• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Some modifcations to the process of discontinuous deformation analysis

    2015-02-13 01:28:36

    Full length article

    Some modifcations to the process of discontinuous deformation analysis

    Yong Yua,*,Jianmin Yinb

    aSchool of Mechanics and Engineering,Southwest Jiaotong University,Chengdu,Sichuan 610031,China

    bYangtze River Scientifc Research Institute,Wuhan,Hubei 430010,China

    A R T 1 C L E 1 N F O

    Article history:

    Received 19 June 2014

    Received in revised form

    1 December 2014

    Accepted 2 December 2014

    Available online 24 December 2014

    Discontinuous deformation analysis(DDA) Open-close iteration

    Contact force

    Vertex-vertex contact

    Angle bisector

    Augmented Lagrangian method(ALM)

    This paper presents a modifed method of discontinuous deformation analysis(DDA).In the presented method,open-close iteration may not be needed,small penetration is permitted among blocks,and springs are added between contacting block pairs only when a penetration takes place.The three contact patterns(i.e.sliding,locking and opening)in original DDA method are not involved,and the recognition of these contact patterns and treatment of transformation among patterns are not required either, signifcantly saving the computing time.In a convex to concave contact,there are two candidate entrance edges which may cause uncertainty.In this case,we propose the angle bisector criterion to determine the entrance edge.The spring stiffness is much larger than Young’s modulus in the original DDA,however we fnd that the correct results can still be obtained when it is much smaller than Young’s modulus.Finally, the penetrations by using penalty method and augmented Lagrangian method are compared.Penetration of the latter is 1/4 of the former.The range of spring stiffness for the latter is wider than the former, being 0.01-1 of the former.Both methods can lead to correct contact forces.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Discontinuous deformation analysis(DDA)pioneered by Shi (1988)is a numerical method which is parallel to continuumbased analysis methods,such as fnite element method(FEM), boundary element method(BEM).It has been the research focus in investigating the kinematics of blocky rock masses since its establishment in 1988.During the past two decades,great achievements have been made on DDA developments,and many efforts have been carried out to validate and improve its performance(MacLaughlin and Doolin,2006).Among them,the drawback of block expanding due to rigid body rotation has been overcome(Ke,1995;MacLaughlin and Sitar,1996;Cheng and Zhang,2000);higher order displacement function was proposed to consider the variable strain of blocks(Koo et al.,1995;Hsiung, 2001;Wang et al.,2007);contacts between blocks have been modeled by using an augmented Lagrangian method(ALM)instead of the penalty method originally proposed by Shi(Lin et al.,1996; Ning et al.,2009);an alternative scheme for the corner-corner contact was suggested(Bao and Zhao,2010,2012);and signifcant developments have been achieved in the research of threedimensional(3D)DDA(Yeung et al.,2007;Beyabanaki et al., 2008,2009;Keneti et al.,2008;Liu et al.,2009;Wu,2010).

    The open-close iteration is an important step and also a diffculty in DDA.The original DDA method conducts 5 iterations at each time step,which means that the global equations will be solved for 5 times within one time step.So the computation workload is much heavy.Moreover,there is few reports illustrating the detailed process of open-close iteration.

    Bao and Zhao(2010)showed that the contact reference edges in the corner-corner contact are not unique,and it may lead to an indeterminate state in the numerical analysis.In this case,the original DDA method cannot correctly simulate the process of block movement.The approach proposed by Bao and Zhao(2010,2012) to deal with this issue is to add a spring between the moving corner and target corner,then to remove the spring after the frst open-close iteration.

    In the original DDA method,the contact situations are classifed into three patterns,i.e.opening,sliding and locking,and relevant operations are needed for the transformation among the patterns. Moreover,the penalty number is always much greater than the Young’s modulus.

    A modifed method of DDA is proposed in this study.It can improve the classic DDA in the following aspects:(i)open-close iteration could be omitted and correct results can still be achieved,meaning that the computing speed can be improved;(ii)indetermination in corner-corner contact is solved with a simplifed approach;(iii)there is no need to distinguish the three contact patterns and the transformations among them,therefore such modifed method can be much simplifed and computation can be speeded up;and(iv)stiffness in penalty method and ALM can be less than the Young’s modulus while correct contact force can still be obtained.

    2.Modifcation to DDA simulation process

    In the original DDA method,the formulae of the complete frst order approximation are adopted to calculate block displacements (u,v)at any point(x,y).When the rotation angle accumulates,block volume will expand.To solve this problem,precise formulae of the displacement for rotation should be adopted.Followed by Ke (1995),the rotation angle is replaced with the sine of rotation angle in the displacement variables of blocki.Accordingly,the displacement matrixTiis changed,and the stiffness and force terms in the global equations due to line load and inertia force should take the modifed forms.Detailed information can be found in Ke(1995).

    Blocks are not allowed to penetrate each other in the original DDA theory.Therefore,normal and shear springs are added in block system.This process is called penalty method.To ensure no penetration and no tensile force existing among blocks,open-close iteration must be carried out within every time step.However, the penetration among blocks could not be zero no matter how high the stiffness of spring is.In fact,the contact forces between two adjacent blocks are provided by springs in penalty method.If the contact forces are not zero,the penetration could not be zero either.So,if small penetrations are permitted to exist among blocks,no open-close iteration is needed in DDA simulation.

    In the original DDA process,contact patterns between adjacent blocks,such as opening,sliding and locking,should be recognized and recorded at each time step so that springs can be added to or removed from these blocks.In the modifed method,contact detection among block system is performed at every time step,so the recognition of contact patterns will not be necessary.This will make the DDA process simpler and time-saving.

