• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    2015-02-09 01:28:44Tajdu

    K.Tajduˊs

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    K.Tajduˊs*

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    A R T I C L E I N F O

    Article history:

    Received 2 January 2015

    Received in revised form

    16 March 2015

    Accepted 17 March 2015

    Available online 8 May 2015

    Horizontal displacements/movements

    Surface deformations

    Mining exploitation

    Horizontal displacement coeffcient

    Center of gravitation(COG)zone

    The paper presents an analysis of the horizontal displacement of surfaces induced by exploitation in a longwall panel.The panel under discussion is No.698 of Prosper Haniel coal mine,Germany.The author discusses both the distribution of displacement vectors,according to the theory assuming surface point displacement towards the center of gravitation(COG)zone of a selected deposit element,and the analysis of horizontal displacement measurements,based on the assumption that the value of horizontal displacement is proportional to the slope of the subsidence trough.Finally,the value of horizontal displacement coeffcientBis estimated for particular longitudinal and transverse measurement section of the analyzed longwall No.698.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Underground longwall excavation creates deformations inside the rock mass which can appear on the surface.One indicator of such a deformation is the vector of rock mass movement,which can be easily divided into two components:vertical and horizontal movements.In the past,many scientists have dealt with the problem of vertical movement(subsidence)determination.Due to the subsidence of rock mass caused by underground mining,such operations have been observed and quantifed since early 20th century.Work on subsidence calculation methods was started by Schmitz(Lehmann et al.,1942).Later,Awierszyn(1947)proposed a methodology assuming the kinetics of the rock displacement process in analytical solutions,which allowed for the introduction of universal theoretical descriptions of rock mass movement.The above proposal gave rise to the intensive development of calculation methods,especially methods based on the normal distribution of mining infuence,like Knothe’s method(Knothe,1953,1984; Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).

    But in spite of the many theories and methods used to calculate surface deformations above underground operations,inter alia, Keinhorst(1925),Sann(Lehmann et al.,1942),Bals(1931/1932), Knothe(1953),NCB(1975),etc.,estimations of the values and distribution of horizontal movement are still unclear.

    This paper presents the monitoring and analysis of horizontal movements caused by a single longwall panel excavation,No.698. Analysiswas carried out based on two the most popularhypotheses of horizontal movements:

    (1)Theories assuming the displacement of surface points towards the center of gravitation(COG)of a selected element of deposit, e.g.the theories of:Keinhorst(1925),Bals(1931/1932), Lehmann et al.(1942),Sann,Beyer(Lehmann et al.,1942), etc.,and

    (2)Theories assuming that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y)(Awierszyn,1947),e.g.Knothe’s method and Ruhrkohle method.

    To sum up,both the COG theory and the hypothesis of Awierszyn(1947)indicate the proportionality between the vector of horizontal displacement and the vector of subsidence trough profle slope.

    2.Examples of the Gauss distribution method used to calculate mining-induced surface deformations

    Most theories used for surface deformation calculations are based on the Gauss distribution function.And from it,two methods were commonly used in Europe,China and the United States.These are:Knothe’s method(Knothe,1953,1984;Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).In a strictly mathematical sense,both the above-mentioned methods aresimilar.They differ,however,only in their defnitions of angles limiting the horizontal range of subsidence trough,which are defned by means of the following relation:

    Fig.1.Situation of exploitation fronts when the deformation measurement was stopped.

    whereβis the angle of main infuences’rangeaccording toKnothe’s theory,γis the limit angle of the Ruhrkohle method,andkis the coeffcient which is equal to-ln0.001.

    These classic theories suggest that mining-induced surface displacement can be described by means of the function of infuences,and in the case of a three-dimensional(3D)problem, exploitation of any feld results in the subsidence of pointAon a terrain surface,which can be illustrated with the following equation:

    wherew(xA,yA)is the subsidence of any pointA(mm);ais the subsidence coeffcient depending upon exploitation system,which is generally a relation of expected subsidence trough volume to a selected volume;gis the thickness of mined-out deposit(m);rK,rRare the radii of main infuences’range(m)for Knothe’s method and Ruhrkohle method,respectively;His the depth of exploitation(m); χis the parameter depending on chosen theory,χ=1 for Knothe’s method,χ=k/πfor Ruhrkohle method;dPis the surface of infnitesimally small element of mined-out deposit,and dP=dxdy;Pis the surface of mined-out space of deposit.

    From the differentiation of Eq.(2),further formulae can be obtained,which may in turn help to determine the values of such surface deformation indices as:slope of subsidence trough profle at any point(Tx,Ty)(Eq.(4))or curvature of subsidence trough profle(Kxx,Kyy,Kxy)(Eq.(5)).Also horizontal displacement(ux,uy) (Eq.(6))and horizontal deformation(εx,εy)(Eq.(7)and(8)-maximum and minimum horizontal deformations)can be determined if a proper coeffcient is assumed.

    Fig.2.Survey measurements contour lines along with measurements points of:(a)horizontal displacement inxdirection(mm),(b)horizontal displacement inydirection(mm).

    Fig.3.Surface subsidence measurements contour line(mm)along with measurement points.

    whereBis the displacement coeffcient(or horizontal deformation coeffcient).This coeffcient is then used to calculate horizontal movements and strains,assuming proportions between the slope of subsidence trough profle and horizontal movements.The hitherto determined empirical values of coeffcientB,for varied measurement bases and varied mining or geological conditions,can be defned in the following ranges(Tajduˊs,2013,2014):

    (1)For coal mines:from 0.15rto 0.7r,

    (2)For sulfur mines:from 0.15rto 0.26r,

    (3)For copper mines:from 0.23rto 0.77r.

