• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    2015-02-09 01:28:44Tajdu

    K.Tajduˊs

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    K.Tajduˊs*

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    A R T I C L E I N F O

    Article history:

    Received 2 January 2015

    Received in revised form

    16 March 2015

    Accepted 17 March 2015

    Available online 8 May 2015

    Horizontal displacements/movements

    Surface deformations

    Mining exploitation

    Horizontal displacement coeffcient

    Center of gravitation(COG)zone

    The paper presents an analysis of the horizontal displacement of surfaces induced by exploitation in a longwall panel.The panel under discussion is No.698 of Prosper Haniel coal mine,Germany.The author discusses both the distribution of displacement vectors,according to the theory assuming surface point displacement towards the center of gravitation(COG)zone of a selected deposit element,and the analysis of horizontal displacement measurements,based on the assumption that the value of horizontal displacement is proportional to the slope of the subsidence trough.Finally,the value of horizontal displacement coeffcientBis estimated for particular longitudinal and transverse measurement section of the analyzed longwall No.698.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Underground longwall excavation creates deformations inside the rock mass which can appear on the surface.One indicator of such a deformation is the vector of rock mass movement,which can be easily divided into two components:vertical and horizontal movements.In the past,many scientists have dealt with the problem of vertical movement(subsidence)determination.Due to the subsidence of rock mass caused by underground mining,such operations have been observed and quantifed since early 20th century.Work on subsidence calculation methods was started by Schmitz(Lehmann et al.,1942).Later,Awierszyn(1947)proposed a methodology assuming the kinetics of the rock displacement process in analytical solutions,which allowed for the introduction of universal theoretical descriptions of rock mass movement.The above proposal gave rise to the intensive development of calculation methods,especially methods based on the normal distribution of mining infuence,like Knothe’s method(Knothe,1953,1984; Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).

    But in spite of the many theories and methods used to calculate surface deformations above underground operations,inter alia, Keinhorst(1925),Sann(Lehmann et al.,1942),Bals(1931/1932), Knothe(1953),NCB(1975),etc.,estimations of the values and distribution of horizontal movement are still unclear.

    This paper presents the monitoring and analysis of horizontal movements caused by a single longwall panel excavation,No.698. Analysiswas carried out based on two the most popularhypotheses of horizontal movements:

    (1)Theories assuming the displacement of surface points towards the center of gravitation(COG)of a selected element of deposit, e.g.the theories of:Keinhorst(1925),Bals(1931/1932), Lehmann et al.(1942),Sann,Beyer(Lehmann et al.,1942), etc.,and

    (2)Theories assuming that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y)(Awierszyn,1947),e.g.Knothe’s method and Ruhrkohle method.

    To sum up,both the COG theory and the hypothesis of Awierszyn(1947)indicate the proportionality between the vector of horizontal displacement and the vector of subsidence trough profle slope.

    2.Examples of the Gauss distribution method used to calculate mining-induced surface deformations

    Most theories used for surface deformation calculations are based on the Gauss distribution function.And from it,two methods were commonly used in Europe,China and the United States.These are:Knothe’s method(Knothe,1953,1984;Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).In a strictly mathematical sense,both the above-mentioned methods aresimilar.They differ,however,only in their defnitions of angles limiting the horizontal range of subsidence trough,which are defned by means of the following relation:

    Fig.1.Situation of exploitation fronts when the deformation measurement was stopped.

    whereβis the angle of main infuences’rangeaccording toKnothe’s theory,γis the limit angle of the Ruhrkohle method,andkis the coeffcient which is equal to-ln0.001.

    These classic theories suggest that mining-induced surface displacement can be described by means of the function of infuences,and in the case of a three-dimensional(3D)problem, exploitation of any feld results in the subsidence of pointAon a terrain surface,which can be illustrated with the following equation:

    wherew(xA,yA)is the subsidence of any pointA(mm);ais the subsidence coeffcient depending upon exploitation system,which is generally a relation of expected subsidence trough volume to a selected volume;gis the thickness of mined-out deposit(m);rK,rRare the radii of main infuences’range(m)for Knothe’s method and Ruhrkohle method,respectively;His the depth of exploitation(m); χis the parameter depending on chosen theory,χ=1 for Knothe’s method,χ=k/πfor Ruhrkohle method;dPis the surface of infnitesimally small element of mined-out deposit,and dP=dxdy;Pis the surface of mined-out space of deposit.

    From the differentiation of Eq.(2),further formulae can be obtained,which may in turn help to determine the values of such surface deformation indices as:slope of subsidence trough profle at any point(Tx,Ty)(Eq.(4))or curvature of subsidence trough profle(Kxx,Kyy,Kxy)(Eq.(5)).Also horizontal displacement(ux,uy) (Eq.(6))and horizontal deformation(εx,εy)(Eq.(7)and(8)-maximum and minimum horizontal deformations)can be determined if a proper coeffcient is assumed.

    Fig.2.Survey measurements contour lines along with measurements points of:(a)horizontal displacement inxdirection(mm),(b)horizontal displacement inydirection(mm).

