• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Risk factors and molecular mechanisms of esophageal cancer: differences between the histologic subtypes

    2015-02-15 09:24:45

    Department of Gastroenterological Surgery, Esophageal Cancer Division, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 1358550, Japan.

    Review

    Risk factors and molecular mechanisms of esophageal cancer: differences between the histologic subtypes

    Masayuki Watanabe

    Department of Gastroenterological Surgery, Esophageal Cancer Division, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 1358550, Japan.

    The two major histologic subtypes of esophageal cancer have different risk factors as well as different molecular mechanisms. In this review, the differences in risk factors and genetic/epigenetic alterations between esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) will be discussed. Cigarette smoking and alcohol consumption are risk factors for ESCC, while gastroesophageal ref ux, cigarette smoking, and obesity are the main EAC risk factors. Commonly mutated genes of both subtypes are TP53 and PIK3CA. Recent genome-wide analysis revealed that the activation of the RAC1 pathway may contribute to EAC tumorigenesis. Clustered abnormality in copy number was observed in several genes in ESCC, whereas a few genes were specif cally altered at high frequency in EAC. Epigenetic changes, such as DNA methylation, histone modif cations, and altered expression of microRNAs, have been revealed to inf uence carcinogenesis and progression of both ESCC and EAC.

    Epigenetic alterations, esophageal cancer, genetic alterations, risk factors

    Ⅰntroduction

    Esophageal cancer affects more than 450,000 people every year worldwide[1]and is the 6th leading cause of cancer-related mortality.[2]The two major histologic subtypes of esophageal cancer are esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCCs are by far more common in South East and Central Asia (79% of the total global ESCC cases), while the highest number of EAC is found in Northern and Western Europe, North America and Oceania (46% of the total global AC cases).[3]The remarkable variations in geographic distribution indicate that different environmental risk factors likely affect the occurrence of esophageal cancer.

    Recent progress in molecular biology has revealed that several genetic and epigenetic alterations are implicated in both carcinogenesis and progression of esophageal cancer. Genetic alterations include a chromosomal loss or gain, loss of heterozygosity (LOH), and amplif cation or mutations of genes. Epigenetic changes, such as DNA methylation, histone modif cations, and altered expression of microRNAs regulate gene expression through mechanisms other than changes in DNAsequence. It has become evident that molecular mechanisms also differ greatly between the two histologic subtypes.

    In this review, the differences in both risk factors and molecular mechanisms between ESCC and EAC will be summarized.

    Risk Factors

    There are different risk factors between ESCC and EAC. Demonstrated in Table 1 are the major risk factors for each histologic subtype.

    Both cigarette smoking and alcohol consumption are well-established risk factors for ESCC,[4,5]with the risk in heavy smokers/drinkers being 50 times greater than those who neither drank nor smoked.[6]Recently, def ciency in the enzyme aldehyde dehydrogenase 2 (ALDH2), which causes so-called alcohol f ushing response, has been revealed to increase the risk of alcohol-related ESCC.[7]In East Asian populations, there is a variant of ALDH2, resulting from the replacement of glutamate at position 487 with lysine, with the lysine allele encoding an inactive protein.[8]Drinking hot beverages may also increase the risk of ESCC.[9]In addition, patients with achalasia are at markedly increased risk of developing ESCC,[10]while both ESCC and EAC may develop as a late complication of caustic injury.[11]Oncogenic human papillomaviruses may increase the risk of ESCC, but the evidence is inconclusive.[12]

    Gastroesophageal ref ux disease (GERD), cigarette smoking, and obesity are the main EAC risk factors.[13]At least weekly symptoms of GERD increases the oddsof EAC f ve-fold, while daily symptoms increased the odds seven-fold, when compared with those with less frequent episodes.[14]The relative risk of esophageal and gastric cardia AC was 2.32 for current smokers and 1.62 for ex-smokers, as compared with never-smokers.[15]However, a meta-analysis provided def nite evidence of an absence of association between alcohol drinking and esophageal and gastric cardia AC risk.[16]A systematic review and meta-analysis revealed a high body mass index (BMI) to be associated with a summary odds ratio for gastroesophageal AC of 1.5.[17]A recent prospective cohort study in the United States found that a BMI≥ 35 was associated with a hazard ratio of 3.67 compared with those with a normal-range BMI.[18]Obesity may predispose to ref ux through mechanical means, while adipokines and cytokines secreted from adipocytes and inf ammatory cells are known to inf uence tumor development.[19]Helicobacter pylori infection has been reported to actually decrease the risk of EAC by 41%[20]through gastric atrophy, which leads to acid reduction.

    Radiotherapy for thoracic diseases, such as breast cancer and Hodgkin’s lymphoma, increases the risk of both ESCC and EAC.[21,22]The incidence of both ESCC and EAC increases with age. There is a strong male predominance with up to eight men/one woman for EAC and three men/one woman for ESCC.[23,24]Fat distribution in obese men is predominantly abdominal, and increasing abdominal diameter has been associated with an increased EAC risk.[25]However, the male predominance of ESCC can be explained by the prevalence of smoking and alcohol drinking among males.[26]Although an inhibitory effect of estrogen in the growth of esophageal cancer cells has been reported, there is no f rm conclusion on the role of estrogen in human esophageal cancer etiology.[27]The familial form of ESCC is rare, although familial aggregation has been reported in a high incidence area in China.[28]In contrast, familial clustering of Barrett’s esophagus and EAC has been observed. In a European cohort study, 7% of cases of Barrett’s esophagus and EAC were familial.[29]

    The eff cacy of endoscopic surveillance for high-risk individuals is controversial. Both lugol chromoendoscopy and an innovative optical image-enhanced technology such as the narrow band imaging have been reported to be useful in detecting early ESCC.[30,31]In addition, endoscopic esophageal surveillance has been recommended for newly-diagnosed head and neck cancer patients.[32]However, there is no study evaluating the eff cacy of endoscopic surveillance or screening among people heavily exposed to ESCC risk factors. In contrast, endoscopic screening is recommended for patients with multiple risk factors in Barrett’s esophagus, although there is no randomized clinical trial that has shown eff cacy in preventing deaths due to esophageal cancer.[33]For patients with Barrett’s esophagus without dysplasia, endoscopic surveillance at intervals of 3-5 years has been recommended, and endoscopic eradication therapy is the treatment of choice for those with high-grade dysplasia (HGD).[33]Recently, however, lengthening surveillance or discontinuing surveillance of patients with persistent non-dysplastic Barrett’s esophagus (NDBE) has been discussed because of an annual cancer incidence of only 0.1-0.3% in such patients.[34]

    Molecular Mechanisms Mutations

    Recently, the results of whole-exome or whole-genome sequencing to identify somatic mutations in ESCC[35]and EAC[36]have been reported. The frequently mutated genes in esophageal cancers are shown in Table 2. The commonly mutated genes of both subtypes are TP53 and PIK3CA. TP53 is a major tumor-suppressor gene, its primary function being maintenance of genetic stability and DNA repair capacity.[37]PIK3CA is a kinase activator of the phosphoinositide 3-kinase (PI3K)/AKT pathway and is frequently mutated in many types of human cancers,[38]including ESCC.[39]NOTCH1, FAT1, FAT2, KMT2D and ZNF750 are also signif cantly mutated in ESCC. NOTCH1 encodes one of the notch family receptors, and the notch signaling is a key pathway of the stem cell signaling network.[40]There are other recently identif ed mutated genes[35]and the much about the functions remains to be researched.

