• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    2015-02-09 01:28:44Tajdu

    K.Tajduˊs

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    K.Tajduˊs*

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    A R T I C L E I N F O

    Article history:

    Received 2 January 2015

    Received in revised form

    16 March 2015

    Accepted 17 March 2015

    Available online 8 May 2015

    Horizontal displacements/movements

    Surface deformations

    Mining exploitation

    Horizontal displacement coeffcient

    Center of gravitation(COG)zone

    The paper presents an analysis of the horizontal displacement of surfaces induced by exploitation in a longwall panel.The panel under discussion is No.698 of Prosper Haniel coal mine,Germany.The author discusses both the distribution of displacement vectors,according to the theory assuming surface point displacement towards the center of gravitation(COG)zone of a selected deposit element,and the analysis of horizontal displacement measurements,based on the assumption that the value of horizontal displacement is proportional to the slope of the subsidence trough.Finally,the value of horizontal displacement coeffcientBis estimated for particular longitudinal and transverse measurement section of the analyzed longwall No.698.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Underground longwall excavation creates deformations inside the rock mass which can appear on the surface.One indicator of such a deformation is the vector of rock mass movement,which can be easily divided into two components:vertical and horizontal movements.In the past,many scientists have dealt with the problem of vertical movement(subsidence)determination.Due to the subsidence of rock mass caused by underground mining,such operations have been observed and quantifed since early 20th century.Work on subsidence calculation methods was started by Schmitz(Lehmann et al.,1942).Later,Awierszyn(1947)proposed a methodology assuming the kinetics of the rock displacement process in analytical solutions,which allowed for the introduction of universal theoretical descriptions of rock mass movement.The above proposal gave rise to the intensive development of calculation methods,especially methods based on the normal distribution of mining infuence,like Knothe’s method(Knothe,1953,1984; Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).

    But in spite of the many theories and methods used to calculate surface deformations above underground operations,inter alia, Keinhorst(1925),Sann(Lehmann et al.,1942),Bals(1931/1932), Knothe(1953),NCB(1975),etc.,estimations of the values and distribution of horizontal movement are still unclear.

    This paper presents the monitoring and analysis of horizontal movements caused by a single longwall panel excavation,No.698. Analysiswas carried out based on two the most popularhypotheses of horizontal movements:

    (1)Theories assuming the displacement of surface points towards the center of gravitation(COG)of a selected element of deposit, e.g.the theories of:Keinhorst(1925),Bals(1931/1932), Lehmann et al.(1942),Sann,Beyer(Lehmann et al.,1942), etc.,and

    (2)Theories assuming that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y)(Awierszyn,1947),e.g.Knothe’s method and Ruhrkohle method.

    To sum up,both the COG theory and the hypothesis of Awierszyn(1947)indicate the proportionality between the vector of horizontal displacement and the vector of subsidence trough profle slope.

    2.Examples of the Gauss distribution method used to calculate mining-induced surface deformations

    Most theories used for surface deformation calculations are based on the Gauss distribution function.And from it,two methods were commonly used in Europe,China and the United States.These are:Knothe’s method(Knothe,1953,1984;Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).In a strictly mathematical sense,both the above-mentioned methods aresimilar.They differ,however,only in their defnitions of angles limiting the horizontal range of subsidence trough,which are defned by means of the following relation:

    Fig.1.Situation of exploitation fronts when the deformation measurement was stopped.

    whereβis the angle of main infuences’rangeaccording toKnothe’s theory,γis the limit angle of the Ruhrkohle method,andkis the coeffcient which is equal to-ln0.001.

    These classic theories suggest that mining-induced surface displacement can be described by means of the function of infuences,and in the case of a three-dimensional(3D)problem, exploitation of any feld results in the subsidence of pointAon a terrain surface,which can be illustrated with the following equation:

    wherew(xA,yA)is the subsidence of any pointA(mm);ais the subsidence coeffcient depending upon exploitation system,which is generally a relation of expected subsidence trough volume to a selected volume;gis the thickness of mined-out deposit(m);rK,rRare the radii of main infuences’range(m)for Knothe’s method and Ruhrkohle method,respectively;His the depth of exploitation(m); χis the parameter depending on chosen theory,χ=1 for Knothe’s method,χ=k/πfor Ruhrkohle method;dPis the surface of infnitesimally small element of mined-out deposit,and dP=dxdy;Pis the surface of mined-out space of deposit.

    From the differentiation of Eq.(2),further formulae can be obtained,which may in turn help to determine the values of such surface deformation indices as:slope of subsidence trough profle at any point(Tx,Ty)(Eq.(4))or curvature of subsidence trough profle(Kxx,Kyy,Kxy)(Eq.(5)).Also horizontal displacement(ux,uy) (Eq.(6))and horizontal deformation(εx,εy)(Eq.(7)and(8)-maximum and minimum horizontal deformations)can be determined if a proper coeffcient is assumed.

    Fig.2.Survey measurements contour lines along with measurements points of:(a)horizontal displacement inxdirection(mm),(b)horizontal displacement inydirection(mm).

    Fig.3.Surface subsidence measurements contour line(mm)along with measurement points.

    whereBis the displacement coeffcient(or horizontal deformation coeffcient).This coeffcient is then used to calculate horizontal movements and strains,assuming proportions between the slope of subsidence trough profle and horizontal movements.The hitherto determined empirical values of coeffcientB,for varied measurement bases and varied mining or geological conditions,can be defned in the following ranges(Tajduˊs,2013,2014):

    (1)For coal mines:from 0.15rto 0.7r,

    (2)For sulfur mines:from 0.15rto 0.26r,

    (3)For copper mines:from 0.23rto 0.77r.