    Fig.3.Surface subsidence measurements contour line(mm)along with measurement points.

    whereBis the displacement coeffcient(or horizontal deformation coeffcient).This coeffcient is then used to calculate horizontal movements and strains,assuming proportions between the slope of subsidence trough profle and horizontal movements.The hitherto determined empirical values of coeffcientB,for varied measurement bases and varied mining or geological conditions,can be defned in the following ranges(Tajduˊs,2013,2014):

    (1)For coal mines:from 0.15rto 0.7r,

    (2)For sulfur mines:from 0.15rto 0.26r,

    (3)For copper mines:from 0.23rto 0.77r.

    It also should be noted that some measurements suggest that the coeffcientBis not constant,but depends upon the position of the measurement point in the formed subsidence trough(Tajduˊs, 2013,2014).The presented range of the coeffcientBvaries widely due to the fact that disturbance depends upon the following factors:number and thickness of mined-out seams,dimensions of mined-out felds in each seam,methods of void liquidation,mining rate,geological and hydro-geological structure of overburden, tectonics,strength and strain parameters of strata.

    Below,the author presents the analysis of horizontal movements for a single advancing longwall panel excavation taking into consideration the COG andTtouproportion theories.

    3.Horizontal displacement analysis for the sample mine of Prosper Haniel

    Analysis of horizontal displacements of the terrain surface was carried out for the sample area of the BW Prosper Haniel coal mine where the single longwall panel was excavated(DMT,2001).

    In 1999,the coal mine started exploitation of the wall No.698 in the seam O/N at an average depth of 960 m.Thewidth of mined-out wall was 270 m,its panel runwas 970 m,whereas its height ranged from 3.6 m to 4.3 m.Excavation of the longwall was initiated on 10 May 1999 and terminated on 23 November 1999.After the completion of mining in the longwall No.698,nevertheless still during the measurements of subsidence and horizontal movement of measurement points,the exploitation of the longwall No.682 with the thickness of 1.6 m commenced in the seam P1 at the depthH=920 m.The situation is presented in Fig.1.

    On the surface,above the Prosper Haniel coal mine,a measurement network system consisting of dispersed geodesic points was set up.Measurements were takenwith the use of GPS,which is characterized by the accuracy of below 5 mm(Sroka,2000).The frst measurement was carried out on 1 April 1999 for the points numbered from 1 to 48.The distribution of measurement points is presented in Fig.1.

    Fig.4.3D analyzed mining situation along with the position of surface measurement points(at the level of+60 m).

    The results of geodesic measurements taken in the period between the date of exploitation commencement of the wall No.698 and the date of 11 January 2000 indicate that the maximum subsidence measured in the central part of the trough reached thesteadystate.Only in the areaof exploitation end of thewall No.698, the points indicated their transient state.In addition,it should be noted that the layer of hard sandstone,with the thickness of approximately 90 m,occurring above the seam O/N,as well as the small dimensions of the excavated longwall No.698,caused the occurrence of partial subsidence trough on the surface.The trough was characterized by values of deformation indices lower by 50%in comparison to the values obtained during the prognosis carried out for that exploitation(Stocks and Sroka,2000).

    Figs.2 and 3 present the fnal values of deformation indices obtained from geodesic measurements.For survey measurements contour lines,matching was achieved according to the Kriging method,which attributes particular weighing,called Kriging coeffcients(weighing),to the samples inside the estimation feld (sample search area)in order to minimize the mean square prediction error(Kriging variance).The author used the linear variogram with no nugget effect.

    Fig.5.A spatial representation of the courses of all vector directions.

    3.1.Analysis of displacement vectors-searching COG inside the strata

    In the frst analysis of displacement vectors of measurement points,the author tried to fnd the area where the direction of the vectors of displacements met.To fulfll this task,the analysis of measurement points situated in the vicinity of longwall No.698 was used for a further study.Position changes of measurement points were analyzed and“virtual vectors”symbolizing the displacement of initial points(presented in Fig.4)towards the center of rock mass were marked on the basis of GPS satellite data (spatial coordinates(x,y,z)of each point).

    The author made the analysis for(mining and measurements) situations where only part of longwall panel was excavated(Fig.4). Such selected situations allow for the analysis of vector displacements of surface points with only a small disturbance from created goaf(in Fig.4,the part of excavated deposit was marked with a white feld with the dimensions of 294 m×270 m).Data from a total of 48 points were available;however,the analysis did not take the points numbered as 1,7,21,47 and 48 into consideration,since the results obtained in those points could not be treated as reliable due to the occurrence of some anomalies in the values of displacement.It had been assumed that the points,whose values of measured subsidence were lower than twice the measuring error (<5 mm),would be neglected in the study.Therefore,a total of 43 points were actually subject to analysis.A sample study of displacement direction of each measurement point was carried out on the basis of the analysis of the results of initial measurement and the measurement after 50 days from the commencement of exploitation(i.e.the ffth measurement taken on 29 June 1999).It corresponded to the mining situation with the wall advance of 294 m and with the exploitation panel opening approximate to a square(Fig.4).Fig.5 illustrates the course of all directions of displacement vectors,which appeared after matching the spatial coordinates(x,y,z)for the ffth measurement.Since the lines overlapped,which failed to produce a clear picture,it was decided that the same data should be presented by means of projecting the vectors into theyzplane,which is illustrated in Fig.6.For the sakeof better clarity and accuracy of the illustrations,the vectors of horizontal displacements were crossed with thexyplanes at the depths of 100 m,150 m,200 m,250 m,300 m,350m,400 m,500 m, 600 m,700 m,800 m and 900 m,respectively,thus creating regular sections between the planes.