    It also should be noted that some measurements suggest that the coeffcientBis not constant,but depends upon the position of the measurement point in the formed subsidence trough(Tajduˊs, 2013,2014).The presented range of the coeffcientBvaries widely due to the fact that disturbance depends upon the following factors:number and thickness of mined-out seams,dimensions of mined-out felds in each seam,methods of void liquidation,mining rate,geological and hydro-geological structure of overburden, tectonics,strength and strain parameters of strata.

    Below,the author presents the analysis of horizontal movements for a single advancing longwall panel excavation taking into consideration the COG andTtouproportion theories.

    3.Horizontal displacement analysis for the sample mine of Prosper Haniel

    Analysis of horizontal displacements of the terrain surface was carried out for the sample area of the BW Prosper Haniel coal mine where the single longwall panel was excavated(DMT,2001).

    In 1999,the coal mine started exploitation of the wall No.698 in the seam O/N at an average depth of 960 m.Thewidth of mined-out wall was 270 m,its panel runwas 970 m,whereas its height ranged from 3.6 m to 4.3 m.Excavation of the longwall was initiated on 10 May 1999 and terminated on 23 November 1999.After the completion of mining in the longwall No.698,nevertheless still during the measurements of subsidence and horizontal movement of measurement points,the exploitation of the longwall No.682 with the thickness of 1.6 m commenced in the seam P1 at the depthH=920 m.The situation is presented in Fig.1.

    On the surface,above the Prosper Haniel coal mine,a measurement network system consisting of dispersed geodesic points was set up.Measurements were takenwith the use of GPS,which is characterized by the accuracy of below 5 mm(Sroka,2000).The frst measurement was carried out on 1 April 1999 for the points numbered from 1 to 48.The distribution of measurement points is presented in Fig.1.

    Fig.4.3D analyzed mining situation along with the position of surface measurement points(at the level of+60 m).

    The results of geodesic measurements taken in the period between the date of exploitation commencement of the wall No.698 and the date of 11 January 2000 indicate that the maximum subsidence measured in the central part of the trough reached thesteadystate.Only in the areaof exploitation end of thewall No.698, the points indicated their transient state.In addition,it should be noted that the layer of hard sandstone,with the thickness of approximately 90 m,occurring above the seam O/N,as well as the small dimensions of the excavated longwall No.698,caused the occurrence of partial subsidence trough on the surface.The trough was characterized by values of deformation indices lower by 50%in comparison to the values obtained during the prognosis carried out for that exploitation(Stocks and Sroka,2000).

    Figs.2 and 3 present the fnal values of deformation indices obtained from geodesic measurements.For survey measurements contour lines,matching was achieved according to the Kriging method,which attributes particular weighing,called Kriging coeffcients(weighing),to the samples inside the estimation feld (sample search area)in order to minimize the mean square prediction error(Kriging variance).The author used the linear variogram with no nugget effect.

    Fig.5.A spatial representation of the courses of all vector directions.

    3.1.Analysis of displacement vectors-searching COG inside the strata

    In the frst analysis of displacement vectors of measurement points,the author tried to fnd the area where the direction of the vectors of displacements met.To fulfll this task,the analysis of measurement points situated in the vicinity of longwall No.698 was used for a further study.Position changes of measurement points were analyzed and“virtual vectors”symbolizing the displacement of initial points(presented in Fig.4)towards the center of rock mass were marked on the basis of GPS satellite data (spatial coordinates(x,y,z)of each point).

    The author made the analysis for(mining and measurements) situations where only part of longwall panel was excavated(Fig.4). Such selected situations allow for the analysis of vector displacements of surface points with only a small disturbance from created goaf(in Fig.4,the part of excavated deposit was marked with a white feld with the dimensions of 294 m×270 m).Data from a total of 48 points were available;however,the analysis did not take the points numbered as 1,7,21,47 and 48 into consideration,since the results obtained in those points could not be treated as reliable due to the occurrence of some anomalies in the values of displacement.It had been assumed that the points,whose values of measured subsidence were lower than twice the measuring error (<5 mm),would be neglected in the study.Therefore,a total of 43 points were actually subject to analysis.A sample study of displacement direction of each measurement point was carried out on the basis of the analysis of the results of initial measurement and the measurement after 50 days from the commencement of exploitation(i.e.the ffth measurement taken on 29 June 1999).It corresponded to the mining situation with the wall advance of 294 m and with the exploitation panel opening approximate to a square(Fig.4).Fig.5 illustrates the course of all directions of displacement vectors,which appeared after matching the spatial coordinates(x,y,z)for the ffth measurement.Since the lines overlapped,which failed to produce a clear picture,it was decided that the same data should be presented by means of projecting the vectors into theyzplane,which is illustrated in Fig.6.For the sakeof better clarity and accuracy of the illustrations,the vectors of horizontal displacements were crossed with thexyplanes at the depths of 100 m,150 m,200 m,250 m,300 m,350m,400 m,500 m, 600 m,700 m,800 m and 900 m,respectively,thus creating regular sections between the planes.

    Fig.6.Graphic representation of the course of all vector directions in theyzplane.