    It also should be noted that some measurements suggest that the coeffcientBis not constant,but depends upon the position of the measurement point in the formed subsidence trough(Tajduˊs, 2013,2014).The presented range of the coeffcientBvaries widely due to the fact that disturbance depends upon the following factors:number and thickness of mined-out seams,dimensions of mined-out felds in each seam,methods of void liquidation,mining rate,geological and hydro-geological structure of overburden, tectonics,strength and strain parameters of strata.

    Below,the author presents the analysis of horizontal movements for a single advancing longwall panel excavation taking into consideration the COG andTtouproportion theories.

    3.Horizontal displacement analysis for the sample mine of Prosper Haniel

    Analysis of horizontal displacements of the terrain surface was carried out for the sample area of the BW Prosper Haniel coal mine where the single longwall panel was excavated(DMT,2001).

    In 1999,the coal mine started exploitation of the wall No.698 in the seam O/N at an average depth of 960 m.Thewidth of mined-out wall was 270 m,its panel runwas 970 m,whereas its height ranged from 3.6 m to 4.3 m.Excavation of the longwall was initiated on 10 May 1999 and terminated on 23 November 1999.After the completion of mining in the longwall No.698,nevertheless still during the measurements of subsidence and horizontal movement of measurement points,the exploitation of the longwall No.682 with the thickness of 1.6 m commenced in the seam P1 at the depthH=920 m.The situation is presented in Fig.1.

    On the surface,above the Prosper Haniel coal mine,a measurement network system consisting of dispersed geodesic points was set up.Measurements were takenwith the use of GPS,which is characterized by the accuracy of below 5 mm(Sroka,2000).The frst measurement was carried out on 1 April 1999 for the points numbered from 1 to 48.The distribution of measurement points is presented in Fig.1.

    Fig.4.3D analyzed mining situation along with the position of surface measurement points(at the level of+60 m).

    The results of geodesic measurements taken in the period between the date of exploitation commencement of the wall No.698 and the date of 11 January 2000 indicate that the maximum subsidence measured in the central part of the trough reached thesteadystate.Only in the areaof exploitation end of thewall No.698, the points indicated their transient state.In addition,it should be noted that the layer of hard sandstone,with the thickness of approximately 90 m,occurring above the seam O/N,as well as the small dimensions of the excavated longwall No.698,caused the occurrence of partial subsidence trough on the surface.The trough was characterized by values of deformation indices lower by 50%in comparison to the values obtained during the prognosis carried out for that exploitation(Stocks and Sroka,2000).

    Figs.2 and 3 present the fnal values of deformation indices obtained from geodesic measurements.For survey measurements contour lines,matching was achieved according to the Kriging method,which attributes particular weighing,called Kriging coeffcients(weighing),to the samples inside the estimation feld (sample search area)in order to minimize the mean square prediction error(Kriging variance).The author used the linear variogram with no nugget effect.

    Fig.5.A spatial representation of the courses of all vector directions.

    3.1.Analysis of displacement vectors-searching COG inside the strata

    In the frst analysis of displacement vectors of measurement points,the author tried to fnd the area where the direction of the vectors of displacements met.To fulfll this task,the analysis of measurement points situated in the vicinity of longwall No.698 was used for a further study.Position changes of measurement points were analyzed and“virtual vectors”symbolizing the displacement of initial points(presented in Fig.4)towards the center of rock mass were marked on the basis of GPS satellite data (spatial coordinates(x,y,z)of each point).

    The author made the analysis for(mining and measurements) situations where only part of longwall panel was excavated(Fig.4). Such selected situations allow for the analysis of vector displacements of surface points with only a small disturbance from created goaf(in Fig.4,the part of excavated deposit was marked with a white feld with the dimensions of 294 m×270 m).Data from a total of 48 points were available;however,the analysis did not take the points numbered as 1,7,21,47 and 48 into consideration,since the results obtained in those points could not be treated as reliable due to the occurrence of some anomalies in the values of displacement.It had been assumed that the points,whose values of measured subsidence were lower than twice the measuring error (<5 mm),would be neglected in the study.Therefore,a total of 43 points were actually subject to analysis.A sample study of displacement direction of each measurement point was carried out on the basis of the analysis of the results of initial measurement and the measurement after 50 days from the commencement of exploitation(i.e.the ffth measurement taken on 29 June 1999).It corresponded to the mining situation with the wall advance of 294 m and with the exploitation panel opening approximate to a square(Fig.4).Fig.5 illustrates the course of all directions of displacement vectors,which appeared after matching the spatial coordinates(x,y,z)for the ffth measurement.Since the lines overlapped,which failed to produce a clear picture,it was decided that the same data should be presented by means of projecting the vectors into theyzplane,which is illustrated in Fig.6.For the sakeof better clarity and accuracy of the illustrations,the vectors of horizontal displacements were crossed with thexyplanes at the depths of 100 m,150 m,200 m,250 m,300 m,350m,400 m,500 m, 600 m,700 m,800 m and 900 m,respectively,thus creating regular sections between the planes.

    Fig.6.Graphic representation of the course of all vector directions in theyzplane.