    Table 1: Risk factors of esophageal cancer

    Table 2: Representative mutated genes in esophageal cancer

    CDKN2A, SMAD4, ARID1A, SPG20, TLR4, ELMO1 and DOCK2 are signif cantly mutated in EAC. p16INK4a, encoded by CDKN2A, inhibits CDK4 and 6 that bind to cyclin D1 and blocks abnormal cell growth and proliferation.[41]SMAD4 is a key intracellular mediator of transforming growth factor-beta signaling and is known to act as a tumor suppressor.[42]ARID1A, which is one of the chromatin remodeling genes, is frequently mutated in a variety of human cancers.[43]Among the remaining four newly identif ed genes, ELMO1 and DOCK2 are upstream modulators of RAC1 GTPase, suggesting the potential activation of the RAC1 pathway as a contributor to EAC tumorigenesis.[36]

    Recently, comparison of mutated genes among NDBE, HGD, and EAC revealed the majority of recurrently mutated genes in EAC, except TP53 and SMAD4, were also mutated in NDBE.[44]Mutations of TP53 and SMAD4 were stage-specif c, conf ned to HGD and EAC, respectively.[44]

    DNA copy number alterations

    Clustered abnormality in copy number was observed in several genes in ESCC [Table 3], whereas a few genes were specif cally altered at high frequency in EAC.[45]Instead, EAC samples demonstrated more widespread genomic instability and the total DNA copy number alterations were an independent prognostic factor.[45]

    Amplif cation and LOH observed in ESCC are summarized in Table 3. Amplif cation and overexpression of CCND1, which positively regulates G1/S transition, are frequently observed.[46]The PI3K/AKT pathway is activated by amplif cation and overexpression of receptor tyrosine kinases (f broblast growth factor receptor 1 and epidermal growth factor receptor), KRAS, and PIK3CA.[35]The transcriptional genes MYC and SOX2 are occasionally amplif ed. Deletion of several tumor suppressor genes, including TP53, adenomatous polyposis coli (APC), CDKN2A, and FHIT, is observed in ESCC. APC suppresses canonical Wnt signaling through inhibition of β-catenin, while it plays roles in several other fundamental cellular processes such as cell adhesion, migration, and chromosome segregation.[47]Loss of FHIT transcripts affects development and progression of various types of cancers.[48]Loss of FHIT expression was reported to be associated with exposure to environmental carcinogens.[49,50]

    Amplif cation/overexpression of ERBB2 (also known as human epidermal growth-factor receptor 2/neu) gene has been observed in 24-32% of esophagogastric junction AC.[51]The positive rate in EAC has been reported to be higher than that observed in gastric cancer.[51]Trastuzumab, an antibody to ERBB2, added to chemotherapy, improved survival in patients with HER-2 positive advanced gastric or gastroesophageal junction AC compared with chemotherapy alone.[52]

    Comparison of cancer-associated genetic abnormalities in the columnar-lined esophagus, with and without goblet cells, has revealed frequent copy number abnormalities in intestinal metaplasia, whereas no such changes were observed in nongoblet cell metaplasia.[53]

    Epigenetic alterations

    The promoter hypermethylation of several tumor suppressor genes, such as APC, CDKN2A, CDH1, FHIT, RARB, Ras-association domain family 1 (RASSF1), MGMT, MLH1, and MSH2, causes decreased expression of these genes and has been known to affect carcinogenesis of ESCC[54][Table 4]. E-cadherin, encoded by CDH1, is a calcium-dependent adhesion molecule that plays a crucial role in the maintenance of intercellular junctions in normal epithelial cells.[55]The RARB gene encodes retinoic acid receptor beta, a central regulator to normal growth and differentiation of a variety of epithelial cells.[56]The RASSF1 encodes a protein similar to RAS effector proteins. RASSF1A protein modulates a broad range of cellular functions essential for normal growth control.[57]The MGMT gene encodes O6-methyl-guanine-DNA methyltransferase, a DNA repairenzyme, which removes methyl- or alkyl-groups from guanidine after chemical modulation, therefore protecting cells from G to A mutations.[58]MLH1 and MSH2 are two key DNA mismatch repair genes and epigenetic silencing of these genes may lead to microsatellite instability.[59]

    Table 3: Representative amplif ed or deleted genes in squamous cell carcinoma of the esophagus

    Table 4: Representative hypermethylated genes in esophageal cancer

    Promotors of APC, tissue inhibitor of metalloproteinases 3 (TIMP3),[60]CDKN2A, CDH1, MGMT, DAPK, FHIT,[61]AKAP12,[62]and suppressors of cytokine signaling (SOCS)[63]have been reported to be frequently hypermethylated in EAC [Table 4]. TIMP3 belongs to a family of genes that inhibit matrix metalloproteinases, a group of peptides involved in degeneration of extracellular matrix.[64]Death-associated protein kinase 1 is a positive mediator of gamma-interferon-induced programmed cell death.[65]A-kinase anchoring protein 12 is a multivalent anchoring protein and an important regulator of the beta2-adrenergic receptor complex.[62]SOCS proteins act as negative regulators of JAK/STAT pathways and may represent tumor suppressors.[66]Promotor methylation and subsequent transcript down-regulation of SOCS-3 and to a much lesser extent, SOCS-1 were involved in the multistep carcinogenesis of Barrett’s AC.[63]

    Genome-wide DNA hypomethylation may also contribute to tumorigenesis. Long interspersed element 1 (LINE-1) is a retrotransposon comprising about 17% of the human genome, and the levels of LINE-1 methylation can be a surrogate marker of genome-wide DNA methylation.[54]Hypomethylation levels of LINE-1 are frequently observed in ESCC and correlate with a poor prognosis.[67]On the other hand, genome-wide methylation analysis also revealed that overall methylation of CpG islands was higher, but outside of CpG islands was lower, in Barrett’s esophagus and EAC tissues than in normal esophageal tissues.[68]

    Histone modif cations, including acetylation, methylation, phosphorylation, and ubiquitination, regulate gene expression and are implicated in carcinogenesis. Levels of acetylation/deacetylation of histone proteins are determined by two opposing groups of enzymes, histone acetyltransferases, and histone deacetylases (HDACs).[69]HDAC inhibitors have demonstrated antitumor effects in various cancers.[70]Of interest, high HDAC2 expression has been associated with aggressive EAC behavior.[71]