    Fig.6.Graphic representation of the course of all vector directions in theyzplane.

    The character of the course of the majority of vectors seems to clearly indicate that the measurement points on the surface tend to displace towards the exploitation void,which appeared as a result of the excavation of the feld marked with a white rectangle.Such a situation is even more evident in the horizontalxycross-sections made at various depths(Fig.7).For example,if we study Fig.7b more carefully,presenting the displacement vectors from the initial position of measurement points to their position for the ffth measurement and the direction of those vectors to the point they cut through the horizontal plane at the depth of 250 m,it can be clearly seen that,for the considerable number of measurement points,their displacement vectors run within the feld positioned above the exploitation void.

    Generally,the observations and analyses indicated that the vectors of displacements marked for the measurement points,as well as their directions,approach a particular zone with a shape of ellipsoid,which is positioned above the exploitation void.The zone can be referred to as“the COG zone”.Fig.8 presents three ellipsoids simulating the COG zone with the areas of 7667 m2for ellipse P1, 28,203 m2for ellipse P2,and 70,418 m2for ellipse P3.These ellipses were drawn for three different cross-sections at the depths of 200 m,250 m and 300 m,respectively.It was observed that at the depth of 250 m,the ellipse P1embraces 13 points crossing betweenthe section and the directions of measured vectors of displacements;ellipse P2embraces 7 such points,whereas ellipse P3embraces 11 points.

    Fig.7.Displacement vectors of measurement points for characteristic cross-sections at the depths of:(a)200 m,(b)250 m,(c)300 m,and(d)350 m,respectively.

    For the 40 analyzed measurement points and the sample exploitation panel of 270 m×294 m,such a zone occurs at the depth of approximately 250 m.In its vicinity,there appears to be a large concentration of vector directions marked on the basis of the measurements of 3D displacements of the given points(example in Fig.9).Only the displacement vectors of several points(i.e.16,20, 32,33 and 36)and marking their directions have a dissimilar course,which may be caused by numerous geological factors or by a measurement error.

    Fig.8.Ellipses of“COG zones”(P1=1,P2=2,P3=3)for various cross-sections.

    3.2.Analysis of displacement coeffcient B variations

    Different approaches to the analysis of horizontal surface movements are based on the assumption that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y).But to properly calculate horizontal deformations,the value of displacement coeffcientBshould be estimated.

    In order to analyze the distribution of coeffcientBvalues for the exploitation area of the longwall panel No.698 of the Prosper Haniel coal mine,as many as a dozen measurement cross-sections perpendicular to the panel length were made(Fig.10).

    For the above-mentioned cross-sections,a diagram presenting the values of horizontal displacement(movements)in the direction of the cross-sectionu(α)in the function of slope value in the same cross-sectionT(α)was made.Fig.11a and b show the sample diagrams of horizontal displacement in the directionu(α)in the slope functionT(α)for the cross-sections Nos.7(a)and 12(b),respectively.

    Fig.9.Graphic representation of selected vectors projected on theyzplane crossing the horizontalxyplane at the depth of approximately 250 m.

    For the cross-sections presented above,function correlations between horizontal displacements and slopes were determined using linear regression method(cf.Table 1).In the formulaepresented in the table,the values of horizontal displacements were given in millimeters,whereas the slope was given in mm/m,which means that the value of parameterBis expressed in meters.

    On the basis of the analysis of the matching formulae for linear regression for twelve cross-sections(Table 1),it can be observed that the results for cross-section No.1 seem barely satisfactory, whereas for the remaining cross-sections it is far more accurate, especially for all the sections from No.7.Those conclusions were verifed by analyzing the summary values for the sections No.1 to No.6(Fig.12a)to the middle of panel length,as well as for the sections No.7 to No.12(Fig.12b).

    Fortheabove-mentionedsummarycross-sections,the following matching was obtained:

    (1)For the sections No.1 to No.6:u(α)=-264.3T+85.1,with matchingR2=0.883;

    (2)For the sections No.7 to No.12:u(α)=-170.5T+10.3,with

    matchingR2=0.91.

    Fig.10.Measurement cross-sections perpendicular to the longwall panel No.698.

    The most likely reason for such signifcant disproportions in matching the regression lines between summary matching for sections No.1 to No.6 and No.7 to No.12 is a relatively short period of measurement duration.The completion of exploitation of the longwall panel No.698 took place on 23 November 1999 and nearly two months later(i.e.11 January 2000)these measurements were completed.Such a short measurement period for the points positioned in the vicinity of the ultimate phase of exploitation meant that in those points,the fnal stationary values of deformation indices were not obtained.In German mines,it is assumed that the minimum period necessary for reaching a fnal stationary value of deformation is approximately 3-6 months(Sroka,2010),depending on rock mass quality and exploitation depth.

    For all the summary cross-sections,i.e.No.1 to No.12,the following formula was obtained:u(α)=-211.3T+31.9,with matchingR2=0.806.

    Subsequently,the analysis of the distribution of the coeffcientBvalues was carried out for the cross-section perpendicular to the longwall panel No.698,crossing the middle of the longwall.The following formula for linear regression was obtained:u(α)=-190.4T+40.6,with matchingR2=0.854.

    The comparison of coeffcientBfor the cross-section parallel to the panel length with that for the cross-section perpendicular to the panel length indicates that the coeffcientBfor the parallel section is approximately 10%lower than that for the perpendicular section.