    The modifed DDA process can be summarized as the following steps:

    (1)Input block geometry data,including each vertex’s sequence number and coordinate,each block’s sequence number,and then draw the graphics of blocks.

    (2)Input physico-mechanicalproperties,such as Young’s modulus,Poisson’s ratio,density,friction angle,cohesion of joint material,and initial velocity.

    (3)Input parameters for computing control,including length of time step,total simulation time,maximum displacement in one step,critical distance for separating vertex-vertex(V-V) contact and vertex-edge(V-E)contact,stiffness of normal and tangential springs.

    (4)Set coeffcient matrix K and matrix of free terms F in global equation to zero.

    (5)Treat the fxed displacements in block system(generally zero, i.e.fxed points).

    (6)Add body force-induced sub-matrices to global equations.

    (7)Add elastic sub-matrices to global equations.

    (8)Add inertia force-induced sub-matrices to global equations.

    (9)Add other sub-matrices.

    (10)Detect contacts among block system,and fnd the invading vertices and entrance edges.Only add normal and tangential springs or friction sub-matrices to global equations while invading takes place.

    (11)Solve the global equations KD=F,whereDis the block displacement.

    (12)Calculate the displacement of vertices according to block displacementD.

    (13)Update block coordinates,and draw blocks’geometry.

    (14)Accumulate the time of simulation.

    (15)Reduce the time interval for next time step if the maximum displacement in current time step is reached.

    (16)Go to step 4 if the accumulated time is less than total simulation time.

    (17)The end of program.

    Block initial coordinates can be acquired by the following way: number all the vertices in the block system,and save all the coordinates of the vertices in a matrix;then input each block’s sequence number in counter-clockwise;in the end,fnd out each block’s vertex coordinates.

    Fig.1 shows an example without iteration,in which a block is sliding from rest along an incline.The block and incline are two right-angled isosceles triangles with edge lengths being 3 m and 10 m,respectively.Two vertices at the bottom of incline are fxed. The material properties for both blocks are as follows:Young’s modulusE=50 GPa,Poisson’s ratioν=0.2,mass density for unit thicknessM=2.7×103kg/m2,acceleration of gravityg=9.8 m/s2. Simulation parameters are as follows:time intervaldt=0.001 s, spring stiffness(penalty number)p=1 GPa(notep<E),total time for simulationtotaltime=1 s,maximum displacement in a time stepstep_limit=0.01 m,the critical distance for separating V-V contact and V-E contactcritdis=0.005 m.

    When the friction angleφis less than 45°,the analytical solutions of displacementsuandvinxandydirections are as follows:

    wheretis the sliding time.

    Displacementsuandvof pointAin sliding block forφ=0°-45°andt=1 s are calculated and compared with analytical solutions, as shown in Table 1.It can be seen that the relative error is 0.06%-0.66%.

    3.Open-close iteration and contact stiffness determination

    Fig.1.Single block on an incline.

    Table 1Displacements of pointAin Fig.1 versus friction angle without open-close iteration.

    In some condition,open-close iterations may be needed.In that case,a loop from step 10 to step 12 described in Section 2 is necessary.The number of loop is the number of iteration.Openclose iteration is a diffcult issue in DDA,and no details are given in DDA theory.

    We succeeded in conducting open-close iterations by the following procedure:

    (1)Before iteration,all sub-matrices except the ones derived from normal and tangential springs should be added to the global equations.Supposing the coeffcient matrix and matrix of free terms in global equations are K0and F0,respectively,we can compute block displacement,update block coordinates,and mark blocks’new positions as position 0.

    (2)Detect penetration among blocks for blocks at position 0.If any penetration occurs,add normal and tangential springs(or friction)sub-matrices to the global equations.Supposing the coeffcient matrix is K1,and the matrix of free terms is F1,solve the displacements of block,then update blocks’position,and mark it as position 1.Now,the frst iteration is fnished.

    (3)For the second iteration,detect penetration among blocks at position 1,and add spring sub-matrices to K0and F0(if add spring sub-matrices to K1and F1,it would mean that the matrices derived from volume force,inertia force,etc.will be exerted more than one time,which is obviously wrong.After that,repeat this process,and add spring sub-matrices to K0and F0in each iteration.In original DDA code,there are 5 iterations in one time step.

    In the original DDA theory,the spring stiffnesspis 10-100 times of Young’s modulus.However,we found that the value of spring stiffness as 1/50 of the Young’s modulus can also obtain the correct simulation result if Young’s moduli of all blocks are the same,the number of blocks is small,and the size of block is in the same magnitude,as shown in Fig.1.This is due to the global equations in this case which do not appear abnormal.For the example in Fig.1, as long as the spring stiffnesspis not too large or too small compared with block Young’s modulus,there is no difference between the results of 1 iteration and 6 iterations.Both of them are very close to theoretical solutions(0.7352 m).The relative error is less than 0.5%(Table 2).

    Table 2Displacements of pointAin Fig.1 versus iteration(φ=35°).

    4.Procedure of contact detection

    The contact of blocks in DDA is divided into two categories,i.e. V-V contact and V-E contact.The aim of contact detection is to fnd out all these two contacts,and to determine the invading vertices and the entrance edges.

    A certain pair of invading vertex and entrance edge may belong to V-V contact or V-E contact.The original DDA theory fails to distinguish it.In this modifed method,these two categories of contacts are defned according to the following criterion:(i)if the distance between vertices of any two blocks is less than a critical valuecritdisand the two blocks penetrate each other,then the V-V contact occurs;(ii)if the block vertex invades into another block and the distance between the invading vertex and the nearest vertex in the invaded block is greater than critical distancecritdis, the V-E contact occurs.