    MicroRNAs (miRs), small, noncoding RNA molecules consisting of 19-25 nucleotides, also regulate gene expression epigenetically.[72]MicroRNAs can act as tumor promoters (onco-miR) through targeting expression of tumor suppressor genes or as tumor suppressors (ts-miR) through targeting expression of oncogenes. miR-21 functions as an onco-miR because it is overexpressed in many types of cancers, including ESCC[73,74]and EAC.[75]Targets of miR-21 have been shown to be PDCD4 (programmed cell death 4)[73]and phosphatase and tensin homolog.[76]Serum or serum exosomal miR-21 has been reported to be a biomarker in ESCC.[77,78]miR-375 is considered as ts-miR in several cancers, including both histologic subtypes of esophageal cancer.[79,80]Reduced levels of miR-375 in cancerous tissue of EAC patients with Barrett’s were strongly associated with a worse prognosis.[80]miR-205 was down-regulated in both ESCC and EAC.[81,82]Knockdown of miR-205 expression enhanced expression of zinc f nger E-box homeobox 2, accompanied by a reduction of E-cadherin, leading to epithelial-mesenchymal transition.[82]miR-223 expression was signif cantly higher in ESCC with an inverse relationship with F-box and WD repeat domain-containing 7, a cell cycle regulatory gene whose protein product ubiquitinates cell cycle regulators such as c-Myc, cyclin E and c-jun.[83]

    Recently, changes in expression of several miRs have been reported in Barrett’s esophagus.[84]miR expressions were compared between 2 groups of patients with Barrett’s esophagus who either developed or did not develop EAC over a course of 5 years.[85]As a result, 4 miRs (miR-192, miR-194, miR-196a, and miR-196b) were found to show signif cantly higher expression in patients with progression to EAC than in those without.

    Conclusion

    In this review, the risk factors and molecular mechanisms of esophageal cancer, with special reference to the differences between two histologic subtypes, have been discussed. In spite of advances in the diagnostic tools and therapeutic strategies, esophageal cancer still remains one of the most lethal malignancies. In order to improve outcomes, early detection of tumors based on knowledge of risk factors is needed. In addition, efforts to identify novel therapeutic targets through molecular biological techniques are essential.

    1 Pennathur A, Gibson MK, Jobe BA, Luketich JD. Oesophageal carcinoma. Lancet 2013;381:400-12.

    2. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011;61:69-90.

    3. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut 2015;64:381-7.

    4. Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A, Cogliano V; WHO International Agency for research on Cancer Monograph Working Group. Carcinogenicity of alcohol beverages. Lancet Oncol 2007;8:292-3.

    5. The International Agency for Research on Cancer. Tobacco Smoke and Involuntary Smoking. Lyone: IARC; 2004. p. 1179-87.

    6. Morita M, Saeki H, Mori M, Kuwano H, Sugimachi K. Risk factors for esophageal cancer and the multiple occurrence of carcinoma in the upper aerodigestive tract. Surgery 2002;131:S1-6.

    7. Brooks PJ, Enoch MA, Goldman D, Li TK, Yokoyama A. The alcohol f ushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med 2009;6:e50.

    8. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A 1984;81:258-61.

    9. Islami F, Boffetta P, Ren JS, Pedoeim L, Khatib D, Kamangar F. High-temperature beverages and foods and esophageal cancer risk--a systematic review. Int J Cancer 2009;125:491-524.

    10. Sandler RS, Nyrén O, Ekbom A, Eisen GM, Yuen J, Josefsson S. The risk of esophageal cancer in patients with achalasia. A population-based study. JAMA 1995;274:1359-62.

    11. Contini S, Scarpignato C. Caustic injury of the upper gastrointestinal tract: a comprehensive review. World J Gastroenterol 2013;19:3918-30.

    12. Hardefeldt HA, Cox MR, Eslick GD. Association between human papillomavirus (HPV) and oesophageal squamous cell carcinoma: a meta-analysis. Epidemiol Infect 2014;142:1119-37.

    13. Rustgi AK, El-Serag HB. Esophageal carcinoma. N Engl J Med 2014;371:2499-509.

    14. Rubenstein JH, Taylor JB. Meta-analysis: the association of oesophageal adenocarcinoma with symptoms of gastro-oesophageal ref ux. Aliment Pharmacol Ther 2010;32:1222-7.

    15. Tramacere I, La Vecchia C, Negri E. Tobacco smoking and esophageal and gastric cardia adenocarcinoma: a meta-analysis. Epidemiology 2011;22:344-9.

    16. Tramacere I, Pelucchi C, Bagnardi V, Rota M, Scotti L, Islami F, Corrao G, Boffetta P, LaVecchia C, Negri E. A meta-analysis on alcohol drinking and esophageal and gastric cardia adenocarcinoma risk. Ann Oncol 2012;23:287-97.

    17. Kubo A, Corley DA. Body mass index and adenocarcinoma of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2006;15:872-8.

    18. O’Doherty MG, Freedman ND, Hollenbeck AR, Schatzkin A, Abnet CC. A prospective cohort study of obesity and risk of oesophageal and gastric adenocarcinoma in the NIH-AARP Diet and Health Study. Gut 2012;61:1261-8.

    19. Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 2013;1831:1533-41.

    20. Xie FJ, Zhang YP, Zheng QQ, Jin HC, Wang FL, Chen M, Shao L, Zou DH, Yu XM, Mao WM. Helicobacter pylori infection and esophageal cancer risk: an updated meta-analysis. World J Gastroenterol 2013;19:6098-107.

    21. Zablotska LB, Chak A, Das A, Neugut AI. Increased risk of squamous cell esophageal cancer after adjuvant radiation therapy for primary breast cancer. Am J Epidemiol 2005;161:330-7.

    22. Morton LM, Gilbert ES, Stovall M, van Leeuwen FE, Dores GM, Lynch CF, Hall P, Smith SA, Weathers RE, Storm HH, Hodgson DC, Kleinerman RA, Joensuu H, Johannesen TB, Andersson M, Holowaty EJ, Kaijsar M, Pukkala E, Vaalavirta L, Fossa SD, Landmark F, Travis LB, Lamart S, Simon SL, Fraumeni JF Jr, Aleman BM, Curtis RE. Risk of esophageal cancer following radiotherapy for Hodgkin lymphoma. Haematologica 2014;99:e193-6.

    23. Brown LM, Devesa SS, Chow WH. Incidence of adenocarcinoma of the esophagus among white Americans by sex, stage, and age. J Natl Cancer Inst 2008;100:1184-7.

    24. Hansson LE, Sparén P, Nyrén O. Increasing incidence of both major histological types of esophageal carcinomas among men in Sweden. Int J Cancer 1993;54:402-7.

    25. Corley DA, Kubo A, Zhao W. Abdominal obesity and the risk of esophageal and gastric cardia carcinomas. Cancer Epidemiol Biomarkers Prev 2008;17:352-8.

    26. Khushalani N. Cancer of the esophagus and stomach. Mayo Clin Poc 2008;83:712-22.

    27. Chandanos E, Lagergren J. The mystery of male dominance in oesophageal cancer and the potential protective role of oestrogen. Eur J Cancer 2009;45:3149-55.

    28. Chang-Claude J, Becher H, Blettner M, Qiu S, Yang G, Wahrendorf J. Familial aggregation of oesophageal cancer in a high incidence area in China. Int J Epidemiol 1997;26:1159-65.