    The character of the course of the majority of vectors seems to clearly indicate that the measurement points on the surface tend to displace towards the exploitation void,which appeared as a result of the excavation of the feld marked with a white rectangle.Such a situation is even more evident in the horizontalxycross-sections made at various depths(Fig.7).For example,if we study Fig.7b more carefully,presenting the displacement vectors from the initial position of measurement points to their position for the ffth measurement and the direction of those vectors to the point they cut through the horizontal plane at the depth of 250 m,it can be clearly seen that,for the considerable number of measurement points,their displacement vectors run within the feld positioned above the exploitation void.

    Generally,the observations and analyses indicated that the vectors of displacements marked for the measurement points,as well as their directions,approach a particular zone with a shape of ellipsoid,which is positioned above the exploitation void.The zone can be referred to as“the COG zone”.Fig.8 presents three ellipsoids simulating the COG zone with the areas of 7667 m2for ellipse P1, 28,203 m2for ellipse P2,and 70,418 m2for ellipse P3.These ellipses were drawn for three different cross-sections at the depths of 200 m,250 m and 300 m,respectively.It was observed that at the depth of 250 m,the ellipse P1embraces 13 points crossing betweenthe section and the directions of measured vectors of displacements;ellipse P2embraces 7 such points,whereas ellipse P3embraces 11 points.

    Fig.7.Displacement vectors of measurement points for characteristic cross-sections at the depths of:(a)200 m,(b)250 m,(c)300 m,and(d)350 m,respectively.

    For the 40 analyzed measurement points and the sample exploitation panel of 270 m×294 m,such a zone occurs at the depth of approximately 250 m.In its vicinity,there appears to be a large concentration of vector directions marked on the basis of the measurements of 3D displacements of the given points(example in Fig.9).Only the displacement vectors of several points(i.e.16,20, 32,33 and 36)and marking their directions have a dissimilar course,which may be caused by numerous geological factors or by a measurement error.

    Fig.8.Ellipses of“COG zones”(P1=1,P2=2,P3=3)for various cross-sections.

    3.2.Analysis of displacement coeffcient B variations

    Different approaches to the analysis of horizontal surface movements are based on the assumption that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y).But to properly calculate horizontal deformations,the value of displacement coeffcientBshould be estimated.

    In order to analyze the distribution of coeffcientBvalues for the exploitation area of the longwall panel No.698 of the Prosper Haniel coal mine,as many as a dozen measurement cross-sections perpendicular to the panel length were made(Fig.10).

    For the above-mentioned cross-sections,a diagram presenting the values of horizontal displacement(movements)in the direction of the cross-sectionu(α)in the function of slope value in the same cross-sectionT(α)was made.Fig.11a and b show the sample diagrams of horizontal displacement in the directionu(α)in the slope functionT(α)for the cross-sections Nos.7(a)and 12(b),respectively.

    Fig.9.Graphic representation of selected vectors projected on theyzplane crossing the horizontalxyplane at the depth of approximately 250 m.

    For the cross-sections presented above,function correlations between horizontal displacements and slopes were determined using linear regression method(cf.Table 1).In the formulaepresented in the table,the values of horizontal displacements were given in millimeters,whereas the slope was given in mm/m,which means that the value of parameterBis expressed in meters.

    On the basis of the analysis of the matching formulae for linear regression for twelve cross-sections(Table 1),it can be observed that the results for cross-section No.1 seem barely satisfactory, whereas for the remaining cross-sections it is far more accurate, especially for all the sections from No.7.Those conclusions were verifed by analyzing the summary values for the sections No.1 to No.6(Fig.12a)to the middle of panel length,as well as for the sections No.7 to No.12(Fig.12b).

    Fortheabove-mentionedsummarycross-sections,the following matching was obtained:

    (1)For the sections No.1 to No.6:u(α)=-264.3T+85.1,with matchingR2=0.883;

    (2)For the sections No.7 to No.12:u(α)=-170.5T+10.3,with

    matchingR2=0.91.

    Fig.10.Measurement cross-sections perpendicular to the longwall panel No.698.

    The most likely reason for such signifcant disproportions in matching the regression lines between summary matching for sections No.1 to No.6 and No.7 to No.12 is a relatively short period of measurement duration.The completion of exploitation of the longwall panel No.698 took place on 23 November 1999 and nearly two months later(i.e.11 January 2000)these measurements were completed.Such a short measurement period for the points positioned in the vicinity of the ultimate phase of exploitation meant that in those points,the fnal stationary values of deformation indices were not obtained.In German mines,it is assumed that the minimum period necessary for reaching a fnal stationary value of deformation is approximately 3-6 months(Sroka,2010),depending on rock mass quality and exploitation depth.

    For all the summary cross-sections,i.e.No.1 to No.12,the following formula was obtained:u(α)=-211.3T+31.9,with matchingR2=0.806.

    Subsequently,the analysis of the distribution of the coeffcientBvalues was carried out for the cross-section perpendicular to the longwall panel No.698,crossing the middle of the longwall.The following formula for linear regression was obtained:u(α)=-190.4T+40.6,with matchingR2=0.854.

    The comparison of coeffcientBfor the cross-section parallel to the panel length with that for the cross-section perpendicular to the panel length indicates that the coeffcientBfor the parallel section is approximately 10%lower than that for the perpendicular section.