    The above-mentioned formulae for matching the regression lines to the measurement resultsdifferfrom theassumedhypothesis of Awierszyn(1947)by the value of the intercept.In order to approximate those values for the solution presented by Awierszyn(1947),it was assumed that the linear regression lines cross exactly in the origin.The results of such a matching were presented for several sample summary cross-sections:

    Table 1Matching formulae for linear regression for the cross-sections perpendicular to the longwall panel No.698.

    Fig.11.Horizontal displacement diagram in the cross-section directionu(α)in the slope functionT(α)for the cross-sections No.7(a)and No.12(b).

    (1)For the summary cross-sections No.1 to No.6:u(α)=-237.4T, whereR2=0.755;

    (2)For the summary cross-sections No.7 to No.12:u(α)=-170.8T, whereR2=0.905;

    (3)For the summary cross-sections No.1 to No.12:u(α)=-205.7T, whereR2=0.779.

    Fig.12.Matching formula of linear regression for the summary values of parameterBfor the cross-sections:(a)No.1 to No.6,and(b)No.7 to No.12.

    For the estimated values of the horizontal deformation coeffcientB,the value of standard deviation ofS=59 mwas determined, which means that a single value of coeffcientBwas determined with the accuracy of 26%.

    4.Conclusions

    The prognostic values of horizontal surface displacements above a mining exploitation area still pose numerous doubts regarding their validity.Studies and observations carried out in situ seem to indicate that the following factors,inter alia,infuence the distribution of horizontal displacement:the position of a given point in relation to exploitation,rock mass properties,hydrogeological conditions,tectonics,depth of exploitation,thickness of excavated deposit,method of exploitation or speed of mining performance.

    The analysis of the course of horizontal displacement vectors after excavation of wall No.698 proved logical and expected senses and directions of measured vectors.Therefore,in relation to the general character of the vector course it is justifed to assume the existing of concentration area of virtual vectors,determined on the basis of measurements of spatial displacement of points.Based on the analysis,where the strata were parted with horizontal planes (from the seam level up to the surface with interval of 50 m),it was revealed that the best agreement of the displacements vectors concentration is achieved for the depth of approximately 250 m.

    Analysis of the distribution of horizontal displacement coeffcientB,carried out for the exploitation of the wall No.698 in the seam O/N of Prosper Haniel coal mine,indicated the proportionality between the horizontal displacement vector and the vector of subsidence trough slope profle.

    The study also specifed that the average displacement coeffcient for cross-sections perpendicular to the advance of the mining front equalsB=205 m(B=0.21H,orB=0.47rfor tanβ=2.2).It should be noted that,according to numerous studies on the infuence of time on the distribution of measured deformations hitherto carried out in German mines,a minimum period necessary for achieving a stabilized(stationary)subsidence trough ranges between 3 and 6 months.This means that analyses for the initial cross-sections numbered as 1 and 2 were actually carried out for non-stationary deformations.The determined value of coeffcientBfor the sections numbered from 3 to 12 wasB=204 m(B=0.21H, orB=0.47rfor tanβ=2.2).

    In summary,optimal matching was obtained for the sections crossing the middle of exploitation feld(No.7),as well as for sections outside the contour of the wall(Nos.11 and 12).

    Confict of interest

    The author wishes to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    The project was fnanced by the National Science Center of Poland granted on the grounds of decision No.DEC-2011/01/D/ ST8/07280.

    Awierszyn SG.Mining-induced rock mass subsidence.Moscow,Russia:Ugletiechizdat;1947(in Russian).

    Bals R.Problem of mining subsidence prediction.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen;1931/ 1932.s.42/43:98-111(in German).

    Deutsche Montan Technologie GmbH(DMT).BW Prosper Haniel measurements point-“Schwarze Heide”.2001(not published)(in German).

    Keinhorst H.Calculations of surface subsidence in Emscher.In:25 Jahre der Emschergenossenschaft 1900-1925;1925.p.53-64(in German).

    Knothe S.Time infuence on shaping of subsidence trough.Archive of Mining Science 1953;1:21-31.

    Knothe S.Prediction of mining infuence.Katowice,Poland:ˊSla?sk;1984(in Polish). Lehmann K,Neubert K,Schafstein K.Calculation and presentation of ground movements above underground mining exploitation.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen; 1942(in German).

    National Coal Board(NCB).Subsidence engineers’handbook.London,UK:Mining Department,National Coal Board;1975.

    Sroka A.Surface movement measurements using GPS above turning longwall panel. In:IGSMiE PAN,Kraków,vol.1.Kraków,Poland:Kraków Publishing House; 2000.p.361-70(in Polish).

    Sroka A.Infuence of exploitation velocity on surface deformation.In:IGSMiE PAN, Krakówvol.1.Kraków,Poland:Kraków Publishing House;2010.p.523-48(in Polish).

    Sroka A,Tajduˊs K,Preusse A.Calculation of subsidence for room and pillar and longwall panels.In:Proceedings of the 11th Underground Coal Operations’Conference,University of Wollongong&the Australasian Institute of Mining and Metallurgy;2011.p.83-90.

    Stocks S,Sroka A.Design of longwall panels for mining damage reduction.In: Proceedings of the 11th International Congress of the ISM,Kraków;2000. p.183-90(in German).