    29. Verbeek RE, Spittuler LF, Peute A, van Oijen MG, Ten Kate FJ, Vermeijden JR, Oberndorff A, van Baal JW, Siersema PD. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin Gastroenterol Hepatol 2014;12:1656-63.e1.

    30. Sugimachi K, Ohno S, Matsuda H, Mori M, Kuwano H. Lugol-combined endoscopic detection of minute malignant lesions of the thoracic esophagus. Ann Surg 1988;208:179-83.

    31. Muto M, Minashi K, Yano T, Saito Y, Oda I, Nonaka S, Omori T, Sugiura H, Goda K, Kaise M, Inoue H, Ishikawa H, Ochiai A, Shimoda T, Watanabe H, Tajiri H, Saito D. Early detection of superf cial squamous cell carcinoma in the head and neck region and esophagus by narrow band imaging: a multicenter randomized controlled trial. J Clin Oncol 2010;28:1566-72.

    32. Chung CS, Liao LJ, Lo WC, Chou YH, Chang YC, Lin YC, Hsu WF, Shueng PW, Lee TH. Risk factors for second primary neoplasia of esophagus in newly diagnosed head and neck cancer patients: a case-control study. BMC Gastroenterol 2013;13:154.

    33. Spechler SJ. Barrett esophagus and risk of esophageal cancer: a clinical review. JAMA 2013;310:627-36.

    34. Gaddam S, Singh M, Balasubramanian G, Thota P, Gupta N, Wani S, Gigbee AD, Mathur SC, Horwhat JD, Rastogi A, Young PE, Cash BD, Bansal A, Vargo JJ, Falk GW, Liberman DA, Sampliner RE, Sharma P. Persistence of nondysplastic Barrett’s esophagus identif es patients at lower risk for esophageal adenocarcinoma: results from a large multicenter cohort. Gastroenterology 2013;145:548-53.e1.

    35. Lin DC, Hao JJ, Nagata Y, Xu L, Shang L, Meng X, Sato Y, Okuno Y, Varela AM, Ding LW, Garg M, Liu LZ, Yang H, Yin D, Shi ZZ, Jiang YY, Gu WY, Gong T, Zhang Y, Xu X, Kalid O, Shacham S, Ogawa S, Wang MR, Koeff er HP. Genomic and molecular characterization of esophageal squamous cell carcinoma. Nat Genet 2014;46:467-73.

    36. Dulak AM, Stojanov P, Peng S, Lawrence MS, Fox C, Stewart C, Bandla S, Imamura Y, Schumacher SE, Shef er E, McKenna A, Carter SL, Cibulskis K, Sivachenko A, Saksena G, Voet D, Ramos AH, Auclair D, Thompson K, Sougnez C, Onofrio RC, Guiducci C, Beroukhim R, Zhou Z, Lin L, Lin J, Reddy R, Chang A, Landerenau R, Pennathur A, Ogino S, Luketich JD, Golub TR, Gabriel SB, Lander ES, Beer DG, Godfrey TE, Getz G, Bass AJ. Exome and whole-genome sequencing of esophageal adenocarcinoma identif es recurrent driver events and mutational complexity. Nat Genet 2013;45:478-86.

    37. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253:49-53.

    38. Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 2004;3:1221-4.

    39. Shigaki H, Baba Y, Watanabe M, Murata A, Ishimoto T, Iwatsuki M, Iwagami S, Nosho K, Baba H. PIK3CA mutation is associated with a favorable prognosis among patients with curatively resected esophageal squamous cell carcinoma. Clin Cancer Res 2013;19:2451-9.

    40. Katoh M, Katoh M. Notch signaling in gastrointestinal tract (review). Int J Oncol 2007;30:247-51.

    41. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med 1997;3:5-20.

    42. Hata A. TGFbeta signaling and cancer. Exp Cell Res 2001;264:111-6.

    43. Wu RC, Wang TL, Shih IeM. The emerging roles of ARID1A in tumor suppression. Cancer Biol Ther 2014;15:655-64.

    44. Weaver JM, Ross-Innes CS, Shannon N, Lynch AG, Forshew T, Barbera M, Murtaza M, Ong CA, Lao-Sirieix P, Dunning MJ, Smith L, Smith ML, Anderson CL, Carvalho B, O’Donovan M, Underwood TJ, May AP, Grehan N, Hardwick R, Davies J, Oloumi A, Apariscio S, Caldas C, Eldridge MD, Edwards PA, Rosenfeld N, Tavaré S, Fitzgerald RC, OCCAMS Consortium. Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis. Nat Genet 2014;46:837-43.

    45. Rumiato E, Pasello G, Montagna M, Scaini MC, De Salvo GL, Parenti A, Cagol M, Ruol A, Ancona E, Amadori A, Saggioro D. DNA copy number prof le discriminates between esophageal adenocarcinoma and squamous cell carcinoma and represents an independent prognostic parameter in esophageal adenocarcinoma. Cancer Lett 2011;310:84-93.

    46. Jiang W, Kahn SM, Tomita N, Zhang YJ, Lu SH, Weinstein IB. Amplif cation and expression of the human cyclin D gene in esophageal cancer. Cancer Res 1992;52:2980-3.

    47. Aoki K, Taketo MM. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J Cell Sci 2007;120:3327-35.

    48. Pekarsky Y, Zanesi N, Palamarchuk A, Huebner K, Croce CM. FHIT: from gene discovery to cancer treatment and prevention. Lancet Oncol 2002;3:748-54.

    49. Nelson HH, Wiencke JK, Gunn L, Wain JC, Christiani DC, Kelsey KT. Chromosome 3p14 alterations in lung cancer: Evidence that FHIT exon deletion is a target of tobacco carcinogens and asbestos. Cancer Res 1998;58:1804-7.

    50. Mori M, Mimori K, Shiraishi T, Alder H, Inoue H, Tanaka Y, Sugimachi K, Huebner K, Croce CM. Altered expression of Fhit in carcinoma and precarcinomatous lesions of the esophagus. Cancer Res 2000;60:1177-82.

    51. Hechtman JF, Polydorides AD. HER2/neu gene amplif cation and protein overexpression in gastric and gastroesophageal junction adenocarcinoma: A review of histopathology, diagnostic testing, and clinical implications. Arch Pathol Lab Med 2012;136:691-7.

    52. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T, Aprile G, Kulikov E, Hill J, Lehle M, Ruschoff J, Kang YK, ToGA Trial Investigators. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010;376:687-97.

    53. Bandla S, Peters JH, Ruff D, Chen SM, Li CY, Song K, Thoms K, Litle VR, Watson T, Chapurin N, Lada M, Pennathur A, Luketich JD, Peterson D, Dulak A, Lin L, Bass A, Beer DG, Godfrey TE, Zhou Z. Comparison of cancer-associated genetic abnormalities in columnar-lined esophagus tissues with and without goblet cells. Ann Surg 2014;260:72-80.

    54. Baba Y, Watanabe M, Baba H. Review of the alterations in DNA methylation in esophageal squamous cell carcinoma. Surg Today 2013;43:1355-64.