    For both V-V contact and V-E contact,only when the penetration takes place,we can add normal and tangential springs between the invading vertices and entrance edges,i.e.adding the spring sub-matrices to K and F.If the tangential force is larger than the friction,add the friction matrix only to the matrix F.

    Once the invading vertices in V-E contact are determined,the entrance edges must be found out.Usually,the shortest distance method is adopted to determine the entrance edge,i.e.the edge of the invaded block with nearest distance to the invading vertex is the entrance edge.However,only when the displacement is small, the shortest distance criterion can lead to reasonable results.

    In DDA simulation,one may encounter such a situation:for the same contact problem,it can be taken as either V-V contact or V-E contactandtheentranceedgemaynotbethesameone.Asshownin Fig.2,verticesAandBpenetrate each other.If it is taken as V-E contact,the entrance edge isBFaccording to the shortest distance criterion.But thisisnottrue,becausetheentranceedgeshouldbeBEandAD.The solution to this probleminBaoandZhao(2012)is to use the trajectory of the vertexAto fnd the entrance edge when the movingvertexinvadesintothetargetblock.However,thismethodis feasible only when vertexAin previous step is outside the target block.ToavoidthewrongchoiceofentranceedgeinthecaseofFig.2, twomeasurescanbeadoptedintheprogram,thefrstistosetcritical distance not too short because the V-V contact theory is more rigid than that of V-E contact;the second is to reduce the vertex displacement during a time step by using a small time interval.

    Two concave vertices cannot form a contact,so only two situations are considered in contact detection:contact between two convex vertices,and contact between a convex vertex and a concave vertex.When a convex vertex penetrates a concave one, two edges of the target vertex may be the entrance edge,as shown in Fig.3 where the invading vertexAis within the range of the opposite angle∠CBEof the concave vertex∠FBD.In this case,the shortest distance criterion cannot lead to correct simulation result (Bao and Zhao,2010).The solution of the original DDAtheory tothis case is to add a spring to both edges of the concave.However,this method is not always true,for it would cause the block’sunreasonable rotation called as the“l(fā)ocking phenomenon”(Bao and Zhao,2012).

    Fig.2.V-V contact or V-E contact?

    Fig.3.Angle bisector criterion.

    To solve this problem,the angle bisector criterion is adopted to determine the entrance edge,i.e.to compare∠FBAand∠ABDshown in Fig.3.If the former is small,FBis the entrance edge;if the latter is small,BDis the entrance edge;and if these two angles are equal,bothBDandFBare entrance edges.

    This angle bisector criterion is also applicable to the contact of two convex vertices.In that case,it has the same essence as the shortest distance criterion.Therefore,the shortest distance criterion is actually replaced by the angle bisector criterion in the modifed method.

    5.Augmented Lagrangian method

    The penalty method was originally used in the DDA method to enforcecontactconstraints atblockinterfaces,andthecontactforce was also calculated with the penetration depth.However,many researchersfound that the accuracy of the contact solution depends highlyonthechoice of thepenaltynumberandtheoptimal number cannot be explicitly found beforehand.Lin et al.(1996)proposed an ALM to overcome the above disadvantage.The essential concept behind the ALM is to use both a penalty numberpand a Lagrange multiplierλ(λrepresents the contact force)to iteratively calculate the contact force until the distancedof penetration of one block into the other is below a minimum tolerance and the residual force between block contacts is also below another minimum tolerance. An updated value ofλcan be written as follows:

    Based on the principle of the minimum potential energy,submatrices derived from springs and contact forces should be added to the global equations,and the relevant formulae can be found in Lin et al.(1996).

    We simulate again the example of block sliding along incline with ALM,as indicated in Fig.1.The parameters are the same as the example in Section 2,except the friction angleφbeing 35°.When the spring stiffnesspis 107Pa and 109Pa,respectively,displacements of vertexAof the sliding block after 2-5 iterations are listed in Table 3.The analytical solution of displacement is 0.736 m.Therelative errors are also listed in the table.From the results,we fnd that even whenp=E/5000 reliable results can still be achieved.

    Table 3Displacement of vertexAversus iterations by using ALM.

    Fig.4.Forces acting on a sliding block.

    From Eq.(2),we know that the essential of ALM is to separate contact force from spring force.The sum of contact force and spring force of iterationkis the contact force of iterationk+1.After several iterations,the spring force and the penetrating depth will become very small.So the penetrating depth after iterations can represent the tolerance of ALM.

    Contact forces acting on a rectangle sliding along an incline has been analyzed by Yeung(1991).For the block of right-angledisosceles triangle with edge length of 3 m in Fig.1,the contact forces can be derived in the same way.Distributed forces along edgeABinclude normal contact force and sliding friction force. They are represented by four forces acting at verticesAandB,as shown in Fig.4.NAandfAare the equivalent normal and friction forces acting at vertexA,whileNBandfBare those at vertexB.Fis the inertial force.Gis the gravity.From the equilibrium equations of the sliding block,we can get:

    ForM=2.7×103kg/m2andφ=35°,the analytical solutions of normal contact forces are as follows:NA=3.2258× 104N,NB=5.1902×104N.

    ALM and penalty method with and without open-close iteration are adopted respectively in this modifed DDA method.The penetrating depths and normal contact forces are listed in Table 4.The analytical solutions ofΔxAandΔyAare both 0.736 m,and those of normal contact forces for verticesAandBare 3.2258×104N and 5.1902×104N,respectively.From Table 4,we know that ALM is better than penalty method in displacement calculation and in contact force calculation except the case ofp=107Pa.For the spring stiffness ofp=109Pa,the penetrating depths obtained by ALM are about 1/4 of those by penalty method.We also fnd that penalty method without iteration provides almost the same results as penalty method with iteration.