    Tajduˊs K.Mining-induced surface horizontal displacement:the case of BW Prosper Haniel mine.Archive of Mining Science 2013;58(4):1037-55.

    Tajduˊs K.The nature of mining-induced horizontal displacement of surface on the example of several coal mines.Archive of Mining Science 2014;59(4):971-86.

    Krzysztof Tajduˊsgraduated as a Mining Engineer(2003) from AGH University of Science and Technology in Krakow (AGH-UST),Poland.He got MSc Engineer in Geomechanics. After graduation he started working for Strata Mechanics Research Institute of the Polish Academy of Sciences(2003 up today).In 2008 he defended a double Ph.D.degree:one in the feld of mining and geological engineering at AGHUST in Krakow,Poland,the other in the feld of soil mechanics at TU Bergakademie Freiberg,Germany.In 2009 he has become the youngest member of the Polish Committee on the State Mining Authority for the state of water and rock roof collapse hazard in Salt Mine“Wieliczka”S.A. Since 2010 he has been a full member of the Polish Commission of the State Mining Authority for the Surface Protection.In 2011-2014 he was working at the AGH-UST,Faculty of Drilling,Oil and Gas and from 2014 he is a guest professor at Binh Duong University,Vietnam.He has working in more than 60 projects in whole Europe related to mining-induced rock mass deformation and mining damages,rock mass stabilization,rockburst,tunneling,hydraulic fracturing,CBM.He is currently the member of ISRM and the Section of Rock Mechanics and Underground Building,Committee of Mining,Polish Academy of Sciences.

    *Tel.:+48 126376200(55).

    E-mail address:tajdus@img-pan.krakow.pl.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.012