    The character of the course of the majority of vectors seems to clearly indicate that the measurement points on the surface tend to displace towards the exploitation void,which appeared as a result of the excavation of the feld marked with a white rectangle.Such a situation is even more evident in the horizontalxycross-sections made at various depths(Fig.7).For example,if we study Fig.7b more carefully,presenting the displacement vectors from the initial position of measurement points to their position for the ffth measurement and the direction of those vectors to the point they cut through the horizontal plane at the depth of 250 m,it can be clearly seen that,for the considerable number of measurement points,their displacement vectors run within the feld positioned above the exploitation void.

    Generally,the observations and analyses indicated that the vectors of displacements marked for the measurement points,as well as their directions,approach a particular zone with a shape of ellipsoid,which is positioned above the exploitation void.The zone can be referred to as“the COG zone”.Fig.8 presents three ellipsoids simulating the COG zone with the areas of 7667 m2for ellipse P1, 28,203 m2for ellipse P2,and 70,418 m2for ellipse P3.These ellipses were drawn for three different cross-sections at the depths of 200 m,250 m and 300 m,respectively.It was observed that at the depth of 250 m,the ellipse P1embraces 13 points crossing betweenthe section and the directions of measured vectors of displacements;ellipse P2embraces 7 such points,whereas ellipse P3embraces 11 points.

    Fig.7.Displacement vectors of measurement points for characteristic cross-sections at the depths of:(a)200 m,(b)250 m,(c)300 m,and(d)350 m,respectively.

    For the 40 analyzed measurement points and the sample exploitation panel of 270 m×294 m,such a zone occurs at the depth of approximately 250 m.In its vicinity,there appears to be a large concentration of vector directions marked on the basis of the measurements of 3D displacements of the given points(example in Fig.9).Only the displacement vectors of several points(i.e.16,20, 32,33 and 36)and marking their directions have a dissimilar course,which may be caused by numerous geological factors or by a measurement error.

    Fig.8.Ellipses of“COG zones”(P1=1,P2=2,P3=3)for various cross-sections.

    3.2.Analysis of displacement coeffcient B variations

    Different approaches to the analysis of horizontal surface movements are based on the assumption that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y).But to properly calculate horizontal deformations,the value of displacement coeffcientBshould be estimated.

    In order to analyze the distribution of coeffcientBvalues for the exploitation area of the longwall panel No.698 of the Prosper Haniel coal mine,as many as a dozen measurement cross-sections perpendicular to the panel length were made(Fig.10).

    For the above-mentioned cross-sections,a diagram presenting the values of horizontal displacement(movements)in the direction of the cross-sectionu(α)in the function of slope value in the same cross-sectionT(α)was made.Fig.11a and b show the sample diagrams of horizontal displacement in the directionu(α)in the slope functionT(α)for the cross-sections Nos.7(a)and 12(b),respectively.

    Fig.9.Graphic representation of selected vectors projected on theyzplane crossing the horizontalxyplane at the depth of approximately 250 m.

    For the cross-sections presented above,function correlations between horizontal displacements and slopes were determined using linear regression method(cf.Table 1).In the formulaepresented in the table,the values of horizontal displacements were given in millimeters,whereas the slope was given in mm/m,which means that the value of parameterBis expressed in meters.

    On the basis of the analysis of the matching formulae for linear regression for twelve cross-sections(Table 1),it can be observed that the results for cross-section No.1 seem barely satisfactory, whereas for the remaining cross-sections it is far more accurate, especially for all the sections from No.7.Those conclusions were verifed by analyzing the summary values for the sections No.1 to No.6(Fig.12a)to the middle of panel length,as well as for the sections No.7 to No.12(Fig.12b).

    Fortheabove-mentionedsummarycross-sections,the following matching was obtained:

    (1)For the sections No.1 to No.6:u(α)=-264.3T+85.1,with matchingR2=0.883;

    (2)For the sections No.7 to No.12:u(α)=-170.5T+10.3,with

    matchingR2=0.91.

    Fig.10.Measurement cross-sections perpendicular to the longwall panel No.698.

    The most likely reason for such signifcant disproportions in matching the regression lines between summary matching for sections No.1 to No.6 and No.7 to No.12 is a relatively short period of measurement duration.The completion of exploitation of the longwall panel No.698 took place on 23 November 1999 and nearly two months later(i.e.11 January 2000)these measurements were completed.Such a short measurement period for the points positioned in the vicinity of the ultimate phase of exploitation meant that in those points,the fnal stationary values of deformation indices were not obtained.In German mines,it is assumed that the minimum period necessary for reaching a fnal stationary value of deformation is approximately 3-6 months(Sroka,2010),depending on rock mass quality and exploitation depth.

    For all the summary cross-sections,i.e.No.1 to No.12,the following formula was obtained:u(α)=-211.3T+31.9,with matchingR2=0.806.

    Subsequently,the analysis of the distribution of the coeffcientBvalues was carried out for the cross-section perpendicular to the longwall panel No.698,crossing the middle of the longwall.The following formula for linear regression was obtained:u(α)=-190.4T+40.6,with matchingR2=0.854.

    The comparison of coeffcientBfor the cross-section parallel to the panel length with that for the cross-section perpendicular to the panel length indicates that the coeffcientBfor the parallel section is approximately 10%lower than that for the perpendicular section.

    The above-mentioned formulae for matching the regression lines to the measurement resultsdifferfrom theassumedhypothesis of Awierszyn(1947)by the value of the intercept.In order to approximate those values for the solution presented by Awierszyn(1947),it was assumed that the linear regression lines cross exactly in the origin.The results of such a matching were presented for several sample summary cross-sections:

    Table 1Matching formulae for linear regression for the cross-sections perpendicular to the longwall panel No.698.