    6.Validation examples

    6.1.Example 1

    As shown in Fig.5a,there are two isosceles triangle blocks which touch each other at a point.The bottom block is fxed.Thisexample is simulated by using the original DDA code.At the 240th step,the V-V contact pair is locked,and the upper block rotates anticlockwise(Fig.5b).Until the 300th step,the upper block begins to slide along the lower block(Fig.5c).These behaviors do not conform to ideal or practical situation.Since in ideal situation,the upper block can stay balance,and in practical situation the upper block would not rotate around a fxed vertex.

    Table 4Penetrating depths and normal contact forces obtained by ALM and penalty method.

    To validate the modifed method,an example using angle bisector criterion is presented in Fig.6.There are two isosceles triangle blocks in the system and the bottom block is fxed.This is a modifed example of Bao and Zhao(2010).The infuence of gravity is concerned.The simulation shows that the upper block can stay motionless at any time.

    6.2.Example 2

    Fig.7 presents a complex example for the modifed DDA.In this example,10 blocks rest along a double incline.These blocks begin to slide under the action of gravity.The contact relationships among the block system are much complex.Fortunately,the simulation result is reasonable.It means that this example verifes the ability of the modifed DDA method.

    Fig.5.Results of simulation by using the original DDA code.

    Fig.6.Example of two isosceles triangle blocks.

    7.Conclusions

    The modifed DDA method and the complete simulation process presented in this paper can omit open-close iterations and does not need to recognize the contact patterns and the transform among them,making the simulation quick and simplifed.For the contact with invading vertexon the angle bisector,two springs are added to both edges of the target vertex,so that the DDA code can correctly treat this special V-V contact.For both ALM and penalty method, the spring stiffness can be smaller than Young’s modulus;and in ALM,the penetrating depths can be signifcantly less than those of penalty method.

    Blocks are temporarily separated in this study.For jointed rock mass,if a proper criterion such as Mohr-Coulomb theory is implemented into the friction matrix,the modifed DDA method can simulate the fracture process of rock mass.

    Fig.7.Simulation of 10 blocks sliding along a double incline.

    Confict of interest

    The authors wish to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    This work is supported by CRSRI Open Research Program(No. CKWV2014206/KY)and the National Basic Research Program of China(No.2011CB710603).

    Bao H,Zhao Z.An alternative scheme for the corner-corner contact in the twodimensional discontinuous deformation analysis.Advances in Engineering Software 2010;41(2):206-12.

    Bao H,Zhao Z.The vertex-to-vertex contact analysis in the two-dimensional discontinuousdeformation analysis.Advancesin Engineering Software 2012;45(1):1-10.

    Beyabanaki SAR,Jafari A,Biabanaki SOR,Yeung MR.Nodal-based three-dimensional discontinuous deformation analysis(3-D DDA).Computers and Geotechnics 2009;36(3):359-72.

    Beyabanaki SAR,Mikola RG,Hatami K.Three-dimensional discontinuous deformation analysis(3-D DDA)using a new contact resolution algorithm.Computers and Geosciences 2008;35(3):346-56.

    Cheng YM,Zhang YH.Rigid body rotation and block internal discretization in DDA analysis.International Journal for Numerical and Analytical Methods in Geomechanics 2000;24(6):567-78.

    Hsiung SM.Discontinuous deformation analysis(DDA)withnth order polynomial displacement functions.In:Elsworth D,Tinucci JP,Heasley KA,editors.Rock mechanics in the national interest,Proceedings of the 38th US Rock Mechanics Symposium.Rotterdam,Washington,DC:A.A.Balkema;2001.p.1437-44.

    Ke TC.Modifcation of DDA with respect to rigid body rotation.In:Li JC,Wang CY, Sheng J,editors.Proceedings of the 1st International Conference on analysis of discontinuous deformation.Chungli,Taiwan,China:National Central University;1995.p.260-73.

    Keneti AR,Jafari A,Wu JH.A new algorithm to identify contact patterns between convex blocks for three-dimensional discontinuous deformation analysis. Computers and Geotechnics 2008;35(5):746-59.

    Koo CY,Chern JC,Chen S.Development of second order displacement function for DDA.In:Li JC,Wang CY,Sheng J,editors.Proceedings of the 1st International Conference on analysis of discontinuous deformation.Chungli,Taiwan,China: National Central University;1995.p.91-108.

    Lin CT,Amadei B,Jung J,Dwyer J.Extensions of discontinuous deformation analysis for jointed rock masses.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1996;33(1):671-94.

    Liu J,Geng QD,Kong XJ.A fast common plane identifcation algorithm for 3D contact problems.Computers and Geosciences 2009;36(1-2):41-51.

    MacLaughlin MM,Doolin DM.Review of validation of the discontinuous deformation analysis(DDA)method.International Journal for Numerical and Analytical Methods in Geomechanics 2006;30(4):271-305.

    MacLaughlin MM,Sitar N.Rigid body rotations in DDA.In:Salami MR,Banks D, editors.Proceedings of the 1st International Forum on DDA and simulations of discontinuous media.Berkeley,California,USA:TSI Press;1996.p.620-36.

    Ning YJ,Yang J,Ma GW,Chen PW.Contact algorithm modifcation of DDA and its verifcation.In:Ma GW,Zhou YX,editors.Analysis of discontinuous deformation:new developments and applications.Singapore:Nanyang Technological University;2009.

    Shi GH.Discontinuous deformation analysis-a new numerical model for the statics and dynamics of block systems.PhD Thesis.Berkeley:University of California;1988.