    55. Cavallaro U, Christofori G. Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nat Rev Cancer 2004;4:118-32.

    56. Ha PK, Califano JA. Promotor methylation and inactivation of tumor-suppressor genes in oral squamous-cell carcinoma. Lancet Oncol 2006;7:77-82.

    57. Donninger H, Vos MD, Clark GJ. The RASSF1A tumor suppressor. J Cell Sci 2007;120:3163-72.

    58. Gerson SL. MGMT: Its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004;4:296-307.

    59. Vasavi M, Kiran V, Ravishankar B, Prabhakar B, Ahuja YR, Hasan Q. Microsatellite instability analysis and its correlation with hMLH1 repair gene hypermethylation status in esophageal pathologies including cancers. Cancer Biomark 2010;7:1-10.

    60. Clément G, Braunschweig R, Pasquier N, Bosman FT, Benhattar J. Methylation of APC, TIMP3, and TERT: A new predictive marker to distinguish Barrett’s oesophagus patients at risk for malignant transformation. J Pathol 2006;208:100-7.

    61. Schildhaus HU, Kr?ckel I, Lippert H, Malfertheiner P, Roessner A, Schneider-Stock R. Promoter hypermethylation of p16INK4a, E-cadherin, O6-MGMT, DAPK and FHIT in adenocarcinomas of the esophagus, esophagogastric junction and proximal stomach. Int J Oncol 2005;26:1493-500.

    62. Jin Z, Hamilton JP, Yang J, Mori Y, Olaru A, Sato F, Ito T, Kan T, Cheng Y, Paun B, David S, Beer DG, Agarwal R, Abraham JM, Meltzer SJ. Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiol Biomarkers Prev 2008;17:111-7.

    63. Tischoff I, Hengge UR, Vieth M, Ell C, Stolte M, Weber A, Schmidt WE, Tannapfel A. Methylation of SOCS-3 and SOCS-1 in the carcinogenesis of Barrett’s adenocarcinoma. Gut 2007;56:1047-53.

    64. Rettori MM, de Carvalho AC, Longo AL, de Oliveira CZ, Kowalski LP, Carvalho AL, Vettore AL. TIMP3 and CCNA1 hypermethylation in HNSCC is associated with an increased incidence of second primary tumors. J Transl Med 2013;11:316.

    65. Kuester D, Dar AA, Moskaluk CC, Krueger S, Meyer F, Hartig R, Stolte M, Malfertheiner P, Lippert H, Roessner A, El-Rifai W, Schneider-Stock R. Early involvement of death-associated protein kinase promoter hypermethylation in the carcinogenesis of Barrett’s esophageal adenocarcinoma and its association with clinical progression. Neoplasia 2007;9:236-45.

    66. Valentino L, Pierre J. JAK/STAT signal transduction: regulators and implication in hematological malignancies. Biochem Pharmacol 2006;71:713-21.

    67. Iwagami S, Baba Y, Watanabe M, Shigaki H, Miyake K, Ishimoto T, Iwatsuki M, Sakamaki K, Ohashi Y, Baba H. LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma. Ann Surg 2013;257:449-55.

    68. Xu E, Gu J, Hawk ET, Wang KK, Lai M, Huang M, Ajani J, Wu X. Genome-wide methylation analysis shows similar patterns in Barrett’s esophagus and esophageal adenocarcinoma. Carcinogenesis 2013;34:2750-6.

    69. Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell 2012;150:12-27.

    70. Bojang P Jr, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev 2014;40:153-69.

    71. Langer R, Mutze K, Becker K, Feith M, Ott K, H?f er H, Keller G. Expression of class I histone deacetylases (HDAC1 and HDAC2) in oesophageal adenocarcinomas: an immunohistochemical study. J Clin Pathol 2010;63:994-8.

    72. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005;122:6-7.

    73. Hiyoshi Y, Kamohara H, Karashima R, Sato N, Imamura Y, Nagai Y, Yoshida N, Toyama E, Hayashi N, Watanabe M, Baba H. MicroRNA-21 regulates the proliferation and invasion in esophageal squamous cell carcinoma. Clin Cancer Res 2009;15:1915-22.

    74. Mori Y, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Ogawa R, Katada T, Harata K, Tanaka T, Shiozaki M, Fujii Y. MicroRNA-21 induces cell proliferation and invasion in esophageal squamous cell carcinoma. Mol Med Rep 2009;2:235-9.

    75. Wijnhoven BP, Hussey DJ, Watson DI, Tsykin A, Smith CM, Michael MZ, South Australian Oesophageal Research Group. MicroRNA prof ling of Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Surg 2010;97:853-61.

    76. Ma WJ, Lv GD, Tuersun A, Liu Q, Liu H, Zheng ST, Huang CG, Feng JG, Wang X, Lin RY, Sheyhidin I, Lu XM. Role of microRNA-21 and effect on PTEN in Kazakh’s esophageal squamous cell carcinoma. Mol Biol Rep 2011;38:3253-60.

    77. Kurashige J, Kamohara H, Watanabe M, Tanaka Y, Kinoshita K, Saito S, Hiyoshi Y, Iwatsuki M, Baba Y, Baba H. Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. J Surg Oncol 2012;106:188-92.

    78. Tanaka Y, Kamohara H, Kinoshita K, Kurashige J, Ishimoto T, Iwatsuki M, Watanabe M, Baba H. Clinical impact of serum exosomal microRNA-21 as a clinical biomarker in human esophageal squamous cell carcinoma. Cancer 2013;119:1159-67.

    79. Kinoshita T, Hanazawa T, Nohata N, Okamoto Y, Seki N. The functional signif cance of microRNA-375 in human squamous cell carcinoma: Aberrant expression and effects on cancer pathways. J Hum Genet 2012;57:556-63.

    80. Mathé EA, Nguyen GH, Bowman ED, Zhao Y, Budhu A, Schetter AJ, Braun R, Reimers M, Kumamoto K, Hughes D, Altorki NK, Casson AG, Liu CG, Wang XW, Yanaihara N, Hagiwara N, Dannenberg AJ, Miyashita M, Croce CM, Harris CC. MicroRNA expression in squamous cell carcinoma and adenocarcinoma of the esophagus: associations with survival. Clin Cancer Res 2009;15:6192-200.

    81. Feber A, Xi L, Luketich JD, Pennathur A, Landreneau RJ, Wu M, Wu M, Swanson SJ, Godfrey TE, Litle VR. MicroRNA expression prof les of esophageal cancer. J Thorac Cardiovasc Surg 2008;135:255-60.

    82. Matsushima K, Isomoto H, Yamaguchi N, Inoue N, Machida H, Nakayama T, Hayashi T, Kunizaki M, Hidaka S, Nagayasu T, Nakashima M, Ujifuku K, Mitsutake N, Ohtsuru A, Yamashita S, Korpal M, Kang Y, Gregory PA, Goodall GJ, Kohno S, Nakao K. MiRNA-205 modulates cellular invasion and migration via regulating zinc f nger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells. J Transl Med 2011;9:30.