    国产免费视频播放在线视频 | 久久久a久久爽久久v久久| 中文精品一卡2卡3卡4更新| 成人三级黄色视频| 一个人看的www免费观看视频| 在线免费观看不下载黄p国产| 亚洲五月天丁香| 欧美高清性xxxxhd video| 男的添女的下面高潮视频| 国语自产精品视频在线第100页| 黄色日韩在线| 亚洲成人av在线免费| 99视频精品全部免费 在线| 中文字幕av在线有码专区| 少妇的逼水好多| 亚洲欧美成人精品一区二区| 国产av一区在线观看免费| 亚洲国产精品国产精品| 2021少妇久久久久久久久久久| 99久国产av精品国产电影| 一区二区三区乱码不卡18| 国产麻豆成人av免费视频| 青春草国产在线视频| 免费观看精品视频网站| 国产免费一级a男人的天堂| 久久亚洲精品不卡| 日韩欧美三级三区| 亚洲五月天丁香| 18禁动态无遮挡网站| 赤兔流量卡办理| 大话2 男鬼变身卡| 国产精品一及| 午夜福利视频1000在线观看| 丝袜喷水一区| 国语自产精品视频在线第100页| 日本午夜av视频| 国产精品精品国产色婷婷| 亚洲国产色片| 亚洲人成网站在线观看播放| 日日啪夜夜撸| 一级二级三级毛片免费看| 亚洲成人久久爱视频| 亚洲在线观看片| 一个人看的www免费观看视频| 亚洲成人中文字幕在线播放| 国产黄色小视频在线观看| 麻豆乱淫一区二区| 高清视频免费观看一区二区 | 欧美精品国产亚洲| 能在线免费看毛片的网站| 大香蕉97超碰在线| 亚洲人成网站高清观看| 22中文网久久字幕| 深夜a级毛片| 国产精品久久久久久精品电影| 我要看日韩黄色一级片| 国产精品久久久久久精品电影| 久久精品国产亚洲av涩爱| 91精品一卡2卡3卡4卡| www.av在线官网国产| 国产精品1区2区在线观看.| 国产免费福利视频在线观看| 久久热精品热| 免费看a级黄色片| av免费观看日本| av又黄又爽大尺度在线免费看 | 久久午夜福利片| 精品欧美国产一区二区三| 少妇熟女欧美另类| 亚洲人成网站在线播| 国产在线一区二区三区精 | 成人毛片a级毛片在线播放| 亚洲国产精品专区欧美| 国内精品宾馆在线| 可以在线观看毛片的网站| 我的老师免费观看完整版| 日韩三级伦理在线观看| 最近手机中文字幕大全| 国产探花在线观看一区二区| 日韩精品青青久久久久久| a级毛片免费高清观看在线播放| 国产人妻一区二区三区在| 黄色欧美视频在线观看| 欧美又色又爽又黄视频| 最近视频中文字幕2019在线8| 欧美xxxx性猛交bbbb| 99久久精品一区二区三区| 成人毛片60女人毛片免费| 国产精品一区二区三区四区久久| 国产老妇伦熟女老妇高清| 国产高清三级在线| 成人毛片60女人毛片免费| 少妇的逼好多水| 午夜爱爱视频在线播放| 国产亚洲精品av在线| 亚洲真实伦在线观看| 一边亲一边摸免费视频| 精品免费久久久久久久清纯| 国产精品爽爽va在线观看网站| 激情 狠狠 欧美| 亚洲五月天丁香| 禁无遮挡网站| 国产乱人视频| 国产亚洲5aaaaa淫片| 成人三级黄色视频| 亚洲一级一片aⅴ在线观看| 爱豆传媒免费全集在线观看| 七月丁香在线播放| a级毛片免费高清观看在线播放| av在线播放精品| 久久韩国三级中文字幕| 国内精品宾馆在线| 中文字幕制服av| 伊人久久精品亚洲午夜| 热99在线观看视频| 国产在视频线精品| 春色校园在线视频观看| 高清毛片免费看| 人人妻人人澡人人爽人人夜夜 | 国产成年人精品一区二区| 亚洲av免费高清在线观看| 天堂网av新在线| 夫妻性生交免费视频一级片| 免费av毛片视频| 国模一区二区三区四区视频| 国产探花在线观看一区二区| 91av网一区二区| 国产精品爽爽va在线观看网站| 日本黄色片子视频| 波野结衣二区三区在线| 国国产精品蜜臀av免费| 亚洲精品456在线播放app| 国产精品国产高清国产av| 日本wwww免费看| 一级毛片我不卡| 国产一区有黄有色的免费视频 | 九九久久精品国产亚洲av麻豆| 丰满少妇做爰视频| 真实男女啪啪啪动态图| 久久久午夜欧美精品| 欧美性猛交╳xxx乱大交人| 99久国产av精品| 国语自产精品视频在线第100页| 美女国产视频在线观看| 日本欧美国产在线视频| 一个人看视频在线观看www免费| 日本wwww免费看| 一区二区三区免费毛片| 亚洲人成网站在线观看播放| 免费观看a级毛片全部| 丰满少妇做爰视频| 国产伦一二天堂av在线观看| 国产高清视频在线观看网站| 国产精品蜜桃在线观看| 三级国产精品欧美在线观看| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 色网站视频免费| 精品久久国产蜜桃| 国产在线一区二区三区精 | 久久韩国三级中文字幕| 久久久久久久久中文| 黄片wwwwww| 一区二区三区乱码不卡18| a级一级毛片免费在线观看| 欧美日本亚洲视频在线播放| 美女cb高潮喷水在线观看| a级一级毛片免费在线观看| 91av网一区二区| 午夜免费激情av| 午夜视频国产福利| 亚洲欧美成人综合另类久久久 | 久久99蜜桃精品久久| 亚洲国产精品成人综合色| 中文在线观看免费www的网站| 中文字幕av成人在线电影| 岛国在线免费视频观看| 看黄色毛片网站| 男女下面进入的视频免费午夜| 国内精品宾馆在线| 看免费成人av毛片| 欧美xxxx黑人xx丫x性爽| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 久久精品国产鲁丝片午夜精品| 国产爱豆传媒在线观看| 好男人视频免费观看在线| 可以在线观看毛片的网站| av国产免费在线观看| 男人的好看免费观看在线视频| 国产又色又爽无遮挡免| 七月丁香在线播放| 老司机福利观看| 在线天堂最新版资源| 丰满乱子伦码专区| 中文在线观看免费www的网站| 亚洲av中文av极速乱| 欧美成人a在线观看| 看片在线看免费视频| 国内揄拍国产精品人妻在线| 青春草国产在线视频| 人体艺术视频欧美日本| av在线播放精品| 99热精品在线国产| 男女下面进入的视频免费午夜| 在线免费十八禁| 