    Wang XB,Ding XL,Lu B,Wu AQ.DDA with higher order polynomial displacement functions for large elastic deformation problems.In:Proceedings of the 8th International Conference on the analysis of discontinuous deformation,Beijing, China;2007.p.89-94.

    Wu JH.Compatible algorithm for integrations on a block domain of any shape for three-dimensional discontinuous deformation analysis.Computers and Geotechnics 2010;37(1-2):153-63.

    Yeung MR,Jiang QH,Sun NA.A model of edge-to-edge contact for threedimensional discontinuous deformation analysis.Computers and Geotechnics 2007;34(3):175-86.

    Yeung MR.Application of Shi’s discontinuous deformation analysis to the study of rock behavior.PhD Thesis.Berkeley:University of California;1991.

    Yong Yu obtained his BSc degree in mining engineering from Xi’an University of Architecture and Technology in 1990 and his PhD in rock mechanics from the University of Science and Technology Beijing in 1996.After a six-year period of working in the Rock Foundation Division at the Yangtze River Scientifc Research Institute in Wuhan,he has been working in School of Mechanics and Engineering of Southwest Jiaotong University since 2002.From November 2008 to November 2009,he worked as a visiting scholar in the Department of Civil and Architecture Engineering at Royal Institute of Technology(KTH),Stockholm,Sweden.He has published about 30 technical journal papers in English or Chinese.His contribution in rock mechanics was a modifed Brazilian test.His research interests cover the whole feld of rock mechanics,but are currently concentrated on discontinuous deformation analysis(DDA).

    *Corresponding author.Tel.:+86 13551017371.

    E-mail address:yuyong2000@126.com(Y.Yu).