    The above-mentioned formulae for matching the regression lines to the measurement resultsdifferfrom theassumedhypothesis of Awierszyn(1947)by the value of the intercept.In order to approximate those values for the solution presented by Awierszyn(1947),it was assumed that the linear regression lines cross exactly in the origin.The results of such a matching were presented for several sample summary cross-sections:

    Table 1Matching formulae for linear regression for the cross-sections perpendicular to the longwall panel No.698.

    Fig.11.Horizontal displacement diagram in the cross-section directionu(α)in the slope functionT(α)for the cross-sections No.7(a)and No.12(b).

    (1)For the summary cross-sections No.1 to No.6:u(α)=-237.4T, whereR2=0.755;

    (2)For the summary cross-sections No.7 to No.12:u(α)=-170.8T, whereR2=0.905;

    (3)For the summary cross-sections No.1 to No.12:u(α)=-205.7T, whereR2=0.779.

    Fig.12.Matching formula of linear regression for the summary values of parameterBfor the cross-sections:(a)No.1 to No.6,and(b)No.7 to No.12.

    For the estimated values of the horizontal deformation coeffcientB,the value of standard deviation ofS=59 mwas determined, which means that a single value of coeffcientBwas determined with the accuracy of 26%.

    4.Conclusions

    The prognostic values of horizontal surface displacements above a mining exploitation area still pose numerous doubts regarding their validity.Studies and observations carried out in situ seem to indicate that the following factors,inter alia,infuence the distribution of horizontal displacement:the position of a given point in relation to exploitation,rock mass properties,hydrogeological conditions,tectonics,depth of exploitation,thickness of excavated deposit,method of exploitation or speed of mining performance.

    The analysis of the course of horizontal displacement vectors after excavation of wall No.698 proved logical and expected senses and directions of measured vectors.Therefore,in relation to the general character of the vector course it is justifed to assume the existing of concentration area of virtual vectors,determined on the basis of measurements of spatial displacement of points.Based on the analysis,where the strata were parted with horizontal planes (from the seam level up to the surface with interval of 50 m),it was revealed that the best agreement of the displacements vectors concentration is achieved for the depth of approximately 250 m.

    Analysis of the distribution of horizontal displacement coeffcientB,carried out for the exploitation of the wall No.698 in the seam O/N of Prosper Haniel coal mine,indicated the proportionality between the horizontal displacement vector and the vector of subsidence trough slope profle.

    The study also specifed that the average displacement coeffcient for cross-sections perpendicular to the advance of the mining front equalsB=205 m(B=0.21H,orB=0.47rfor tanβ=2.2).It should be noted that,according to numerous studies on the infuence of time on the distribution of measured deformations hitherto carried out in German mines,a minimum period necessary for achieving a stabilized(stationary)subsidence trough ranges between 3 and 6 months.This means that analyses for the initial cross-sections numbered as 1 and 2 were actually carried out for non-stationary deformations.The determined value of coeffcientBfor the sections numbered from 3 to 12 wasB=204 m(B=0.21H, orB=0.47rfor tanβ=2.2).

    In summary,optimal matching was obtained for the sections crossing the middle of exploitation feld(No.7),as well as for sections outside the contour of the wall(Nos.11 and 12).

    Confict of interest

    The author wishes to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    The project was fnanced by the National Science Center of Poland granted on the grounds of decision No.DEC-2011/01/D/ ST8/07280.

    Awierszyn SG.Mining-induced rock mass subsidence.Moscow,Russia:Ugletiechizdat;1947(in Russian).

    Bals R.Problem of mining subsidence prediction.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen;1931/ 1932.s.42/43:98-111(in German).

    Deutsche Montan Technologie GmbH(DMT).BW Prosper Haniel measurements point-“Schwarze Heide”.2001(not published)(in German).

    Keinhorst H.Calculations of surface subsidence in Emscher.In:25 Jahre der Emschergenossenschaft 1900-1925;1925.p.53-64(in German).

    Knothe S.Time infuence on shaping of subsidence trough.Archive of Mining Science 1953;1:21-31.

    Knothe S.Prediction of mining infuence.Katowice,Poland:ˊSla?sk;1984(in Polish). Lehmann K,Neubert K,Schafstein K.Calculation and presentation of ground movements above underground mining exploitation.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen; 1942(in German).

    National Coal Board(NCB).Subsidence engineers’handbook.London,UK:Mining Department,National Coal Board;1975.

    Sroka A.Surface movement measurements using GPS above turning longwall panel. In:IGSMiE PAN,Kraków,vol.1.Kraków,Poland:Kraków Publishing House; 2000.p.361-70(in Polish).

    Sroka A.Infuence of exploitation velocity on surface deformation.In:IGSMiE PAN, Krakówvol.1.Kraków,Poland:Kraków Publishing House;2010.p.523-48(in Polish).

    Sroka A,Tajduˊs K,Preusse A.Calculation of subsidence for room and pillar and longwall panels.In:Proceedings of the 11th Underground Coal Operations’Conference,University of Wollongong&the Australasian Institute of Mining and Metallurgy;2011.p.83-90.

    Stocks S,Sroka A.Design of longwall panels for mining damage reduction.In: Proceedings of the 11th International Congress of the ISM,Kraków;2000. p.183-90(in German).

    Tajduˊs K.Mining-induced surface horizontal displacement:the case of BW Prosper Haniel mine.Archive of Mining Science 2013;58(4):1037-55.

    Tajduˊs K.The nature of mining-induced horizontal displacement of surface on the example of several coal mines.Archive of Mining Science 2014;59(4):971-86.