    Fig.11.Horizontal displacement diagram in the cross-section directionu(α)in the slope functionT(α)for the cross-sections No.7(a)and No.12(b).

    (1)For the summary cross-sections No.1 to No.6:u(α)=-237.4T, whereR2=0.755;

    (2)For the summary cross-sections No.7 to No.12:u(α)=-170.8T, whereR2=0.905;

    (3)For the summary cross-sections No.1 to No.12:u(α)=-205.7T, whereR2=0.779.

    Fig.12.Matching formula of linear regression for the summary values of parameterBfor the cross-sections:(a)No.1 to No.6,and(b)No.7 to No.12.

    For the estimated values of the horizontal deformation coeffcientB,the value of standard deviation ofS=59 mwas determined, which means that a single value of coeffcientBwas determined with the accuracy of 26%.

    4.Conclusions

    The prognostic values of horizontal surface displacements above a mining exploitation area still pose numerous doubts regarding their validity.Studies and observations carried out in situ seem to indicate that the following factors,inter alia,infuence the distribution of horizontal displacement:the position of a given point in relation to exploitation,rock mass properties,hydrogeological conditions,tectonics,depth of exploitation,thickness of excavated deposit,method of exploitation or speed of mining performance.

    The analysis of the course of horizontal displacement vectors after excavation of wall No.698 proved logical and expected senses and directions of measured vectors.Therefore,in relation to the general character of the vector course it is justifed to assume the existing of concentration area of virtual vectors,determined on the basis of measurements of spatial displacement of points.Based on the analysis,where the strata were parted with horizontal planes (from the seam level up to the surface with interval of 50 m),it was revealed that the best agreement of the displacements vectors concentration is achieved for the depth of approximately 250 m.

    Analysis of the distribution of horizontal displacement coeffcientB,carried out for the exploitation of the wall No.698 in the seam O/N of Prosper Haniel coal mine,indicated the proportionality between the horizontal displacement vector and the vector of subsidence trough slope profle.

    The study also specifed that the average displacement coeffcient for cross-sections perpendicular to the advance of the mining front equalsB=205 m(B=0.21H,orB=0.47rfor tanβ=2.2).It should be noted that,according to numerous studies on the infuence of time on the distribution of measured deformations hitherto carried out in German mines,a minimum period necessary for achieving a stabilized(stationary)subsidence trough ranges between 3 and 6 months.This means that analyses for the initial cross-sections numbered as 1 and 2 were actually carried out for non-stationary deformations.The determined value of coeffcientBfor the sections numbered from 3 to 12 wasB=204 m(B=0.21H, orB=0.47rfor tanβ=2.2).

    In summary,optimal matching was obtained for the sections crossing the middle of exploitation feld(No.7),as well as for sections outside the contour of the wall(Nos.11 and 12).

    Confict of interest

    The author wishes to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    The project was fnanced by the National Science Center of Poland granted on the grounds of decision No.DEC-2011/01/D/ ST8/07280.

    Awierszyn SG.Mining-induced rock mass subsidence.Moscow,Russia:Ugletiechizdat;1947(in Russian).

    Bals R.Problem of mining subsidence prediction.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen;1931/ 1932.s.42/43:98-111(in German).

    Deutsche Montan Technologie GmbH(DMT).BW Prosper Haniel measurements point-“Schwarze Heide”.2001(not published)(in German).

    Keinhorst H.Calculations of surface subsidence in Emscher.In:25 Jahre der Emschergenossenschaft 1900-1925;1925.p.53-64(in German).

    Knothe S.Time infuence on shaping of subsidence trough.Archive of Mining Science 1953;1:21-31.

    Knothe S.Prediction of mining infuence.Katowice,Poland:ˊSla?sk;1984(in Polish). Lehmann K,Neubert K,Schafstein K.Calculation and presentation of ground movements above underground mining exploitation.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen; 1942(in German).

    National Coal Board(NCB).Subsidence engineers’handbook.London,UK:Mining Department,National Coal Board;1975.

    Sroka A.Surface movement measurements using GPS above turning longwall panel. In:IGSMiE PAN,Kraków,vol.1.Kraków,Poland:Kraków Publishing House; 2000.p.361-70(in Polish).

    Sroka A.Infuence of exploitation velocity on surface deformation.In:IGSMiE PAN, Krakówvol.1.Kraków,Poland:Kraków Publishing House;2010.p.523-48(in Polish).

    Sroka A,Tajduˊs K,Preusse A.Calculation of subsidence for room and pillar and longwall panels.In:Proceedings of the 11th Underground Coal Operations’Conference,University of Wollongong&the Australasian Institute of Mining and Metallurgy;2011.p.83-90.

    Stocks S,Sroka A.Design of longwall panels for mining damage reduction.In: Proceedings of the 11th International Congress of the ISM,Kraków;2000. p.183-90(in German).

    Tajduˊs K.Mining-induced surface horizontal displacement:the case of BW Prosper Haniel mine.Archive of Mining Science 2013;58(4):1037-55.

    Tajduˊs K.The nature of mining-induced horizontal displacement of surface on the example of several coal mines.Archive of Mining Science 2014;59(4):971-86.