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2014.12.001

    国产一卡二卡三卡精品| 在线观看日韩欧美| 久久狼人影院| 韩国av一区二区三区四区| 午夜福利视频1000在线观看 | 丝袜人妻中文字幕| 色综合亚洲欧美另类图片| 女人爽到高潮嗷嗷叫在线视频| aaaaa片日本免费| 亚洲精品中文字幕一二三四区| 午夜福利欧美成人| 亚洲精品国产区一区二| 亚洲色图av天堂| 亚洲va日本ⅴa欧美va伊人久久| 国产精品 欧美亚洲| 免费看美女性在线毛片视频| 女人高潮潮喷娇喘18禁视频| 亚洲最大成人中文| 黄色丝袜av网址大全| 嫁个100分男人电影在线观看| 少妇被粗大的猛进出69影院| 亚洲成人免费电影在线观看| 怎么达到女性高潮| 中文字幕色久视频| 国产精华一区二区三区| 久久中文字幕一级| 婷婷六月久久综合丁香| 日韩精品中文字幕看吧| 国产高清videossex| 18禁黄网站禁片午夜丰满| 母亲3免费完整高清在线观看| 亚洲久久久国产精品| 久久久久亚洲av毛片大全| 免费在线观看视频国产中文字幕亚洲| 成人18禁在线播放| 别揉我奶头~嗯~啊~动态视频| 欧美激情 高清一区二区三区| 母亲3免费完整高清在线观看| 18禁观看日本| 自拍欧美九色日韩亚洲蝌蚪91| 嫁个100分男人电影在线观看| 国产又爽黄色视频| 国产精品1区2区在线观看.| 欧美久久黑人一区二区| 91国产中文字幕| 成人亚洲精品一区在线观看| 男人舔女人的私密视频| 久久青草综合色| 18禁黄网站禁片午夜丰满| av视频在线观看入口| 亚洲激情在线av| ponron亚洲| 国产亚洲精品综合一区在线观看 | 欧美不卡视频在线免费观看 | 在线观看66精品国产| 国产在线精品亚洲第一网站| x7x7x7水蜜桃| cao死你这个sao货| 日韩欧美三级三区| 国产亚洲精品第一综合不卡| 成年版毛片免费区| 黄色a级毛片大全视频| 免费不卡黄色视频| 久久久久九九精品影院| 亚洲狠狠婷婷综合久久图片| 美女午夜性视频免费| 亚洲中文字幕日韩| 久久人人爽av亚洲精品天堂| 首页视频小说图片口味搜索| av超薄肉色丝袜交足视频| 国产又爽黄色视频| 精品国产国语对白av| 欧美丝袜亚洲另类 | 制服诱惑二区| 色综合亚洲欧美另类图片| 亚洲午夜理论影院| 别揉我奶头~嗯~啊~动态视频| 久久精品人人爽人人爽视色| 成人亚洲精品一区在线观看| 欧美老熟妇乱子伦牲交| 侵犯人妻中文字幕一二三四区| 伦理电影免费视频| 极品人妻少妇av视频| 黄色视频,在线免费观看| netflix在线观看网站| 91麻豆av在线| 免费搜索国产男女视频| 婷婷六月久久综合丁香| 亚洲人成网站在线播放欧美日韩| 人妻丰满熟妇av一区二区三区| 老司机午夜福利在线观看视频| 亚洲成av人片免费观看| 19禁男女啪啪无遮挡网站| 国产精品国产高清国产av| 中文字幕色久视频| 亚洲aⅴ乱码一区二区在线播放 | 亚洲成a人片在线一区二区| 母亲3免费完整高清在线观看| 国产欧美日韩一区二区三| 一级a爱视频在线免费观看| 9色porny在线观看| 美女 人体艺术 gogo| 母亲3免费完整高清在线观看| 久久久久久国产a免费观看| 国产三级在线视频| 亚洲成人久久性| 少妇熟女aⅴ在线视频| 欧美中文综合在线视频| 精品无人区乱码1区二区| 他把我摸到了高潮在线观看| 国产日韩一区二区三区精品不卡| 国产精品精品国产色婷婷| 国产午夜福利久久久久久| 国产欧美日韩综合在线一区二区| 女人高潮潮喷娇喘18禁视频| svipshipincom国产片| 精品久久久久久,| 自拍欧美九色日韩亚洲蝌蚪91| 午夜a级毛片| 日日爽夜夜爽网站| www.999成人在线观看| 好看av亚洲va欧美ⅴa在| 亚洲九九香蕉| 侵犯人妻中文字幕一二三四区| 18禁裸乳无遮挡免费网站照片 | 久久精品人人爽人人爽视色| 国产精品免费一区二区三区在线| 天天躁狠狠躁夜夜躁狠狠躁| 日本黄色视频三级网站网址| 91九色精品人成在线观看| 人妻丰满熟妇av一区二区三区| 日本在线视频免费播放| bbb黄色大片| 啪啪无遮挡十八禁网站| 性色av乱码一区二区三区2| 欧美大码av| 国产麻豆69| 国产欧美日韩一区二区精品| 欧美在线一区亚洲| 国产精品精品国产色婷婷| 免费高清视频大片| 日韩欧美一区二区三区在线观看| 成人国产一区最新在线观看| 亚洲专区中文字幕在线| 侵犯人妻中文字幕一二三四区| 女性被躁到高潮视频| 又黄又粗又硬又大视频| 可以在线观看毛片的网站| 国产成人啪精品午夜网站| 欧美成人免费av一区二区三区| 国产成人av教育| 欧美日韩一级在线毛片| 欧美色视频一区免费| 久久精品成人免费网站| 性色av乱码一区二区三区2| 欧美日本中文国产一区发布| 亚洲av美国av| 亚洲成人精品中文字幕电影| 村上凉子中文字幕在线| 国产av在哪里看| 国产一卡二卡三卡精品| 人人妻人人爽人人添夜夜欢视频| 亚洲伊人色综图| 国产欧美日韩一区二区三区在线| 免费在线观看视频国产中文字幕亚洲| 91在线观看av| 夜夜躁狠狠躁天天躁| 久久精品国产99精品国产亚洲性色 | 精品一区二区三区视频在线观看免费| 午夜视频精品福利| 999久久久精品免费观看国产| 亚洲熟女毛片儿| 久久久久国产精品人妻aⅴ院| 天天一区二区日本电影三级 | 999久久久国产精品视频| 精品国产乱子伦一区二区三区| 国产熟女午夜一区二区三区| 精品一品国产午夜福利视频| 欧美精品啪啪一区二区三区| 在线av久久热| 国产伦人伦偷精品视频| 美女大奶头视频| 欧美精品啪啪一区二区三区| 久久久久国产一级毛片高清牌| 日本免费a在线| 久久精品国产亚洲av香蕉五月| 女性被躁到高潮视频| 日本在线视频免费播放| 成人手机av| 大香蕉久久成人网| 男人的好看免费观看在线视频 | 又紧又爽又黄一区二区| 在线观看免费视频日本深夜| 亚洲 欧美 日韩 在线 免费| 动漫黄色视频在线观看| 不卡一级毛片| 人人妻人人澡欧美一区二区 | 免费看十八禁软件| 午夜精品在线福利| 久久久精品国产亚洲av高清涩受| 国产成人av教育| 亚洲av电影不卡..