    83. Kurashige J, Watanabe M, Iwatsuki M, Kinoshita K, Saito S, Hiyoshi Y, Kamohara H, Baba Y, Mimori K, Baba H. Overexpression of microRNA-223 regulates the ubiquitin ligase FBXW7 in oesophageal squamous cell carcinoma. Br J Cancer 2012;106:182-8.

    84. Matsuzaki J, Suzuki H. MicroRNAs in Barrett’s esophagus: future prospects. Front Genet 2014;5:69.

    85. Revilla-Nuin B, Parrilla P, Lozano JJ, de Haro LF, Ortiz A, Martínez C, Munitiz V, de Angulo DR, Bermejo J, Molina J, Cayuele ML, Yélamos J. Predictive value of MicroRNAs in the progression of barrett esophagus to adenocarcinoma in a long-term follow-up study. Ann Surg 2013;257:886-93.

    How to cite this article:Watanabe M. Risk factors and molecular mechanisms of esophageal cancer: differences between the histologic subtype. J Cancer Metastasis Treat 2015;1:1-7.

    Received:08-02-2015;Accepted:03-03-2015.

    Source of Support:Nil, Conf ict of Interest: None declared.

    Dr. Masayuki Watanabe, Department of Gastroenterological Surgery, Esophageal Cancer Division, Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 1358550, Japan. E-mail: masayuki.watanabe@jfcr.or.jp