    Krzysztof Tajduˊsgraduated as a Mining Engineer(2003) from AGH University of Science and Technology in Krakow (AGH-UST),Poland.He got MSc Engineer in Geomechanics. After graduation he started working for Strata Mechanics Research Institute of the Polish Academy of Sciences(2003 up today).In 2008 he defended a double Ph.D.degree:one in the feld of mining and geological engineering at AGHUST in Krakow,Poland,the other in the feld of soil mechanics at TU Bergakademie Freiberg,Germany.In 2009 he has become the youngest member of the Polish Committee on the State Mining Authority for the state of water and rock roof collapse hazard in Salt Mine“Wieliczka”S.A. Since 2010 he has been a full member of the Polish Commission of the State Mining Authority for the Surface Protection.In 2011-2014 he was working at the AGH-UST,Faculty of Drilling,Oil and Gas and from 2014 he is a guest professor at Binh Duong University,Vietnam.He has working in more than 60 projects in whole Europe related to mining-induced rock mass deformation and mining damages,rock mass stabilization,rockburst,tunneling,hydraulic fracturing,CBM.He is currently the member of ISRM and the Section of Rock Mechanics and Underground Building,Committee of Mining,Polish Academy of Sciences.

    *Tel.:+48 126376200(55).

    E-mail address:tajdus@img-pan.krakow.pl.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.012