在线观看| 伦理电影免费视频| 人人澡人人妻人| 中文字幕久久专区| av电影中文网址| 欧美国产精品va在线观看不卡| 黑人巨大精品欧美一区二区mp4| 纯流量卡能插随身wifi吗| 亚洲av成人不卡在线观看播放网| 国产xxxxx性猛交| 黄色女人牲交| av有码第一页| 狠狠狠狠99中文字幕| 日韩高清综合在线| 如日韩欧美国产精品一区二区三区| 国产精品秋霞免费鲁丝片| 十分钟在线观看高清视频www| 国产激情久久老熟女| 制服人妻中文乱码| 看免费av毛片| 黑人操中国人逼视频| 精品国产国语对白av| 亚洲av成人一区二区三| or卡值多少钱| 高清黄色对白视频在线免费看| 99国产综合亚洲精品| 亚洲精品国产一区二区精华液| 国产欧美日韩一区二区精品| 人人妻人人澡人人看| 热99re8久久精品国产| 99久久综合精品五月天人人| 欧美日韩亚洲国产一区二区在线观看| 国产人伦9x9x在线观看| 亚洲色图综合在线观看| 成人精品一区二区免费| 国产成人精品久久二区二区免费| 欧美绝顶高潮抽搐喷水| 一级黄色大片毛片| 午夜福利高清视频| 国产男靠女视频免费网站| 欧美黑人精品巨大| 国产91精品成人一区二区三区| 国产成人精品在线电影| 国产精品久久久久久人妻精品电影| 免费观看人在逋| 麻豆av在线久日| 老司机午夜十八禁免费视频| 亚洲精品国产一区二区精华液| 精品国产乱子伦一区二区三区| 欧美绝顶高潮抽搐喷水| 精品不卡国产一区二区三区| 久久天堂一区二区三区四区| 制服丝袜大香蕉在线| 亚洲av电影在线进入| 人成视频在线观看免费观看| 中文字幕人妻熟女乱码| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩高清在线视频| 国产亚洲精品一区二区www| 欧美激情久久久久久爽电影 | 亚洲av电影在线进入| 久久精品国产亚洲av高清一级| 日韩高清综合在线| 国产麻豆69| 天堂影院成人在线观看| 一区二区三区国产精品乱码| 亚洲最大成人中文| 在线观看www视频免费| 91字幕亚洲| 一区福利在线观看| 亚洲久久久国产精品| 黑丝袜美女国产一区| 中亚洲国语对白在线视频| 国产精华一区二区三区| 操美女的视频在线观看| 成人18禁在线播放| 日日摸夜夜添夜夜添小说| 国产精品国产高清国产av| 在线观看www视频免费| 亚洲第一av免费看| 视频区欧美日本亚洲| 久久久久久久久久久久大奶| 黄频高清免费视频| 久久人妻熟女aⅴ| 国产色视频综合| 久久久久精品国产欧美久久久| 在线av久久热| 午夜成年电影在线免费观看| 亚洲欧美精品综合久久99| 国产成人精品久久二区二区免费| 国产午夜福利久久久久久| 国产av一区二区精品久久| 狠狠狠狠99中文字幕| aaaaa片日本免费| 中文字幕av电影在线播放| 欧美日韩黄片免| 亚洲激情在线av| 日韩av在线大香蕉| 欧美黄色淫秽网站| 丝袜美足系列| 麻豆久久精品国产亚洲av| 国产精品,欧美在线| 欧美在线一区亚洲| 国产97色在线日韩免费| 亚洲色图综合在线观看| 国产亚洲精品久久久久久毛片| 国产高清激情床上av| 男女下面插进去视频免费观看| 国产亚洲欧美98| 午夜日韩欧美国产| 精品电影一区二区在线| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 正在播放国产对白刺激| 亚洲专区国产一区二区| 男女下面进入的视频免费午夜 | 亚洲少妇的诱惑av| 免费高清视频大片| 99riav亚洲国产免费| 精品日产1卡2卡| 久久久久久久久免费视频了| 国语自产精品视频在线第100页| 亚洲美女黄片视频| www.999成人在线观看| 久久天躁狠狠躁夜夜2o2o| 中文字幕色久视频| 成人精品一区二区免费| 亚洲三区欧美一区| 日本 av在线| 日本免费a在线| 黄色片一级片一级黄色片| 日韩大尺度精品在线看网址 | 欧美黑人欧美精品刺激| 国产成人影院久久av| 精品日产1卡2卡| 成人永久免费在线观看视频| 精品国产亚洲在线| 亚洲一区中文字幕在线| 免费在线观看影片大全网站| 久久精品aⅴ一区二区三区四区| 叶爱在线成人免费视频播放| 高清在线国产一区| 国产精品久久久久久亚洲av鲁大| 啪啪无遮挡十八禁网站| 精品久久久久久久人妻蜜臀av | 人人妻人人澡欧美一区二区 | 欧美色欧美亚洲另类二区 | 男女下面进入的视频免费午夜 | 女人高潮潮喷娇喘18禁视频| 精品久久久久久久毛片微露脸| 男人操女人黄网站| av天堂久久9| 国产乱人伦免费视频| 国产在线观看jvid| 日本a在线网址| 成年女人毛片免费观看观看9| 国产熟女xx| 亚洲精品一区av在线观看| videosex国产| 青草久久国产| 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 国产av一区二区精品久久| 国产成人精品久久二区二区91| 成熟少妇高潮喷水视频| 亚洲va日本ⅴa欧美va伊人久久| 午夜a级毛片| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 久久久久久人人人人人| 十八禁网站免费在线| 青草久久国产| 一级毛片女人18水好多| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 高清黄色对白视频在线免费看| 国产精品秋霞免费鲁丝片| 在线观看舔阴道视频| 亚洲伊人色综图| 一个人免费在线观看的高清视频| 一级作爱视频免费观看| 久久人人爽av亚洲精品天堂| 黄网站色视频无遮挡免费观看| 精品国产美女av久久久久小说| 中亚洲国语对白在线视频| 国内久久婷婷六月综合欲色啪| 日韩中文字幕欧美一区二区| 午夜福利,免费看| 99精品久久久久人妻精品| 99国产精品99久久久久| 午夜影院日韩av| 满18在线观看网站| 美女扒开内裤让男人捅视频| 九色亚洲精品在线播放| 黄片小视频在线播放| 久久久国产成人免费| 真人做人爱边吃奶动态| 亚洲精品在线观看二区| 久久中文字幕人妻熟女| 中出人妻视频一区二区| 国产精品一区二区精品视频观看| 91麻豆精品激情在线观看国产| 久久久久国内视频| 我的亚洲天堂| 久久国产精品影院| 日韩精品青青久久久久久| 91av网站免费观看| 