    10.4103/2394-4722.153534

    成人特级av手机在线观看| 欧美xxxx性猛交bbbb| 国产精品蜜桃在线观看| 午夜视频国产福利| 欧美xxⅹ黑人| 日韩不卡一区二区三区视频在线| 91在线精品国自产拍蜜月| 在线免费观看不下载黄p国产| 老师上课跳d突然被开到最大视频| 十八禁网站网址无遮挡 | 亚洲一区高清亚洲精品| 18+在线观看网站| 欧美xxⅹ黑人| 国国产精品蜜臀av免费| 国产成人aa在线观看| 精品久久久久久久久久久久久| 欧美高清成人免费视频www| 日本免费在线观看一区| 免费av毛片视频| 免费观看无遮挡的男女| 亚洲国产成人一精品久久久| 欧美高清成人免费视频www| 白带黄色成豆腐渣| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 性色avwww在线观看| 亚洲图色成人| 亚洲成人av在线免费| 成人国产麻豆网| 免费观看无遮挡的男女| 午夜久久久久精精品| 内射极品少妇av片p| 在线天堂最新版资源| 十八禁网站网址无遮挡 | 亚洲精品乱久久久久久| 日韩制服骚丝袜av| 男女下面进入的视频免费午夜| 精品午夜福利在线看| 成人特级av手机在线观看| 亚洲欧美日韩卡通动漫| 久久精品久久精品一区二区三区| 男女视频在线观看网站免费| 男插女下体视频免费在线播放| 麻豆乱淫一区二区| 婷婷色av中文字幕| 国产黄片美女视频| 亚洲精品乱久久久久久| 国产精品美女特级片免费视频播放器| 免费看不卡的av| 亚洲激情五月婷婷啪啪| 综合色丁香网| 美女高潮的动态| 国产伦理片在线播放av一区| 国产亚洲5aaaaa淫片| 综合色av麻豆| 成人鲁丝片一二三区免费| 久久久久久久久中文| 亚洲精品自拍成人| 啦啦啦中文免费视频观看日本| 成人二区视频| 不卡视频在线观看欧美| 日韩伦理黄色片| 亚洲aⅴ乱码一区二区在线播放| 欧美成人精品欧美一级黄| 欧美激情国产日韩精品一区| 精品久久久久久电影网| 好男人视频免费观看在线| 免费黄网站久久成人精品| 岛国毛片在线播放| 色吧在线观看| 欧美xxxx性猛交bbbb| 18+在线观看网站| 亚洲精品,欧美精品| 中国国产av一级| 国产乱来视频区| 亚洲无线观看免费| 热99在线观看视频| 日本欧美国产在线视频| 亚洲人成网站在线观看播放| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| av黄色大香蕉| av网站免费在线观看视频 | 亚洲国产精品国产精品| 国产一级毛片七仙女欲春2| 国产成人精品婷婷| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 日韩欧美精品v在线| 亚洲精品久久午夜乱码| 亚洲久久久久久中文字幕| .国产精品久久| 精品一区二区免费观看| 乱系列少妇在线播放| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 99久久精品国产国产毛片| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| 搡老乐熟女国产| 日韩一区二区三区影片| 黄色日韩在线| 777米奇影视久久| 国产片特级美女逼逼视频| 夜夜爽夜夜爽视频| av在线观看视频网站免费| 综合色av麻豆| 亚洲人成网站在线播| 国产男女超爽视频在线观看| 亚洲国产欧美人成| 天堂俺去俺来也www色官网 | 国产亚洲最大av| 国产精品一二三区在线看| 伊人久久精品亚洲午夜| 亚洲一级一片aⅴ在线观看| 99久国产av精品国产电影| 黄色欧美视频在线观看| 中文欧美无线码| 青青草视频在线视频观看| 18禁动态无遮挡网站| 白带黄色成豆腐渣| 777米奇影视久久| 免费黄色在线免费观看| 国产伦一二天堂av在线观看| 成人国产麻豆网| 婷婷色综合www| 国产成人a区在线观看| 亚洲欧美一区二区三区黑人 | 18+在线观看网站| 亚洲真实伦在线观看| 日韩强制内射视频| 午夜福利成人在线免费观看| 精品一区二区三区人妻视频| 搡老妇女老女人老熟妇| 99热这里只有是精品50| 日韩欧美精品v在线| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| 国产精品一区二区性色av| 久久精品综合一区二区三区| 中文字幕免费在线视频6| 插逼视频在线观看| 成人漫画全彩无遮挡| 99久国产av精品| 亚洲色图av天堂| 在线免费观看的www视频| 国产成人aa在线观看| 熟妇人妻久久中文字幕3abv| 久久精品国产自在天天线| 午夜老司机福利剧场| 人人妻人人澡欧美一区二区| 免费观看的影片在线观看| 联通29元200g的流量卡| 97人妻精品一区二区三区麻豆| 嫩草影院入口| 赤兔流量卡办理| 亚洲熟女精品中文字幕| 在现免费观看毛片| 国产成人精品福利久久| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 一级爰片在线观看| 免费无遮挡裸体视频| 日韩欧美 国产精品| 哪个播放器可以免费观看大片| 午夜激情久久久久久久| 嫩草影院精品99| videossex国产| 久热久热在线精品观看| 午夜视频国产福利| 国产免费福利视频在线观看| 国产不卡一卡二| 观看美女的网站| 国产中年淑女户外野战色| 男女那种视频在线观看| 国产老妇女一区| 亚洲伊人久久精品综合| 国产精品一二三区在线看| 免费av不卡在线播放| 高清av免费在线| 一级av片app| 欧美日韩一区二区视频在线观看视频在线 | 秋霞伦理黄片| 精品久久久久久电影网| 97精品久久久久久久久久精品| 欧美激情久久久久久爽电影| 搡老乐熟女国产| 伊人久久国产一区二区| 国内精品美女久久久久久| 一级毛片 在线播放| 一级黄片播放器| 欧美最新免费一区二区三区| 综合色丁香网| 国产免费又黄又爽又色| 日韩伦理黄色片| 在线免费十八禁| 看免费成人av毛片| 国产亚洲最大av| 国产久久久一区二区三区| 成年女人看的毛片在线观看| 久久韩国三级中文字幕| 久久这里有精品视频免费| 久久精品久久久久久噜噜老黄| 久久久久网色| 免费无遮挡裸体视频| 男女边吃奶边做爰视频| 老女人水多毛片| av在线观看视频网站免费| 欧美日韩国产mv在线观看视频 | av在线老鸭窝| 看非洲黑人一级黄片| 久久久久精品性色| 国产精品一区二区在线观看99 | av在线老鸭窝| 亚洲美女视频黄频| 免费在线观看成人毛片| 夜夜看夜夜爽夜夜摸| 国产综合精华液| 国产日韩欧美在线精品| 亚洲美女视频黄频| 嘟嘟电影网在线观看| 肉色欧美久久久久久久蜜桃 | 婷婷色av中文字幕| 亚洲精品视频女| 亚洲高清免费不卡视频| 亚洲最大成人中文| 最近视频中文字幕2019在线8| 老师上课跳d突然被开到最大视频| 亚洲精品,欧美精品| 亚洲最大成人手机在线| av天堂中文字幕网| 91在线精品国自产拍蜜月| 久久精品熟女亚洲av麻豆精品 | 啦啦啦啦在线视频资源| 国内少妇人妻偷人精品xxx网站| 在线观看免费高清a一片| 少妇的逼水好多| 美女国产视频在线观看| 国产精品久久久久久久久免| 亚洲精品亚洲一区二区| 成人av在线播放网站| 国产精品.久久久| 欧美另类一区| 国产成人a区在线观看| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 永久网站在线| 欧美日韩国产mv在线观看视频 | 人人妻人人看人人澡| 亚洲av.av天堂| 亚洲一区高清亚洲精品| 亚洲精品久久久久久婷婷小说| 性色avwww在线观看| 十八禁网站网址无遮挡 | 岛国毛片在线播放| 国产黄色小视频在线观看| 99久久精品一区二区三区| 久久久成人免费电影| 免费看av在线观看网站| 日韩av在线免费看完整版不卡| 亚洲精品影视一区二区三区av| 久久亚洲国产成人精品v| 国产精品一区二区三区四区久久| 亚洲国产精品国产精品| 亚洲欧美成人综合另类久久久| 非洲黑人性xxxx精品又粗又长| 高清午夜精品一区二区三区| 美女内射精品一级片tv| 少妇高潮的动态图| 青春草亚洲视频在线观看| 成人美女网站在线观看视频| 99热网站在线观看| 直男gayav资源| 国产黄频视频在线观看| 亚洲精品成人av观看孕妇| 欧美日韩一区二区视频在线观看视频在线 | 久久久国产一区二区| 精品99又大又爽又粗少妇毛片| 久久久午夜欧美精品| 高清欧美精品videossex| 国产精品.久久久| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 日本wwww免费看| 天堂俺去俺来也www色官网 | 成人av在线播放网站| 美女脱内裤让男人舔精品视频| 一区二区三区四区激情视频| 国产精品人妻久久久久久| 国产精品一区二区三区四区久久| 日本一本二区三区精品| 免费电影在线观看免费观看| 日日啪夜夜爽| 国产精品av视频在线免费观看| 亚洲成人一二三区av| 久久久亚洲精品成人影院| 亚洲四区av| h日本视频在线播放| 少妇裸体淫交视频免费看高清| 欧美xxxx性猛交bbbb| 肉色欧美久久久久久久蜜桃 | 极品少妇高潮喷水抽搐| www.