少妇熟女aⅴ在线视频| 亚洲国产精品专区欧美| 狂野欧美白嫩少妇大欣赏| 亚洲成av人片在线播放无| av黄色大香蕉| 麻豆一二三区av精品| 色视频www国产| 日本黄色视频三级网站网址| 婷婷六月久久综合丁香| 最近手机中文字幕大全| 亚洲在线观看片| 精品少妇黑人巨大在线播放 | 久久久久久伊人网av| 色吧在线观看| 春色校园在线视频观看| 精品少妇黑人巨大在线播放 | 欧美变态另类bdsm刘玥| av在线蜜桃| 有码 亚洲区| 高清毛片免费看| 国产高清不卡午夜福利| 丰满人妻一区二区三区视频av| 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 日韩,欧美,国产一区二区三区 | 老司机福利观看| 国产毛片a区久久久久| 有码 亚洲区| 久久人人爽人人片av| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 亚洲av熟女| 麻豆一二三区av精品| 欧美又色又爽又黄视频| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久国产电影| 亚洲精品自拍成人| 在线免费十八禁| 久久亚洲国产成人精品v| 我的女老师完整版在线观看| 久久久久网色| 岛国毛片在线播放| 超碰av人人做人人爽久久| 丝袜喷水一区| 国产精品久久久久久精品电影| 两个人视频免费观看高清| 亚洲久久久久久中文字幕| 国产高潮美女av| 淫秽高清视频在线观看| 久久精品熟女亚洲av麻豆精品 | 日韩,欧美,国产一区二区三区 | 久久99热6这里只有精品| 国产老妇女一区| 99久久精品热视频| 精品99又大又爽又粗少妇毛片| 国产精品99久久久久久久久| 国产一区二区在线观看日韩| 超碰av人人做人人爽久久| 成人综合一区亚洲| 深夜a级毛片| 亚洲成人久久爱视频| 亚洲国产日韩欧美精品在线观看| 国产精品一及| 麻豆av噜噜一区二区三区| 欧美激情国产日韩精品一区| 久久久久久久久大av| 久久久国产成人免费| 三级男女做爰猛烈吃奶摸视频| 国产高清国产精品国产三级 | 国产精品久久久久久久电影| 国产高清视频在线观看网站| 国产色爽女视频免费观看| 我要看日韩黄色一级片| 美女被艹到高潮喷水动态| 日本与韩国留学比较| 简卡轻食公司| 久久久久国产网址| 成人漫画全彩无遮挡| 91精品国产九色| 国产三级中文精品| 亚洲欧美清纯卡通| 日韩欧美在线乱码| 成年女人永久免费观看视频| 别揉我奶头 嗯啊视频| 人人妻人人澡欧美一区二区| 一本久久精品| 伦理电影大哥的女人| 美女国产视频在线观看| 水蜜桃什么品种好| 国产av码专区亚洲av| 精品久久国产蜜桃| 女的被弄到高潮叫床怎么办| 只有这里有精品99| 日日摸夜夜添夜夜爱| 亚洲av成人精品一区久久| 久久久午夜欧美精品| av女优亚洲男人天堂| 成人亚洲欧美一区二区av| 久久精品久久精品一区二区三区| 成人欧美大片| av播播在线观看一区| 51国产日韩欧美| 久久亚洲国产成人精品v| 99热6这里只有精品| 中文字幕人妻熟人妻熟丝袜美| 国产精品无大码| 97热精品久久久久久| 乱码一卡2卡4卡精品| 亚洲激情五月婷婷啪啪| 国产精品日韩av在线免费观看| 免费在线观看成人毛片| 亚洲经典国产精华液单| 国产成人福利小说| 久久久精品大字幕| 欧美bdsm另类| 嘟嘟电影网在线观看| 日本免费在线观看一区| 一级毛片我不卡| a级一级毛片免费在线观看| 精品人妻视频免费看| 少妇猛男粗大的猛烈进出视频 | 床上黄色一级片| 国产一级毛片在线| 久久99蜜桃精品久久| 精品久久久久久久末码| 日韩一区二区视频免费看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产又色又爽无遮挡免| 日本wwww免费看| 中文字幕免费在线视频6| 国产免费福利视频在线观看| 99国产精品一区二区蜜桃av| 网址你懂的国产日韩在线| 久久6这里有精品| 日本熟妇午夜| 久久99热这里只频精品6学生 | 高清午夜精品一区二区三区| 免费观看的影片在线观看| 成年女人看的毛片在线观看| 一级毛片电影观看 | 真实男女啪啪啪动态图| 自拍偷自拍亚洲精品老妇| 精品久久久久久久末码| 国产黄片美女视频| 国产一区二区亚洲精品在线观看| 亚洲精品乱码久久久v下载方式| 中文资源天堂在线| 偷拍熟女少妇极品色| 国产亚洲av片在线观看秒播厂 | 国产精品一区二区三区四区免费观看| 亚洲国产欧美在线一区| 麻豆av噜噜一区二区三区| 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 国产精品永久免费网站| 久久久成人免费电影| 51国产日韩欧美| 老司机影院毛片| 一区二区三区免费毛片| 特级一级黄色大片| 久久精品影院6| 亚洲国产最新在线播放| 久久鲁丝午夜福利片| 99久久中文字幕三级久久日本| 三级毛片av免费| 日韩精品青青久久久久久| 女人十人毛片免费观看3o分钟| 久久久久久久亚洲中文字幕| 国产午夜福利久久久久久| 男人的好看免费观看在线视频| 中国美白少妇内射xxxbb| 97超视频在线观看视频| 一级爰片在线观看| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 性色avwww在线观看| 中文字幕人妻熟人妻熟丝袜美| 欧美日本亚洲视频在线播放| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 午夜亚洲福利在线播放| 欧美潮喷喷水| 精品久久久久久久久av| 久久精品国产亚洲av天美| 男女啪啪激烈高潮av片| 欧美色视频一区免费| 尤物成人国产欧美一区二区三区| 久久久久精品久久久久真实原创| 国产黄色视频一区二区在线观看 | 免费观看人在逋| 级片在线观看| 三级国产精品欧美在线观看| 男人的好看免费观看在线视频| 成人欧美大片| 久久久精品94久久精品| 午夜视频国产福利| 男女国产视频网站| 中文在线观看免费www的网站| 日韩制服骚丝袜av| 