    Krzysztof Tajduˊsgraduated as a Mining Engineer(2003) from AGH University of Science and Technology in Krakow (AGH-UST),Poland.He got MSc Engineer in Geomechanics. After graduation he started working for Strata Mechanics Research Institute of the Polish Academy of Sciences(2003 up today).In 2008 he defended a double Ph.D.degree:one in the feld of mining and geological engineering at AGHUST in Krakow,Poland,the other in the feld of soil mechanics at TU Bergakademie Freiberg,Germany.In 2009 he has become the youngest member of the Polish Committee on the State Mining Authority for the state of water and rock roof collapse hazard in Salt Mine“Wieliczka”S.A. Since 2010 he has been a full member of the Polish Commission of the State Mining Authority for the Surface Protection.In 2011-2014 he was working at the AGH-UST,Faculty of Drilling,Oil and Gas and from 2014 he is a guest professor at Binh Duong University,Vietnam.He has working in more than 60 projects in whole Europe related to mining-induced rock mass deformation and mining damages,rock mass stabilization,rockburst,tunneling,hydraulic fracturing,CBM.He is currently the member of ISRM and the Section of Rock Mechanics and Underground Building,Committee of Mining,Polish Academy of Sciences.

    *Tel.:+48 126376200(55).

    E-mail address:tajdus@img-pan.krakow.pl.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.012

