国产伦精品一区二区三区视频9| 国产精品日韩av在线免费观看| 一本一本综合久久| 99久久人妻综合| 97超碰精品成人国产| 你懂的网址亚洲精品在线观看 | 亚洲国产欧美人成| 免费看美女性在线毛片视频| 两个人视频免费观看高清| 日韩亚洲欧美综合| 免费黄网站久久成人精品| 欧美97在线视频| 久久久久免费精品人妻一区二区| 白带黄色成豆腐渣| 国产精品无大码| 一边亲一边摸免费视频| 日本欧美国产在线视频| 国产乱人偷精品视频| 熟妇人妻久久中文字幕3abv| 麻豆久久精品国产亚洲av| 日韩欧美三级三区| 日本av手机在线免费观看| 热99re8久久精品国产| 晚上一个人看的免费电影| 亚洲精品一区蜜桃| 可以在线观看毛片的网站| 国产白丝娇喘喷水9色精品| 亚洲精品亚洲一区二区| 精华霜和精华液先用哪个| 久久久久久大精品| 久久久色成人| 久久精品国产亚洲av天美| 少妇的逼水好多| 在线观看66精品国产| 亚洲精品日韩在线中文字幕| 在线免费观看的www视频| 欧美激情在线99| 美女高潮的动态| 中文字幕av在线有码专区| 亚洲色图av天堂| 亚洲成人精品中文字幕电影| 国产精品,欧美在线| 久久综合国产亚洲精品| 国产精品美女特级片免费视频播放器| 精品久久久久久久久久久久久| 国产精品乱码一区二三区的特点| 亚洲激情五月婷婷啪啪| 国产男人的电影天堂91| 亚洲国产最新在线播放| 国产精华一区二区三区| 欧美3d第一页| 国产欧美日韩精品一区二区| 久久久久久久久久久免费av| 国产三级在线视频| 国产亚洲午夜精品一区二区久久 | 插逼视频在线观看| 26uuu在线亚洲综合色| 91久久精品国产一区二区三区| 好男人在线观看高清免费视频| 亚洲国产精品久久男人天堂| kizo精华| 汤姆久久久久久久影院中文字幕 | 久久久成人免费电影| av在线播放精品| 成人鲁丝片一二三区免费| 久久久欧美国产精品| 日韩人妻高清精品专区| 国产av不卡久久| 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类| 小蜜桃在线观看免费完整版高清| 成人毛片a级毛片在线播放| 黑人高潮一二区| 日韩欧美精品免费久久| 久热久热在线精品观看| 国产激情偷乱视频一区二区| 三级男女做爰猛烈吃奶摸视频| 村上凉子中文字幕在线| 欧美一区二区国产精品久久精品| 国产片特级美女逼逼视频| 久久精品国产亚洲av天美| 黄色日韩在线| 欧美bdsm另类| 久久精品久久精品一区二区三区| 干丝袜人妻中文字幕| kizo精华| 亚洲真实伦在线观看| 亚洲最大成人av| 欧美成人免费av一区二区三区| 久久久久久久久久成人| 中文欧美无线码| 日本黄色视频三级网站网址| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品人妻熟女av久视频| 啦啦啦韩国在线观看视频| 日韩人妻高清精品专区| 亚洲精品国产成人久久av| 99热6这里只有精品| 国产欧美日韩精品一区二区| 我的老师免费观看完整版| 亚州av有码| 免费看美女性在线毛片视频| 欧美成人免费av一区二区三区| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 九九热线精品视视频播放| 在现免费观看毛片| 乱码一卡2卡4卡精品| 免费无遮挡裸体视频| 九九在线视频观看精品| 国产亚洲5aaaaa淫片| 亚洲怡红院男人天堂| 偷拍熟女少妇极品色| 日本一二三区视频观看| 国产成人a区在线观看| 伦理电影大哥的女人| 日韩av在线免费看完整版不卡| 我的女老师完整版在线观看| 观看美女的网站| 久99久视频精品免费| 国产精品麻豆人妻色哟哟久久 | 插逼视频在线观看| 最近最新中文字幕免费大全7| 亚洲va在线va天堂va国产| 最近最新中文字幕大全电影3| 免费看光身美女| av在线观看视频网站免费| 亚洲欧洲日产国产| 国产人妻一区二区三区在| av专区在线播放| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 国产乱来视频区| 成人高潮视频无遮挡免费网站| 两个人的视频大全免费| 高清日韩中文字幕在线| 好男人视频免费观看在线| 女的被弄到高潮叫床怎么办| av在线亚洲专区| 亚洲自拍偷在线| 美女xxoo啪啪120秒动态图| 99热6这里只有精品| 不卡视频在线观看欧美| 免费不卡的大黄色大毛片视频在线观看 | 日本免费一区二区三区高清不卡| 亚洲av.av天堂| 毛片一级片免费看久久久久| 午夜福利成人在线免费观看| 