美女扒开内裤让男人捅视频| 亚洲国产高清在线一区二区三 | 日本黄色视频三级网站网址| 国产三级黄色录像| 首页视频小说图片口味搜索| 手机成人av网站| 免费在线观看完整版高清| 一级作爱视频免费观看| 国产亚洲精品一区二区www| 在线观看一区二区三区| 久久性视频一级片| 中文字幕高清在线视频| 精品久久久久久,| 国产精品 国内视频| 国产在线精品亚洲第一网站| 久久人人97超碰香蕉20202| 18禁美女被吸乳视频| 黄色丝袜av网址大全| 99久久久亚洲精品蜜臀av| 亚洲黑人精品在线| 国产在线精品亚洲第一网站| 神马国产精品三级电影在线观看 | 久久精品国产综合久久久| 成人三级黄色视频| 又大又爽又粗| 91在线观看av| 国产高清激情床上av| 午夜精品久久久久久毛片777| 无限看片的www在线观看| 精品乱码久久久久久99久播| 久热这里只有精品99| 在线观看日韩欧美| av电影中文网址| 午夜a级毛片| 69精品国产乱码久久久| 搡老熟女国产l中国老女人| 少妇被粗大的猛进出69影院| 99香蕉大伊视频| 欧美性长视频在线观看| 免费av毛片视频| 精品熟女少妇八av免费久了| 香蕉久久夜色| 久久中文看片网| 一区二区三区精品91| 亚洲国产中文字幕在线视频| 黄色成人免费大全| 老汉色av国产亚洲站长工具| 欧美丝袜亚洲另类 | 免费人成视频x8x8入口观看| 日韩欧美在线二视频| 999精品在线视频| 日本免费a在线| 91大片在线观看| 韩国精品一区二区三区| 国产成人精品无人区| 国产aⅴ精品一区二区三区波| 欧美+亚洲+日韩+国产| cao死你这个sao货| 高潮久久久久久久久久久不卡| 午夜免费成人在线视频| 桃红色精品国产亚洲av| 真人做人爱边吃奶动态| 亚洲片人在线观看| bbb黄色大片| 777久久人妻少妇嫩草av网站| 亚洲av成人av| 99久久综合精品五月天人人| 精品国产亚洲在线| 亚洲av第一区精品v没综合| 91老司机精品| 12—13女人毛片做爰片一| 51午夜福利影视在线观看| 最新美女视频免费是黄的| 乱人伦中国视频| 国产精品久久视频播放| netflix在线观看网站| 女生性感内裤真人,穿戴方法视频| 亚洲欧洲精品一区二区精品久久久| 国产男靠女视频免费网站| 这个男人来自地球电影免费观看| 级片在线观看| 国产欧美日韩一区二区三区在线| 国产一区二区在线av高清观看| 香蕉丝袜av| av超薄肉色丝袜交足视频| 久久精品91无色码中文字幕| 好男人在线观看高清免费视频 | 天天躁夜夜躁狠狠躁躁| 免费女性裸体啪啪无遮挡网站| 欧美大码av| 中文字幕人成人乱码亚洲影| 黄色片一级片一级黄色片| 国产亚洲精品久久久久久毛片| 一夜夜www| 久久国产亚洲av麻豆专区| 黄色女人牲交| 欧美丝袜亚洲另类 | 国产欧美日韩综合在线一区二区| 亚洲av五月六月丁香网| 久久久精品欧美日韩精品| 成人18禁高潮啪啪吃奶动态图| 啦啦啦免费观看视频1| 99久久国产精品久久久| 黑人巨大精品欧美一区二区mp4| 日日干狠狠操夜夜爽| 亚洲国产欧美网| 精品乱码久久久久久99久播| 国产成人欧美在线观看| 亚洲中文字幕一区二区三区有码在线看 | 香蕉久久夜色| 免费少妇av软件| 欧美日韩一级在线毛片| 精品不卡国产一区二区三区| 亚洲精品中文字幕一二三四区| svipshipincom国产片| 侵犯人妻中文字幕一二三四区| 日日干狠狠操夜夜爽| 正在播放国产对白刺激| 老汉色∧v一级毛片| 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 免费看美女性在线毛片视频| 精品国内亚洲2022精品成人| 1024香蕉在线观看| 欧美日韩亚洲国产一区二区在线观看| av中文乱码字幕在线| 女警被强在线播放| 色哟哟哟哟哟哟| 18美女黄网站色大片免费观看| 国产精品乱码一区二三区的特点 | 99精品在免费线老司机午夜| 亚洲av美国av| 最新美女视频免费是黄的| avwww免费| 欧美一级毛片孕妇| 男女午夜视频在线观看| 女警被强在线播放| 国产99白浆流出| av超薄肉色丝袜交足视频| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 精品久久久久久久人妻蜜臀av | 99riav亚洲国产免费| 色婷婷久久久亚洲欧美| 欧美日韩乱码在线| 国产亚洲精品一区二区www| 成人免费观看视频高清| 亚洲情色 制服丝袜| 欧美午夜高清在线| 国产成人啪精品午夜网站| 搡老岳熟女国产| 国产单亲对白刺激| 亚洲国产毛片av蜜桃av| 亚洲一区高清亚洲精品| 最好的美女福利视频网| 国产成人av教育| www.自偷自拍.com| 日本一区二区免费在线视频| 一区二区三区高清视频在线| 国产av又大| 欧美日韩黄片免| 如日韩欧美国产精品一区二区三区| 亚洲欧美精品综合一区二区三区| 欧美成人性av电影在线观看| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 韩国av一区二区三区四区| 啦啦啦 在线观看视频| 国产成人av激情在线播放| 亚洲,欧美精品.| 伦理电影免费视频| 黄色女人牲交| 国内久久婷婷六月综合欲色啪| 国产主播在线观看一区二区| √禁漫天堂资源中文www| 丰满的人妻完整版| 国产人伦9x9x在线观看| 欧美午夜高清在线| 国产精品一区二区在线不卡| 午夜福利一区二区在线看| 久久伊人香网站| 在线观看一区二区三区| 人妻久久中文字幕网| 美女午夜性视频免费| 成人亚洲精品av一区二区| 国产真人三级小视频在线观看| 精品欧美一区二区三区在线| 国产在线观看jvid| 99久久综合精品五月天人人| 亚洲第一av免费看| 色综合欧美亚洲国产小说| 天天躁狠狠躁夜夜躁狠狠躁| 婷婷丁香在线五月| 亚洲成人国产一区在线观看| 中文字幕最新亚洲高清| 亚洲第一青青草原| 一级毛片女人18水好多| 亚洲熟妇熟女久久| 精品高清国产在线一区| 99国产综合亚洲精品| 老司机深夜福利视频在线观看| 久久精品国产亚洲av高清一级| 又黄又爽又免费观看的视频| 日韩av在线大香蕉| 亚洲专区国产一区二区| 国产精华一区二区三区| 久久婷婷成人综合色麻豆|