    91精品伊人久久大香线蕉| 亚洲中文av在线| 国产精品.久久久| 搡老熟女国产l中国老女人| av片东京热男人的天堂| 成在线人永久免费视频| 丝袜喷水一区| 97精品久久久久久久久久精品| av一本久久久久| 这个男人来自地球电影免费观看| 久久久水蜜桃国产精品网| 午夜视频精品福利| 一本综合久久免费| 国产成人精品久久二区二区91| 久久久久国产精品人妻一区二区| 欧美日韩视频精品一区| 亚洲精品美女久久av网站| 成人国产一区最新在线观看| 亚洲成人手机| 自拍欧美九色日韩亚洲蝌蚪91| 免费看十八禁软件| 精品少妇黑人巨大在线播放| 国产一区有黄有色的免费视频| 国产精品国产三级国产专区5o| 窝窝影院91人妻| 精品欧美一区二区三区在线| 久久精品成人免费网站| 美女脱内裤让男人舔精品视频| 精品国产一区二区三区四区第35| 曰老女人黄片| 男女国产视频网站| 制服诱惑二区| www.av在线官网国产| 日本91视频免费播放| 黄色视频在线播放观看不卡| 国产男人的电影天堂91| 久久久久久久久久久久大奶| 欧美激情极品国产一区二区三区| 丝瓜视频免费看黄片| 色婷婷久久久亚洲欧美| www.精华液| 一级,二级,三级黄色视频| 男女无遮挡免费网站观看| 777久久人妻少妇嫩草av网站| 啦啦啦在线免费观看视频4| 日韩大片免费观看网站| cao死你这个sao货| 欧美老熟妇乱子伦牲交| 亚洲专区中文字幕在线| 夜夜骑夜夜射夜夜干| 成人影院久久| 菩萨蛮人人尽说江南好唐韦庄| 欧美精品一区二区大全| 午夜福利,免费看| 十八禁高潮呻吟视频| 久久人人爽av亚洲精品天堂| 日韩欧美免费精品| 久久精品aⅴ一区二区三区四区| 五月天丁香电影| 精品第一国产精品| 亚洲国产av影院在线观看| 亚洲av日韩在线播放| 午夜福利一区二区在线看| 99久久99久久久精品蜜桃| 三级毛片av免费| 纵有疾风起免费观看全集完整版| 亚洲成人国产一区在线观看| 男人舔女人的私密视频| 欧美性长视频在线观看| 丰满人妻熟妇乱又伦精品不卡| 免费看十八禁软件| 一二三四社区在线视频社区8| 亚洲情色 制服丝袜| 黄色视频不卡| 国产日韩欧美在线精品| 国产视频一区二区在线看| 黄片播放在线免费| 午夜久久久在线观看| 这个男人来自地球电影免费观看| 久久亚洲国产成人精品v| 午夜精品国产一区二区电影| 丰满少妇做爰视频| 久久久久精品国产欧美久久久 | 国产xxxxx性猛交| 亚洲精品一卡2卡三卡4卡5卡 | 国产高清国产精品国产三级| 亚洲精品自拍成人| 久久久国产精品麻豆| 国产真人三级小视频在线观看| 久久久久久久大尺度免费视频| 亚洲国产av新网站| 亚洲人成电影观看| 精品视频人人做人人爽| 久久人人爽人人片av| 久久 成人 亚洲| 首页视频小说图片口味搜索| 美女主播在线视频| 亚洲激情五月婷婷啪啪| 久久国产精品大桥未久av| 欧美变态另类bdsm刘玥| 韩国精品一区二区三区| 亚洲一区中文字幕在线| 丁香六月欧美| 欧美大码av| 一级片'在线观看视频| 国产欧美日韩综合在线一区二区| 亚洲av日韩精品久久久久久密| 欧美精品高潮呻吟av久久| 不卡一级毛片| 久久精品国产综合久久久| 中国国产av一级| 成人国语在线视频| 在线观看免费日韩欧美大片| 亚洲精品国产精品久久久不卡| 亚洲精品久久成人aⅴ小说| 成年av动漫网址| 久久人人爽人人片av| 精品国产国语对白av| 青春草亚洲视频在线观看| 国产成人啪精品午夜网站| 免费高清在线观看日韩| 欧美在线黄色| 成年av动漫网址| 欧美成人午夜精品| 97精品久久久久久久久久精品| 成年女人毛片免费观看观看9 | 99久久国产精品久久久| 嫁个100分男人电影在线观看| 男女免费视频国产| 中文字幕另类日韩欧美亚洲嫩草| 午夜福利免费观看在线| 久久精品国产亚洲av香蕉五月 | 日本a在线网址| 在线天堂中文资源库| 深夜精品福利| 久久亚洲国产成人精品v| 成年动漫av网址| av在线老鸭窝| 乱人伦中国视频| 在线亚洲精品国产二区图片欧美| 国产亚洲av高清不卡| 97精品久久久久久久久久精品| 日韩免费高清中文字幕av| 脱女人内裤的视频| 我的亚洲天堂| 国产精品 欧美亚洲| 亚洲成国产人片在线观看| 日韩有码中文字幕| 制服诱惑二区| 日本av免费视频播放| 麻豆av在线久日| 亚洲一码二码三码区别大吗| 天堂中文最新版在线下载| 日韩欧美免费精品| 久久中文字幕一级| 黄色视频,在线免费观看| av有码第一页| 午夜福利免费观看在线| 大香蕉久久网| 色94色欧美一区二区| 日日爽夜夜爽网站| 中文欧美无线码| 交换朋友夫妻互换小说| 国产免费福利视频在线观看| 久久99一区二区三区| 性色av乱码一区二区三区2| 国产成人精品在线电影| 国产一区二区三区在线臀色熟女 | 亚洲伊人色综图| 狠狠精品人妻久久久久久综合| 18禁观看日本| 91字幕亚洲| 国产精品影院久久| 午夜免费成人在线视频| 国产野战对白在线观看| 久久综合国产亚洲精品| 男女高潮啪啪啪动态图| 制服人妻中文乱码| 国产一区二区 视频在线| 亚洲av电影在线观看一区二区三区| 夫妻午夜视频| 天堂8中文在线网| 国产精品一区二区免费欧美 | 亚洲少妇的诱惑av| 丝袜喷水一区| av欧美777| 久久久欧美国产精品| 高清视频免费观看一区二区| 日本精品一区二区三区蜜桃| 久久久久精品人妻al黑| 午夜福利,免费看| 老汉色av国产亚洲站长工具| 国产在线免费精品| 99精国产麻豆久久婷婷| 黑丝袜美女国产一区| 俄罗斯特黄特色一大片| 大陆偷拍与自拍| 男女免费视频国产| 亚洲一区二区三区欧美精品| 久久精品成人免费网站| 欧美成狂野欧美在线观看| 一区在线观看完整版| 国产成人av教育| 日本撒尿小便嘘嘘汇集6| 18禁裸乳无遮挡动漫免费视频| 中文字幕色久视频| 国产男女内射视频| 亚洲欧洲精品一区二区精品久久久| 国产日韩一区二区三区精品不卡| 亚洲欧洲精品一区二区精品久久久| 亚洲精品乱久久久久久| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 