色视频.com| 国产精品一二三区在线看| 午夜福利高清视频| 亚洲国产精品成人久久小说| 国产免费一级a男人的天堂| 18禁在线无遮挡免费观看视频| 天天一区二区日本电影三级| 国产精品女同一区二区软件| 日韩成人伦理影院| 日韩不卡一区二区三区视频在线| 亚洲综合精品二区| 一级av片app| 国内精品一区二区在线观看| 亚洲欧美日韩无卡精品| 嫩草影院新地址| 亚洲图色成人| 国产免费福利视频在线观看| 亚洲国产欧美人成| 日本黄色片子视频| 看免费成人av毛片| 亚洲av男天堂| 久久精品国产亚洲网站| 免费大片黄手机在线观看| 七月丁香在线播放| 99热这里只有是精品在线观看| 大香蕉久久网| 国产精品人妻久久久影院| 天堂俺去俺来也www色官网 | 美女xxoo啪啪120秒动态图| 精品久久久久久久人妻蜜臀av| 天堂√8在线中文| 日日啪夜夜爽| 日韩欧美三级三区| 乱码一卡2卡4卡精品| 亚洲国产精品专区欧美| 日韩欧美国产在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲三级黄色毛片| 国产黄a三级三级三级人| 国产成人精品一,二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲av中文字字幕乱码综合| 久久久久久久午夜电影| 国产午夜精品一二区理论片| 舔av片在线| 久久久精品免费免费高清| 天堂√8在线中文| 午夜精品一区二区三区免费看| 丰满人妻一区二区三区视频av| 国产久久久一区二区三区| 日韩精品有码人妻一区| 亚洲美女搞黄在线观看| 美女国产视频在线观看| 久久久久久久亚洲中文字幕| 亚洲av成人av| 精品久久久久久久人妻蜜臀av| 亚洲欧洲日产国产| 久久久久久久久中文| 男女国产视频网站| 国产午夜精品论理片| or卡值多少钱| 熟妇人妻久久中文字幕3abv| 国精品久久久久久国模美| 内射极品少妇av片p| 日韩成人av中文字幕在线观看| 国产伦在线观看视频一区| 噜噜噜噜噜久久久久久91| 精品久久久久久久人妻蜜臀av| 亚洲国产欧美人成| 日韩在线高清观看一区二区三区| av在线天堂中文字幕| 亚洲精华国产精华液的使用体验| 视频中文字幕在线观看| 看免费成人av毛片| 国模一区二区三区四区视频| 亚洲电影在线观看av| 男插女下体视频免费在线播放| 亚洲国产高清在线一区二区三| 毛片女人毛片| 欧美精品一区二区大全| 国产精品一区www在线观看| 中文天堂在线官网| 亚洲精品成人av观看孕妇| 久久99精品国语久久久| 又爽又黄无遮挡网站| 亚洲熟女精品中文字幕| 亚洲精品乱码久久久v下载方式| 久久99热这里只有精品18| 99久久人妻综合| 精品一区二区免费观看| 亚洲在线自拍视频| 久久久久久国产a免费观看| 精品久久久久久久人妻蜜臀av| 亚洲精品国产成人久久av| 91精品一卡2卡3卡4卡| 偷拍熟女少妇极品色| 亚洲在久久综合| 久久97久久精品| 岛国毛片在线播放| 18禁裸乳无遮挡免费网站照片| 一级毛片黄色毛片免费观看视频| 久久久久精品性色| 日本与韩国留学比较| 久热久热在线精品观看| 精品一区二区免费观看| 国产色婷婷99| 精品一区在线观看国产| 国产成人一区二区在线| 欧美zozozo另类| 人人妻人人澡人人爽人人夜夜 | 天天一区二区日本电影三级| 好男人视频免费观看在线| 国产熟女欧美一区二区| 久久久久精品性色| 国产黄频视频在线观看| 免费黄网站久久成人精品| 日日撸夜夜添| 日韩一区二区视频免费看| 狂野欧美激情性xxxx在线观看| 欧美高清成人免费视频www| 综合色丁香网| 国产男女超爽视频在线观看| 久久国内精品自在自线图片| 亚洲精品亚洲一区二区| 国产精品蜜桃在线观看| 国产 亚洲一区二区三区 | 国产综合懂色| 夫妻午夜视频| 搞女人的毛片| 毛片一级片免费看久久久久| 亚洲欧美一区二区三区黑人 | 亚洲美女视频黄频| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 欧美激情国产日韩精品一区| 欧美成人一区二区免费高清观看| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 91av网一区二区| 高清毛片免费看| 亚洲精品乱久久久久久| 中文字幕av在线有码专区| 综合色丁香网| 精品国产一区二区三区久久久樱花 | 日韩av在线免费看完整版不卡| 色视频www国产| 少妇丰满av| 老师上课跳d突然被开到最大视频| 久久人人爽人人爽人人片va| 亚洲无线观看免费| 国产精品久久视频播放| 成年女人看的毛片在线观看| 久久久久九九精品影院| 身体一侧抽搐| 国产精品国产三级国产专区5o| av国产免费在线观看| 亚洲美女搞黄在线观看| 国产av不卡久久| 久久久久免费精品人妻一区二区| 毛片一级片免费看久久久久| 午夜福利网站1000一区二区三区| 免费看av在线观看网站| 日日撸夜夜添| 久久久欧美国产精品| 国产av国产精品国产| 在线a可以看的网站| 亚洲国产精品成人久久小说| 亚洲熟女精品中文字幕| 免费黄频网站在线观看国产| 搡老乐熟女国产| 少妇高潮的动态图| 国产老妇伦熟女老妇高清| 久久99精品国语久久久| 伊人久久国产一区二区| 国国产精品蜜臀av免费| 亚洲无线观看免费| 好男人视频免费观看在线| 纵有疾风起免费观看全集完整版 | 国内少妇人妻偷人精品xxx网站| 成人鲁丝片一二三区免费| www.色视频.com| 国产欧美日韩精品一区二区| 一个人免费在线观看电影| 色网站视频免费| 国产美女午夜福利| 国产一区二区在线观看日韩| 黄色欧美视频在线观看| 日韩成人av中文字幕在线观看| 色网站视频免费| 久久久色成人| 精品人妻视频免费看| 老师上课跳d突然被开到最大视频| 久久久久久国产a免费观看| 成人高潮视频无遮挡免费网站| 午夜免费激情av| 一级毛片黄色毛片免费观看视频| 午夜老司机福利剧场| av福利片在线观看| 欧美激情在线99| 麻豆成人av视频| 国产亚洲最大av| 小蜜桃在线观看免费完整版高清| 日本猛色少妇xxxxx猛交久久| 成人一区二区视频在线观看| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久 | 天堂影院成人在线观看| 美女国产视频在线观看| 国产在视频线在精品| 婷婷六月久久综合丁香| 亚洲美女搞黄在线观看| 草草在线视频免费看| 亚洲精品一区蜜桃| 我的女老师完整版在线观看| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 国产成人a区在线观看| 国产精品一区二区三区四区久久| 国产探花在线观看一区二区| 日本猛色少妇xxxxx猛交久久| 国产在线男女| 国产高清国产精品国产三级 | 一级毛片我不卡| 夜夜看夜夜爽夜夜摸| 亚洲国产色片| 免费看a级黄色片| 成年av动漫网址| 国产精品人妻久久久影院| 中文字幕av在线有码专区| 免费观看性生交大片5| 国产黄片美女视频| 欧美成人一区二区免费高清观看| 亚洲成人av在线免费| 春色校园在线视频观看| 国产免费一级a男人的天堂| 欧美xxxx性猛交bbbb| 精品人妻视频免费看| 亚洲国产精品国产精品| 亚洲内射少妇av| 99re6热这里在线精品视频| 性插视频无遮挡在线免费观看| 精品国产一区二区三区久久久樱花 | 美女被艹到高潮喷水动态| 舔av片在线| 亚洲av二区三区四区| 亚洲国产色片| 国产 一区精品| 尤物成人国产欧美一区二区三区| 亚洲内射少妇av| 内射极品少妇av片p| 午夜老司机福利剧场| 男女啪啪激烈高潮av片| 晚上一个人看的免费电影| 草草在线视频免费看| 国产一区有黄有色的免费视频 | 亚洲成人一二三区av| 亚洲国产av新网站| 国产免费又黄又爽又色| 成人漫画全彩无遮挡| 夫妻性生交免费视频一级片| 亚洲欧美中文字幕日韩二区| 精品人妻视频免费看| 日韩欧美国产在线观看| 亚洲欧洲日产国产| 国产探花极品一区二区| 精品久久久精品久久久| 国内少妇人妻偷人精品xxx网站| 婷婷色av中文字幕| 亚洲国产精品专区欧美| 日本一本二区三区精品| av又黄又爽大尺度在线免费看| a级毛色黄片| 特级一级黄色大片| 六月丁香七月| 成人毛片60女人毛片免费| 成人二区视频| 高清日韩中文字幕在线| 大又大粗又爽又黄少妇毛片口| 欧美性感艳星| 色网站视频免费| 婷婷色综合www| av在线蜜桃| 人妻少妇偷人精品九色| 精品人妻视频免费看| 国产一区有黄有色的免费视频 | 国产中年淑女户外野战色| 在线观看一区二区三区| 国产一区有黄有色的免费视频 | 欧美 日韩 精品 国产| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频 | 大香蕉97超碰在线| 亚洲精品亚洲一区二区| 狠狠精品人妻久久久久久综合| 五月玫瑰六月丁香| 麻豆成人av视频| 欧美xxxx黑人xx丫x性爽| 日韩av在线免费看完整版不卡| 国产v大片淫在线免费观看| 美女国产视频在线观看| 赤兔流量卡办理| 日日摸夜夜添夜夜爱| 国产午夜福利久久久久久| 国产精品美女特级片免费视频播放器| 国产一区二区在线观看日韩| 免费看不卡的av| 老司机影院成人| 国产精品久久久久久精品电影| 亚洲在久久综合| 少妇人妻精品综合一区二区| 国产精品人妻久久久影院| 久久久久久久久久久免费av| 建设人人有责人人尽责人人享有的 |