伦精品一区二区三区| 久久亚洲精品不卡| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 国产一级毛片七仙女欲春2| 长腿黑丝高跟| 久久精品夜色国产| 亚洲最大成人中文| 草草在线视频免费看| 亚洲aⅴ乱码一区二区在线播放| 99久久成人亚洲精品观看| 黄色一级大片看看| 亚洲精品成人久久久久久| 国产av不卡久久| 蜜桃亚洲精品一区二区三区| 大话2 男鬼变身卡| 又粗又硬又长又爽又黄的视频| 国产真实乱freesex| 亚洲三级黄色毛片| 蜜臀久久99精品久久宅男| 少妇猛男粗大的猛烈进出视频 | 中文天堂在线官网| 精品国产三级普通话版| 亚洲欧美清纯卡通| 赤兔流量卡办理| 中文字幕av成人在线电影| 国产精品女同一区二区软件| 久久人人爽人人片av| 国产高清三级在线| 插逼视频在线观看| 99久久精品热视频| 国产淫片久久久久久久久| 午夜精品一区二区三区免费看| 亚洲成色77777| 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品一区二区三区| 亚洲国产精品sss在线观看| 男女视频在线观看网站免费| 乱码一卡2卡4卡精品| 纵有疾风起免费观看全集完整版 | 日韩精品青青久久久久久| 日韩成人av中文字幕在线观看| 国产精品蜜桃在线观看| 在线天堂最新版资源| 国产亚洲午夜精品一区二区久久 | 日本黄色视频三级网站网址| 九九热线精品视视频播放| 欧美极品一区二区三区四区| 午夜福利网站1000一区二区三区| 舔av片在线| 一卡2卡三卡四卡精品乱码亚洲| 女人久久www免费人成看片 | 日本一本二区三区精品| 人人妻人人澡欧美一区二区| 亚洲aⅴ乱码一区二区在线播放| 国产 一区 欧美 日韩| 亚洲精品日韩在线中文字幕| 精品免费久久久久久久清纯| 国产高清三级在线| 国产午夜精品久久久久久一区二区三区| 毛片一级片免费看久久久久| 啦啦啦韩国在线观看视频| 看非洲黑人一级黄片| 国产成人一区二区在线| 只有这里有精品99| 六月丁香七月| 人人妻人人看人人澡| 亚洲综合色惰| 亚洲一区高清亚洲精品| 高清午夜精品一区二区三区| 噜噜噜噜噜久久久久久91| 亚洲图色成人| 久久欧美精品欧美久久欧美| 亚洲婷婷狠狠爱综合网| 午夜免费男女啪啪视频观看| 亚洲美女视频黄频| 99热6这里只有精品| 国产老妇女一区| 国产精品女同一区二区软件| 夜夜爽夜夜爽视频| 亚洲美女视频黄频| 久久人人爽人人片av| 亚洲欧美精品自产自拍| 久久6这里有精品| 赤兔流量卡办理| 最近最新中文字幕免费大全7| 欧美成人一区二区免费高清观看| 伦精品一区二区三区| 国产av不卡久久| av线在线观看网站| 91av网一区二区| 在线免费观看不下载黄p国产| 欧美日韩综合久久久久久| 两个人视频免费观看高清| 内射极品少妇av片p| 国产精品爽爽va在线观看网站| 天堂网av新在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | av.在线天堂| 亚洲五月天丁香| 国产免费男女视频| 久久久久久久午夜电影| 国产综合懂色| 91av网一区二区| 国产精品美女特级片免费视频播放器| av在线亚洲专区| 精品久久久久久久久av| 久久久久久久国产电影| 中文天堂在线官网| 91久久精品国产一区二区成人| 成人欧美大片| 日韩精品有码人妻一区| 国产精品久久久久久精品电影小说 | 成人欧美大片| 亚洲av男天堂| 久久精品久久久久久久性| 精品国产露脸久久av麻豆 | 少妇被粗大猛烈的视频| 精品欧美国产一区二区三| 大香蕉久久网| 一级毛片电影观看 | 亚洲色图av天堂| 成年女人永久免费观看视频| 亚洲久久久久久中文字幕| 人妻夜夜爽99麻豆av| av视频在线观看入口| 日韩视频在线欧美| 少妇被粗大猛烈的视频| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 亚洲综合色惰| 日本av手机在线免费观看| videos熟女内射| 亚洲自拍偷在线| 2021少妇久久久久久久久久久| 日韩成人伦理影院| 亚洲精品乱久久久久久| 色视频www国产| 欧美最新免费一区二区三区| 激情 狠狠 欧美| 国产亚洲av片在线观看秒播厂 | 国产成人一区二区在线| 国产私拍福利视频在线观看| 人妻系列 视频| 最近中文字幕2019免费版| 舔av片在线| 丝袜喷水一区| 欧美bdsm另类| 久久久国产成人免费| 黄色日韩在线| 日韩强制内射视频| 内地一区二区视频在线| 