    噜噜噜噜噜久久久久久91| 熟妇人妻久久中文字幕3abv| 免费看日本二区| 午夜福利在线观看吧| 久久精品综合一区二区三区| 亚洲成人中文字幕在线播放| 寂寞人妻少妇视频99o| 波多野结衣巨乳人妻| 成年av动漫网址| 精品一区二区三区视频在线| 日本av手机在线免费观看| 国产一区二区在线av高清观看| 国产精品,欧美在线| 国产一区二区在线观看日韩| 亚洲欧美精品自产自拍| 欧美最新免费一区二区三区| 国产精品不卡视频一区二区| 久久久精品大字幕| 成人鲁丝片一二三区免费| 欧美成人a在线观看| 噜噜噜噜噜久久久久久91| 久久精品国产清高在天天线| 久久精品久久久久久噜噜老黄 | 亚洲无线观看免费| 国产大屁股一区二区在线视频| 欧美xxxx性猛交bbbb| 色播亚洲综合网| 国产一区亚洲一区在线观看| 午夜a级毛片| 免费看a级黄色片| 三级国产精品欧美在线观看| 日韩,欧美,国产一区二区三区 | 如何舔出高潮| 国产人妻一区二区三区在| av卡一久久| 亚洲内射少妇av| 3wmmmm亚洲av在线观看| 亚洲欧美精品自产自拍| 欧美+日韩+精品| 亚洲欧美成人精品一区二区| 老女人水多毛片| 免费黄网站久久成人精品| 久久精品夜色国产| 欧美xxxx黑人xx丫x性爽| 国产成年人精品一区二区| 最新中文字幕久久久久| 中文字幕av成人在线电影| 午夜福利高清视频| 女同久久另类99精品国产91| 国产免费男女视频| 人妻制服诱惑在线中文字幕| 国产亚洲精品av在线| 午夜视频国产福利| 观看免费一级毛片| 一卡2卡三卡四卡精品乱码亚洲| 99热6这里只有精品| 人妻少妇偷人精品九色| 欧美xxxx黑人xx丫x性爽| 亚洲七黄色美女视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美清纯卡通| 一进一出抽搐动态| 国产久久久一区二区三区| 中文字幕久久专区| 国产成人freesex在线| 午夜a级毛片| 91av网一区二区| 在线免费观看的www视频| 亚洲无线在线观看| 国产黄片视频在线免费观看| 免费看美女性在线毛片视频| 女人十人毛片免费观看3o分钟| 在线观看美女被高潮喷水网站| 亚洲18禁久久av| 欧美性猛交黑人性爽| www.色视频.com| 久久中文看片网| 国产成人福利小说| 99九九线精品视频在线观看视频| 亚洲综合色惰| 97超视频在线观看视频| 国产黄a三级三级三级人| 99九九线精品视频在线观看视频| 69人妻影院| 午夜福利在线观看吧| 久久久色成人| 99riav亚洲国产免费| 久久久色成人| 观看美女的网站| 中国国产av一级| 丰满乱子伦码专区| 丝袜美腿在线中文| 国产精品嫩草影院av在线观看| 亚洲精品影视一区二区三区av| 成年女人永久免费观看视频| АⅤ资源中文在线天堂| 午夜福利在线在线| 在线观看av片永久免费下载| 精品熟女少妇av免费看| 岛国毛片在线播放| 国产午夜精品一二区理论片| 久久久精品大字幕| 99热这里只有是精品50| 又爽又黄无遮挡网站| 51国产日韩欧美| 一本一本综合久久| 简卡轻食公司| 可以在线观看的亚洲视频| 能在线免费看毛片的网站| 能在线免费看毛片的网站| 成人午夜高清在线视频| 成人无遮挡网站| 国产视频首页在线观看| 欧美一区二区国产精品久久精品| 91麻豆精品激情在线观看国产| av免费观看日本| 午夜福利在线在线| 日韩一本色道免费dvd| 欧美日韩在线观看h| 国产午夜精品久久久久久一区二区三区| 日韩一本色道免费dvd| 亚洲中文字幕日韩| 成人亚洲欧美一区二区av| 黄色配什么色好看| 伦理电影大哥的女人| 变态另类成人亚洲欧美熟女| 亚洲成人av在线免费| 国产老妇女一区| 麻豆久久精品国产亚洲av| 久久久久久九九精品二区国产| 91久久精品电影网| 免费看a级黄色片| 只有这里有精品99| 国产三级在线视频| 亚洲成人精品中文字幕电影| 蜜臀久久99精品久久宅男| 日韩一本色道免费dvd| 国产一区二区在线观看日韩| 亚洲欧洲国产日韩| 亚洲av男天堂| 婷婷色综合大香蕉| 男女做爰动态图高潮gif福利片| 国产精品久久久久久精品电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 三级毛片av免费| 久久久国产成人免费| 给我免费播放毛片高清在线观看| 亚洲国产精品成人久久小说 | 一个人看视频在线观看www免费| 一个人看视频在线观看www免费| 伦理电影大哥的女人| 小说图片视频综合网站| 日本黄色视频三级网站网址| 亚洲成人久久性| 亚洲乱码一区二区免费版| av国产免费在线观看| 男女下面进入的视频免费午夜| 丰满的人妻完整版| 久久久精品94久久精品| 老司机影院成人| 最近2019中文字幕mv第一页| 少妇熟女欧美另类| 人妻少妇偷人精品九色| 久久九九热精品免费| 男人和女人高潮做爰伦理| 热99re8久久精品国产| 少妇熟女欧美另类| 免费人成在线观看视频色| 亚洲人成网站在线播放欧美日韩| 91av网一区二区| 免费看美女性在线毛片视频| 春色校园在线视频观看| 国产日本99.免费观看| 久久久精品大字幕| 网址你懂的国产日韩在线| 三级国产精品欧美在线观看| 国产 一区精品| 丰满人妻一区二区三区视频av| 麻豆国产97在线/欧美| 少妇裸体淫交视频免费看高清| 春色校园在线视频观看| 久久人妻av系列| 国产成人午夜福利电影在线观看| 91精品一卡2卡3卡4卡| 熟妇人妻久久中文字幕3abv| 日本成人三级电影网站| 自拍偷自拍亚洲精品老妇| 国产 一区精品| 午夜a级毛片| 中文字幕熟女人妻在线| а√天堂www在线а√下载| 免费在线观看成人毛片| 日韩大尺度精品在线看网址| 亚洲中文字幕一区二区三区有码在线看| 婷婷色综合大香蕉| 搡女人真爽免费视频火全软件| 长腿黑丝高跟| 青春草亚洲视频在线观看| 嫩草影院入口| 精品久久久久久成人av| 一级毛片aaaaaa免费看小| 久久久久久久久久久免费av| 日本黄色视频三级网站网址| 国产一区二区三区av在线 | or卡值多少钱| 欧美在线一区亚洲| 一本久久中文字幕| 国内精品久久久久精免费| 