久久久久久久久免费视频了| 三级毛片av免费| 亚洲国产欧美网| 啦啦啦中文免费视频观看日本| 精品国内亚洲2022精品成人 | 日韩一区二区三区影片| 超碰97精品在线观看| 中文字幕制服av| 亚洲 国产 在线| 波多野结衣av一区二区av| 久久精品熟女亚洲av麻豆精品| 人妻 亚洲 视频| 宅男免费午夜| 色94色欧美一区二区| 亚洲欧美精品自产自拍| 国产黄色免费在线视频| 久久香蕉激情| 久久这里只有精品19| 最新在线观看一区二区三区| 成年女人毛片免费观看观看9 | 一级毛片电影观看| 丁香六月欧美| 亚洲自偷自拍图片 自拍| 亚洲午夜精品一区,二区,三区| 国产精品1区2区在线观看. | 国产日韩欧美亚洲二区| 国产一区有黄有色的免费视频| 在线永久观看黄色视频| 日韩欧美免费精品| 亚洲精品久久久久久婷婷小说| 黄色片一级片一级黄色片| 成年女人毛片免费观看观看9 | 丰满迷人的少妇在线观看| 久久99热这里只频精品6学生| 91九色精品人成在线观看| 岛国在线观看网站| 狠狠精品人妻久久久久久综合| avwww免费| 日本黄色日本黄色录像| 90打野战视频偷拍视频| 母亲3免费完整高清在线观看| 亚洲黑人精品在线| 国产精品偷伦视频观看了| 午夜精品久久久久久毛片777| av网站免费在线观看视频| 大香蕉久久成人网| 美女主播在线视频| 成人三级做爰电影| 夫妻午夜视频| 一级毛片精品| 欧美精品啪啪一区二区三区 | 精品亚洲成国产av| 久久亚洲精品不卡| 欧美xxⅹ黑人| 日本a在线网址| 久久免费观看电影| 视频区图区小说| 老司机午夜福利在线观看视频 | 欧美老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| a级毛片在线看网站| 日韩制服骚丝袜av| 欧美另类一区| 丰满迷人的少妇在线观看| 午夜91福利影院| 日韩中文字幕欧美一区二区| av在线app专区| 国产91精品成人一区二区三区 | 久久久国产欧美日韩av| 午夜福利,免费看| 男女下面插进去视频免费观看| 操出白浆在线播放| 夫妻午夜视频| 天天躁日日躁夜夜躁夜夜| 一区二区三区激情视频| 国产深夜福利视频在线观看| kizo精华| 天堂中文最新版在线下载| 香蕉国产在线看| av网站在线播放免费| 国产1区2区3区精品| 亚洲五月色婷婷综合| 免费黄频网站在线观看国产| 免费在线观看完整版高清| 成在线人永久免费视频| 桃红色精品国产亚洲av| 最新在线观看一区二区三区| 久久影院123| 亚洲中文日韩欧美视频| 成人影院久久| 欧美久久黑人一区二区| 熟女少妇亚洲综合色aaa.| 久久99热这里只频精品6学生| 欧美日韩av久久| 精品人妻一区二区三区麻豆| 精品乱码久久久久久99久播| 51午夜福利影视在线观看| 操出白浆在线播放| 免费av中文字幕在线| 一本久久精品| 国产欧美日韩一区二区三区在线| 他把我摸到了高潮在线观看 | 91麻豆精品激情在线观看国产 | 久久久精品免费免费高清| 国产免费现黄频在线看| 91国产中文字幕| 亚洲精品国产一区二区精华液| 啦啦啦中文免费视频观看日本| 美女国产高潮福利片在线看| 乱人伦中国视频| www.999成人在线观看| 青草久久国产| 91大片在线观看| 曰老女人黄片| 国产日韩欧美在线精品| 成人亚洲精品一区在线观看| 国产熟女午夜一区二区三区| 天堂8中文在线网| 亚洲三区欧美一区| 热99久久久久精品小说推荐| 男女免费视频国产| 亚洲成国产人片在线观看| 91精品伊人久久大香线蕉| 欧美成人午夜精品| 久久久精品免费免费高清| 国产福利在线免费观看视频| 日韩制服骚丝袜av| 日日爽夜夜爽网站| 悠悠久久av| 亚洲国产精品999| 黄片大片在线免费观看| 国产高清国产精品国产三级| 777久久人妻少妇嫩草av网站| 久久国产精品男人的天堂亚洲| 国产一区二区三区在线臀色熟女 | 高清黄色对白视频在线免费看| 中文字幕色久视频| 高清欧美精品videossex| 久久人人97超碰香蕉20202| 欧美激情极品国产一区二区三区| 麻豆国产av国片精品| 亚洲欧美日韩高清在线视频 | 黄色视频在线播放观看不卡| 国产精品香港三级国产av潘金莲| 亚洲精品中文字幕一二三四区 | 男女边摸边吃奶| 国产男人的电影天堂91| 亚洲专区字幕在线| 免费在线观看影片大全网站| 国产精品久久久人人做人人爽| 亚洲av欧美aⅴ国产| 可以免费在线观看a视频的电影网站| 精品高清国产在线一区| 国产精品影院久久| 99国产综合亚洲精品| 操美女的视频在线观看| 亚洲av片天天在线观看| 女人被躁到高潮嗷嗷叫费观| 精品人妻熟女毛片av久久网站| 如日韩欧美国产精品一区二区三区| 久久综合国产亚洲精品| 国产亚洲一区二区精品| 淫妇啪啪啪对白视频 | 人妻人人澡人人爽人人| 亚洲av成人不卡在线观看播放网 | 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 一个人免费看片子| 国内毛片毛片毛片毛片毛片| 各种免费的搞黄视频| 我要看黄色一级片免费的| 男女午夜视频在线观看| 亚洲性夜色夜夜综合| 久久这里只有精品19| 欧美日韩国产mv在线观看视频| av线在线观看网站| 90打野战视频偷拍视频| 久久久精品94久久精品| 又紧又爽又黄一区二区| 1024香蕉在线观看| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 狠狠精品人妻久久久久久综合| 美女高潮到喷水免费观看| bbb黄色大片| 啦啦啦视频在线资源免费观看| 黑人巨大精品欧美一区二区蜜桃| 日韩三级视频一区二区三区| 一进一出抽搐动态| 91九色精品人成在线观看| av在线老鸭窝| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美在线一区| 美女国产高潮福利片在线看| 精品视频人人做人人爽| 一级,二级,三级黄色视频| 久久综合国产亚洲精品| 飞空精品影院首页| videosex国产| 亚洲伊人久久精品综合| 