久久久久久九九精品二区国产| 搡老妇女老女人老熟妇| 成人一区二区视频在线观看| 精品国产三级普通话版| 51国产日韩欧美| 国产老妇女一区| 听说在线观看完整版免费高清| 国产亚洲av片在线观看秒播厂 | 高清av免费在线| 亚洲精品国产成人久久av| 日韩视频在线欧美| 国产成人91sexporn| 麻豆av噜噜一区二区三区| 亚洲av中文av极速乱| 国产精品一区www在线观看| 欧美区成人在线视频| 欧美激情在线99| 熟妇人妻久久中文字幕3abv| 久久久久久大精品| 免费人成在线观看视频色| 亚州av有码| videos熟女内射| 婷婷六月久久综合丁香| 亚洲欧美精品综合久久99| 亚洲精品,欧美精品| 秋霞在线观看毛片| 天天躁夜夜躁狠狠久久av| 亚洲精品国产av成人精品| 精品酒店卫生间| 视频中文字幕在线观看| 国产高清三级在线| 色吧在线观看| 中文字幕制服av| 黄片无遮挡物在线观看| 久久久久性生活片| 国产亚洲5aaaaa淫片| 国产乱来视频区| 免费看a级黄色片| 三级国产精品片| 午夜福利在线在线| 国产精品一区www在线观看| 你懂的网址亚洲精品在线观看 | 伦精品一区二区三区| 综合色av麻豆| 国产精品电影一区二区三区| 免费看av在线观看网站| 久久精品人妻少妇| 在线免费十八禁| av在线蜜桃| 欧美色视频一区免费| 日本黄色视频三级网站网址| 国产成人a∨麻豆精品| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 国产午夜精品论理片| 成人漫画全彩无遮挡| 午夜视频国产福利| 国国产精品蜜臀av免费| 国产色婷婷99| 少妇的逼好多水| 国产精品电影一区二区三区| 国产亚洲91精品色在线| 国产高清三级在线| 色吧在线观看| 级片在线观看| 国产精品久久久久久精品电影| 女的被弄到高潮叫床怎么办| 亚洲自拍偷在线| 国产69精品久久久久777片| av在线观看视频网站免费| 国产中年淑女户外野战色| 汤姆久久久久久久影院中文字幕 | 97在线视频观看| 午夜视频国产福利| 久久久精品94久久精品| av线在线观看网站| 纵有疾风起免费观看全集完整版 | 日韩av在线免费看完整版不卡| 亚洲国产色片| 日韩av在线免费看完整版不卡| 51国产日韩欧美| 亚洲av中文av极速乱| 桃色一区二区三区在线观看| 人人妻人人澡欧美一区二区| 麻豆av噜噜一区二区三区| 深夜a级毛片| 欧美成人免费av一区二区三区| 久久精品久久久久久噜噜老黄 | 亚洲精品成人久久久久久| 免费看日本二区| 男人舔女人下体高潮全视频| 色尼玛亚洲综合影院| 99久久中文字幕三级久久日本| 级片在线观看| 亚洲av免费在线观看| 午夜精品一区二区三区免费看| 亚洲av成人av| 国产伦精品一区二区三区四那| 91久久精品国产一区二区三区| 欧美高清成人免费视频www| 亚洲最大成人av| 赤兔流量卡办理| 最近视频中文字幕2019在线8| 日韩成人伦理影院| 日本wwww免费看| av线在线观看网站| 免费电影在线观看免费观看| 99热这里只有是精品50| 国产成人精品婷婷| 国产在线男女| АⅤ资源中文在线天堂| 赤兔流量卡办理| 99九九线精品视频在线观看视频| 国产伦一二天堂av在线观看| 综合色丁香网| 99久久九九国产精品国产免费| 美女内射精品一级片tv| 亚洲中文字幕日韩| 毛片女人毛片| 精品人妻偷拍中文字幕| 久久久久性生活片| 国产极品天堂在线| 99久国产av精品| 久久久久久伊人网av| 又黄又爽又刺激的免费视频.| 亚洲精品色激情综合| 久久久久久久久中文| 亚洲av一区综合| 看十八女毛片水多多多| 禁无遮挡网站| 国产精品综合久久久久久久免费| 99热全是精品| 免费观看a级毛片全部| 蜜桃久久精品国产亚洲av| 亚洲av男天堂| 成人综合一区亚洲| 久久久久久大精品| 尾随美女入室| 女人十人毛片免费观看3o分钟| 色网站视频免费| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站| 秋霞在线观看毛片| 97人妻精品一区二区三区麻豆| 免费看av在线观看网站| 欧美又色又爽又黄视频| 大香蕉97超碰在线| 国产精品久久久久久久电影| av视频在线观看入口| 精品酒店卫生间| 女人十人毛片免费观看3o分钟| av在线亚洲专区| 日本免费a在线| 伦精品一区二区三区| 超碰av人人做人人爽久久| 小蜜桃在线观看免费完整版高清| 国产欧美另类精品又又久久亚洲欧美| 国产色婷婷99| 亚洲内射少妇av| 国产色爽女视频免费观看|