老熟妇乱子伦视频在线观看| 亚洲精品自拍成人| 亚洲18禁久久av| 成人午夜高清在线视频| 一级黄片播放器| 国产在线男女| h日本视频在线播放| 哪个播放器可以免费观看大片| 国国产精品蜜臀av免费| av女优亚洲男人天堂| 欧美丝袜亚洲另类| 欧美成人精品欧美一级黄| 尤物成人国产欧美一区二区三区| a级一级毛片免费在线观看| 看免费成人av毛片| 人妻夜夜爽99麻豆av| 日韩欧美精品v在线| 99久久中文字幕三级久久日本| 成人特级av手机在线观看| 亚洲七黄色美女视频| 国产精品嫩草影院av在线观看| 性欧美人与动物交配| 久久久精品大字幕| 一个人看视频在线观看www免费| 熟女电影av网| 国产三级中文精品| 久久精品国产自在天天线| 精品一区二区免费观看| a级毛片免费高清观看在线播放| 综合色丁香网| 亚洲精品国产av成人精品| 99热这里只有是精品在线观看| 亚洲国产精品久久男人天堂| 看黄色毛片网站| 欧美日韩综合久久久久久| 日韩一本色道免费dvd| 日本色播在线视频| 免费电影在线观看免费观看| 欧美日韩乱码在线| 亚洲四区av| 秋霞在线观看毛片| 免费人成在线观看视频色| 久久久久国产网址| 亚洲中文字幕一区二区三区有码在线看| 男人舔奶头视频| 久久99热这里只有精品18| 免费看美女性在线毛片视频| 春色校园在线视频观看| 日本黄色片子视频| 国产在线精品亚洲第一网站| 欧美激情国产日韩精品一区| 成人毛片60女人毛片免费| 精品人妻视频免费看| 又粗又硬又长又爽又黄的视频 | 午夜老司机福利剧场| 在线免费观看不下载黄p国产| 人妻久久中文字幕网| 日韩大尺度精品在线看网址| 内射极品少妇av片p| 免费观看在线日韩| av国产免费在线观看| 国产av不卡久久| 色播亚洲综合网| 秋霞在线观看毛片| 小蜜桃在线观看免费完整版高清| 三级经典国产精品| 又粗又爽又猛毛片免费看| 在线播放国产精品三级| 国产探花在线观看一区二区| 国产精品一区二区三区四区免费观看| 高清午夜精品一区二区三区 | 毛片女人毛片| 欧美另类亚洲清纯唯美| 国产色婷婷99| 国产精品.久久久| 亚洲精品久久久久久婷婷小说 | 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 亚洲欧美日韩无卡精品| 亚洲内射少妇av| 高清毛片免费观看视频网站| 极品教师在线视频| 久久久精品大字幕| 色综合色国产| 蜜臀久久99精品久久宅男| 一边亲一边摸免费视频| 狠狠狠狠99中文字幕| 在现免费观看毛片| 午夜精品国产一区二区电影 | 最近手机中文字幕大全| 欧美成人免费av一区二区三区| 久久久久久久亚洲中文字幕| 成人高潮视频无遮挡免费网站| 91午夜精品亚洲一区二区三区| 久久精品国产清高在天天线| 久久6这里有精品| 夜夜夜夜夜久久久久| a级一级毛片免费在线观看| 国产成人精品久久久久久| 精品国产三级普通话版| 一夜夜www| 非洲黑人性xxxx精品又粗又长| 久久久精品大字幕| 美女脱内裤让男人舔精品视频 | 有码 亚洲区| 非洲黑人性xxxx精品又粗又长| 国产色爽女视频免费观看| 国产成人freesex在线| 欧美+亚洲+日韩+国产| 五月玫瑰六月丁香| 97热精品久久久久久| 成人亚洲精品av一区二区| 亚洲国产日韩欧美精品在线观看| 欧美日韩综合久久久久久| 热99在线观看视频| 狠狠狠狠99中文字幕| 日本黄色片子视频| 日韩在线高清观看一区二区三区| 国内精品美女久久久久久| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲av中文av极速乱| 中文精品一卡2卡3卡4更新| 日韩欧美精品免费久久| 午夜精品一区二区三区免费看| 免费无遮挡裸体视频| 黄片wwwwww| 国产精品爽爽va在线观看网站| 春色校园在线视频观看| 国内久久婷婷六月综合欲色啪| 搞女人的毛片| 国产乱人视频| 天堂√8在线中文| 亚洲欧美清纯卡通| 日本在线视频免费播放| www.av在线官网国产| 中文欧美无线码| 国产精品日韩av在线免费观看| 免费观看的影片在线观看| 国产大屁股一区二区在线视频| 婷婷亚洲欧美| 91av网一区二区| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 日韩欧美在线乱码| 日本免费一区二区三区高清不卡| 亚洲自偷自拍三级| 国内精品宾馆在线| 国内精品久久久久精免费| 日本成人三级电影网站| 日韩欧美一区二区三区在线观看| 亚洲aⅴ乱码一区二区在线播放| 成熟少妇高潮喷水视频| 色综合色国产| 亚洲欧美成人综合另类久久久 | 一级毛片久久久久久久久女| 国产视频内射| 国产成人一区二区在线| 国产精品福利在线免费观看| 久久综合国产亚洲精品| 啦啦啦啦在线视频资源| 天天一区二区日本电影三级| 亚洲成人中文字幕在线播放| 嫩草影院新地址| 99久国产av精品| 伦理电影大哥的女人| 日韩中字成人| 岛国在线免费视频观看| 精品久久久久久成人av| h日本视频在线播放| 国产高清激情床上av| 亚洲精品久久国产高清桃花| 直男gayav资源| 国产精品一区二区在线观看99 | 91久久精品国产一区二区成人| 欧美另类亚洲清纯唯美| 国产精品99久久久久久久久| 三级男女做爰猛烈吃奶摸视频| 欧美日韩精品成人综合77777| 国产精品免费一区二区三区在线| 欧美成人一区二区免费高清观看| 观看免费一级毛片| АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 欧美日本视频| 中文欧美无线码| 亚洲aⅴ乱码一区二区在线播放| 熟妇人妻久久中文字幕3abv| 日韩中字成人| 国模一区二区三区四区视频| 久久久久久久亚洲中文字幕| 日韩欧美 国产精品| 国产一区二区三区在线臀色熟女| 一级黄片播放器| 亚洲在久久综合| 久久国产乱子免费精品| 亚洲欧美日韩高清专用| 午夜精品一区二区三区免费看| 此物有八面人人有两片| 丰满乱子伦码专区| 午夜激情欧美在线| 国产精品久久久久久久电影| 一夜夜www| 国产久久久一区二区三区| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 51国产日韩欧美| 久久久久国产网址| 国产一区二区激情短视频| 久久久久网色| 99热精品在线国产| 久久99精品国语久久久| 女人十人毛片免费观看3o分钟| 老师上课跳d突然被开到最大视频| 午夜福利高清视频| 18禁在线播放成人免费| 欧洲精品卡2卡3卡4卡5卡区| 亚洲中文字幕日韩| 91久久精品国产一区二区三区| 成年免费大片在线观看| 国产精品.