99热6这里只有精品| 日韩一本色道免费dvd| 欧美激情在线99| 黄色配什么色好看| 欧美一区二区国产精品久久精品| 啦啦啦啦在线视频资源| 亚洲欧美精品自产自拍| 亚洲av免费高清在线观看| 日韩国内少妇激情av| 午夜亚洲福利在线播放| 国产免费又黄又爽又色| 国产高清视频在线观看网站| 亚洲精品456在线播放app| 国产精品无大码| 国内精品宾馆在线| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 国产单亲对白刺激| 村上凉子中文字幕在线| 男人和女人高潮做爰伦理| 天堂av国产一区二区熟女人妻| 国产黄a三级三级三级人| 国产乱来视频区| 十八禁国产超污无遮挡网站| 直男gayav资源| av免费在线看不卡| 卡戴珊不雅视频在线播放| 亚洲久久久久久中文字幕| 精品国产一区二区三区久久久樱花 | 一本一本综合久久| videos熟女内射| 高清午夜精品一区二区三区| 国产淫语在线视频| 18禁动态无遮挡网站| 网址你懂的国产日韩在线| 久久亚洲精品不卡| 久久国内精品自在自线图片| 一个人看视频在线观看www免费| 国产成人福利小说| 亚洲国产色片| 有码 亚洲区| 日韩中字成人| 成人午夜高清在线视频| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 日韩欧美三级三区| 一级毛片久久久久久久久女| 成年av动漫网址| av专区在线播放| 日日啪夜夜撸| 国产淫片久久久久久久久| 亚洲无线观看免费| 综合色av麻豆| 日本黄色片子视频| 久久久久久久久中文| 长腿黑丝高跟| 国产中年淑女户外野战色| 国产单亲对白刺激| 国产淫语在线视频| 日本wwww免费看| 天堂影院成人在线观看| 国产一区二区在线观看日韩| 成年女人永久免费观看视频| 春色校园在线视频观看| 国产激情偷乱视频一区二区| av在线蜜桃| 久久热精品热| 午夜亚洲福利在线播放| 老司机福利观看| 26uuu在线亚洲综合色| 欧美xxxx性猛交bbbb| 又粗又爽又猛毛片免费看| 国产精品三级大全| 欧美3d第一页| 国产精品久久久久久久电影| 色综合站精品国产| 亚洲国产精品国产精品| 夜夜看夜夜爽夜夜摸| 亚洲国产欧美在线一区| 干丝袜人妻中文字幕| 精品不卡国产一区二区三区| 国产视频首页在线观看| 亚洲欧美精品综合久久99| 亚洲精品aⅴ在线观看| 色吧在线观看| 久久久久九九精品影院| 小蜜桃在线观看免费完整版高清| av播播在线观看一区| 一区二区三区免费毛片| av在线老鸭窝| 亚洲最大成人中文| 99久久精品热视频| 少妇人妻精品综合一区二区| 亚洲,欧美,日韩| 日本猛色少妇xxxxx猛交久久| 国产淫片久久久久久久久| 国产精品福利在线免费观看| 国产在视频线在精品| a级毛片免费高清观看在线播放| 岛国毛片在线播放| 亚洲欧美中文字幕日韩二区| eeuss影院久久| 久久久a久久爽久久v久久| 嫩草影院精品99| 国产高清不卡午夜福利| 一级黄片播放器| 久久欧美精品欧美久久欧美| 少妇人妻精品综合一区二区| 搡女人真爽免费视频火全软件| 成人欧美大片| 一区二区三区四区激情视频| 国产精品久久久久久久电影| 国产亚洲一区二区精品| 国产真实伦视频高清在线观看| 国产在视频线精品| 久久99蜜桃精品久久| 亚洲天堂国产精品一区在线| 中文字幕熟女人妻在线| 波野结衣二区三区在线| 少妇熟女欧美另类| 高清日韩中文字幕在线| 国产美女午夜福利| 午夜a级毛片| 国产伦精品一区二区三区四那| 亚洲18禁久久av| 亚洲性久久影院| 国语对白做爰xxxⅹ性视频网站| 人体艺术视频欧美日本| 国产视频内射| 村上凉子中文字幕在线| av在线老鸭窝| 99久久中文字幕三级久久日本| 日日摸夜夜添夜夜添av毛片| av国产久精品久网站免费入址| 男人舔奶头视频| 亚洲图色成人| 高清日韩中文字幕在线| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 全区人妻精品视频| 春色校园在线视频观看| 深夜a级毛片| 一级爰片在线观看| 噜噜噜噜噜久久久久久91| 久久久久久久久久成人| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 简卡轻食公司| 九九久久精品国产亚洲av麻豆| av黄色大香蕉| 我要搜黄色片| 一个人看视频在线观看www免费| 1024手机看黄色片| 两性午夜刺激爽爽歪歪视频在线观看| 大香蕉97超碰在线| 黄片wwwwww| 色尼玛亚洲综合影院| 听说在线观看完整版免费高清| 人人妻人人看人人澡| 午夜福利在线观看吧| 看十八女毛片水多多多| 免费在线观看成人毛片| 国产av在哪里看| 久久久久久久亚洲中文字幕| 国产私拍福利视频在线观看| 欧美一级a爱片免费观看看| 一夜夜www| 老司机影院毛片| 成人鲁丝片一二三区免费| eeuss影院久久| 波多野结衣巨乳人妻| 少妇猛男粗大的猛烈进出视频 | 热99re8久久精品国产| 2022亚洲国产成人精品| videos熟女内射| 国产欧美另类精品又又久久亚洲欧美| 国内精品一区二区在线观看| 人妻少妇偷人精品九色| 亚洲自拍偷在线| 欧美一级a爱片免费观看看| 国产精品日韩av在线免费观看| 最近中文字幕2019免费版| 亚洲最大成人av| 中文亚洲av片在线观看爽| 干丝袜人妻中文字幕| 久久精品夜夜夜夜夜久久蜜豆| 97超碰精品成人国产| 久久综合国产亚洲精品| 一区二区三区高清视频在线| 亚洲不卡免费看| 亚洲18禁久久av| 亚洲经典国产精华液单| 国产乱来视频区| 欧美精品一区二区大全| 精品人妻一区二区三区麻豆| 搡老妇女老女人老熟妇| 搞女人的毛片| 嫩草影院新地址| 黄色日韩在线| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久 | 两个人的视频大全免费| 亚洲人成网站在线播| 成人漫画全彩无遮挡| 国产高潮美女av| 乱码一卡2卡4卡精品| 免费观看性生交大片5| 人妻制服诱惑在线中文字幕|