亚洲精品国产av成人精品| 免费少妇av软件| 亚洲av日韩在线播放| 午夜久久久在线观看| 久久人人爽人人片av| 十八禁网站网址无遮挡| 中文字幕人妻熟女乱码| 91精品伊人久久大香线蕉| 午夜免费成人在线视频| 亚洲国产精品一区二区三区在线| 亚洲国产中文字幕在线视频| 久热爱精品视频在线9| 人妻一区二区av| 99久久国产精品久久久| 我要看黄色一级片免费的| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 我的亚洲天堂| 97在线人人人人妻| 亚洲黑人精品在线| 国产一区二区 视频在线| 自线自在国产av| 国产福利在线免费观看视频| 精品第一国产精品| 乱人伦中国视频| 一级,二级,三级黄色视频| 一区二区三区四区激情视频| 97在线人人人人妻| 国产精品 国内视频| 国精品久久久久久国模美| 欧美av亚洲av综合av国产av| 又大又爽又粗| 啦啦啦在线免费观看视频4| 国产精品麻豆人妻色哟哟久久| 欧美亚洲 丝袜 人妻 在线| 免费一级毛片在线播放高清视频 | 视频在线观看一区二区三区| 亚洲精品久久午夜乱码| 精品亚洲成国产av| 日韩人妻精品一区2区三区| av国产精品久久久久影院| 亚洲少妇的诱惑av| 国产黄色免费在线视频| 淫妇啪啪啪对白视频 | 亚洲精品美女久久久久99蜜臀| 老司机午夜十八禁免费视频| 亚洲专区国产一区二区| 亚洲精品国产精品久久久不卡| 色综合欧美亚洲国产小说| 亚洲精品在线美女| 精品国产一区二区三区久久久樱花| 亚洲美女黄色视频免费看| 黄色视频不卡| 欧美日本中文国产一区发布| 久久久水蜜桃国产精品网| 男人操女人黄网站| 91精品国产国语对白视频| 美女中出高潮动态图| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 美女午夜性视频免费| 成年人黄色毛片网站| 亚洲欧美一区二区三区久久| 国产精品久久久人人做人人爽| 99久久国产精品久久久| 欧美精品亚洲一区二区| 日韩三级视频一区二区三区| 大码成人一级视频| 国产精品久久久久久精品古装| 中文字幕人妻丝袜制服| 搡老乐熟女国产| 国产欧美日韩一区二区三区在线| 在线看a的网站| 国产精品免费大片| 午夜精品国产一区二区电影| 母亲3免费完整高清在线观看| 久久国产亚洲av麻豆专区| 久久精品国产亚洲av香蕉五月 | 两性午夜刺激爽爽歪歪视频在线观看 | 成人手机av| 侵犯人妻中文字幕一二三四区| 人成视频在线观看免费观看| 老司机深夜福利视频在线观看 | 少妇猛男粗大的猛烈进出视频| 国产精品二区激情视频| 一级毛片电影观看| 91字幕亚洲| 亚洲人成电影免费在线| 国产无遮挡羞羞视频在线观看| 久久精品成人免费网站| 一二三四在线观看免费中文在| 99国产精品一区二区蜜桃av | 嫁个100分男人电影在线观看| 在线十欧美十亚洲十日本专区| 这个男人来自地球电影免费观看| 伊人久久大香线蕉亚洲五| 欧美一级毛片孕妇| 日本精品一区二区三区蜜桃| 美国免费a级毛片| 中国美女看黄片| 天天躁夜夜躁狠狠躁躁| 欧美另类亚洲清纯唯美| 久久久水蜜桃国产精品网| 欧美人与性动交α欧美软件| 国产精品偷伦视频观看了| 亚洲伊人色综图| 国产精品 欧美亚洲| 亚洲精品粉嫩美女一区| 成年人午夜在线观看视频| 欧美成狂野欧美在线观看| 精品亚洲成国产av| 亚洲av电影在线观看一区二区三区| 国产成人精品在线电影| 日韩 亚洲 欧美在线| 操出白浆在线播放| av欧美777| 脱女人内裤的视频| 满18在线观看网站| 少妇粗大呻吟视频| 高清av免费在线| 欧美日本中文国产一区发布| 老司机亚洲免费影院| tocl精华| 日本欧美视频一区| 黄色怎么调成土黄色| 中文字幕另类日韩欧美亚洲嫩草| 建设人人有责人人尽责人人享有的| 菩萨蛮人人尽说江南好唐韦庄| 国产av一区二区精品久久| 91精品伊人久久大香线蕉| 伊人亚洲综合成人网| 国产高清视频在线播放一区 | 亚洲成av片中文字幕在线观看| 国产在视频线精品| 国产色视频综合| 免费黄频网站在线观看国产| 久久久久久久久免费视频了| 少妇裸体淫交视频免费看高清 | 午夜福利在线免费观看网站| 97精品久久久久久久久久精品| 国产精品秋霞免费鲁丝片| av视频免费观看在线观看| 午夜日韩欧美国产| 又大又爽又粗| 在线观看人妻少妇| 黄色a级毛片大全视频| 性色av乱码一区二区三区2| 国产无遮挡羞羞视频在线观看| 一本色道久久久久久精品综合| 欧美黑人欧美精品刺激| 亚洲va日本ⅴa欧美va伊人久久 | 一二三四在线观看免费中文在| 亚洲欧美成人综合另类久久久| 两个人免费观看高清视频| 亚洲成人手机| 国产成人影院久久av| 91成人精品电影| 青青草视频在线视频观看| 日本a在线网址| 国产成人欧美| 美女扒开内裤让男人捅视频| 成人免费观看视频高清| 亚洲精品成人av观看孕妇| 最新在线观看一区二区三区| 男女床上黄色一级片免费看| www日本在线高清视频| 免费观看a级毛片全部| 日韩电影二区| 99久久综合免费| 欧美亚洲 丝袜 人妻 在线| av在线老鸭窝| 一区二区三区四区激情视频| 国产精品 国内视频| 日本五十路高清| 久久综合国产亚洲精品| 亚洲av日韩在线播放| 天天躁夜夜躁狠狠躁躁| 欧美精品av麻豆av| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| 国产激情久久老熟女| 久久国产精品大桥未久av| 在线观看www视频免费| 成人三级做爰电影| videosex国产| 黄网站色视频无遮挡免费观看| 亚洲第一欧美日韩一区二区三区 | 国产有黄有色有爽视频| 婷婷成人精品国产| 夫妻午夜视频| 香蕉丝袜av| 午夜视频精品福利| www.熟女人妻精品国产| 欧美日韩中文字幕国产精品一区二区三区 | 一区二区三区精品91| 国产精品影院久久| 2018国产大陆天天弄谢| 午夜福利,免费看| 高清欧美精品videossex| 精品熟女少妇八av免费久了| 搡老岳熟女国产| 青春草亚洲视频在线观看|