久久久| 国产男人的电影天堂91| 国产中年淑女户外野战色| 少妇熟女aⅴ在线视频| 久久精品综合一区二区三区| 极品教师在线视频| 国产午夜福利久久久久久| 国产一区二区激情短视频| 亚洲欧美精品综合久久99| 欧美区成人在线视频| 中文精品一卡2卡3卡4更新| 欧美色欧美亚洲另类二区| 岛国毛片在线播放| 97超视频在线观看视频| 国产精华一区二区三区| 麻豆成人av视频| 人人妻人人澡人人爽人人夜夜 | 真实男女啪啪啪动态图| 亚洲中文字幕一区二区三区有码在线看| 国产高清视频在线观看网站| 51国产日韩欧美| 色5月婷婷丁香| 中文字幕av成人在线电影| 超碰av人人做人人爽久久| 精品日产1卡2卡| 国产一级毛片七仙女欲春2| 欧美精品国产亚洲| 麻豆乱淫一区二区| 老熟妇乱子伦视频在线观看| 深夜精品福利| 久久人人爽人人片av| 免费看光身美女| 我的女老师完整版在线观看| 国产成人aa在线观看| 日韩成人伦理影院| 亚洲欧洲国产日韩| 成人性生交大片免费视频hd| 久久久欧美国产精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 有码 亚洲区| 成人二区视频| 你懂的网址亚洲精品在线观看 | 欧美精品国产亚洲| 女人被狂操c到高潮| 99视频精品全部免费 在线| 国产精品日韩av在线免费观看| 99久国产av精品| av在线蜜桃| 免费大片18禁| 午夜久久久久精精品| 亚洲精品日韩在线中文字幕 | 久久亚洲国产成人精品v| 草草在线视频免费看| 午夜激情欧美在线| 亚洲色图av天堂| 亚洲自偷自拍三级| 晚上一个人看的免费电影| av天堂中文字幕网| 99在线人妻在线中文字幕| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 欧美zozozo另类| 欧美高清成人免费视频www| 亚洲精品色激情综合| 亚洲天堂国产精品一区在线| 亚洲av免费在线观看| 蜜桃亚洲精品一区二区三区| 麻豆久久精品国产亚洲av| 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 精品国产三级普通话版| 春色校园在线视频观看| 日韩欧美在线乱码| 成人国产麻豆网| 久久国内精品自在自线图片| av在线亚洲专区| 热99在线观看视频| 亚洲国产精品成人久久小说 | 精品免费久久久久久久清纯| 亚洲精华国产精华液的使用体验 | 色尼玛亚洲综合影院| 久久人妻av系列| 日日啪夜夜撸| av女优亚洲男人天堂| 午夜福利在线观看免费完整高清在 | 久久久久久久午夜电影| 国产探花在线观看一区二区| АⅤ资源中文在线天堂| 丝袜喷水一区| 国产精品免费一区二区三区在线| 特大巨黑吊av在线直播| 亚洲精品亚洲一区二区| 欧美zozozo另类| 九草在线视频观看| 综合色丁香网| 国产精品不卡视频一区二区| 中文字幕熟女人妻在线| 欧美高清成人免费视频www| 国产精品三级大全| 啦啦啦观看免费观看视频高清| 久久中文看片网| 午夜久久久久精精品| 成人国产麻豆网| 成人亚洲精品av一区二区| 精品人妻视频免费看| 国产精品嫩草影院av在线观看| 一个人看视频在线观看www免费| 精品午夜福利在线看| 特大巨黑吊av在线直播| 男女啪啪激烈高潮av片| 男人的好看免费观看在线视频| 免费看光身美女| 变态另类丝袜制服| 国产在视频线在精品| 日本色播在线视频| 三级毛片av免费| 亚洲一区二区三区色噜噜| 成人无遮挡网站| 免费无遮挡裸体视频| 好男人视频免费观看在线| 网址你懂的国产日韩在线| 天天躁日日操中文字幕| 国产老妇女一区| 亚洲欧美日韩高清专用| 欧美精品一区二区大全| 狂野欧美白嫩少妇大欣赏| 欧美+亚洲+日韩+国产| 一进一出抽搐动态| 亚洲精品自拍成人| 国产精品一区www在线观看| 99久久久亚洲精品蜜臀av| 在线免费十八禁| 亚洲精品自拍成人| 国产精品美女特级片免费视频播放器| 三级男女做爰猛烈吃奶摸视频| 国产成人影院久久av| 永久网站在线| 精品人妻熟女av久视频| 欧美又色又爽又黄视频| 蜜桃亚洲精品一区二区三区| 一区福利在线观看| 高清在线视频一区二区三区 | 男女那种视频在线观看| 精品午夜福利在线看| 日韩大尺度精品在线看网址| 国产精品日韩av在线免费观看| 国产成人a区在线观看| 亚洲自偷自拍三级| 波多野结衣巨乳人妻| 国国产精品蜜臀av免费| 亚洲av中文字字幕乱码综合| 久久久久久国产a免费观看| 成人欧美大片| 亚洲自偷自拍三级| 亚洲三级黄色毛片| 变态另类丝袜制服| 尾随美女入室| 校园人妻丝袜中文字幕| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 国产精品国产高清国产av| 一级毛片我不卡| 插逼视频在线观看| 简卡轻食公司| 久久热精品热| 久久99热6这里只有精品| 午夜福利在线在线| 秋霞在线观看毛片| 国产三级在线视频| 青春草国产在线视频 | av免费在线看不卡| 中文在线观看免费www的网站| 99久久精品热视频| 观看免费一级毛片| 亚洲自偷自拍三级| 日韩大尺度精品在线看网址| 久久久精品94久久精品| 精品少妇黑人巨大在线播放 | 99久国产av精品国产电影| 日韩一本色道免费dvd| 久久99热6这里只有精品| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| 91久久精品国产一区二区三区| 伊人久久精品亚洲午夜| 天天躁日日操中文字幕| 国产精品一区二区性色av| 国产成人aa在线观看|