• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    2015-02-09 01:28:44Tajdu

    K.Tajduˊs

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    Analysis of horizontal displacement distribution caused by single advancing longwall panel excavation

    K.Tajduˊs*

    Strata Mechanics Research Institute,Polish Academy of Sciences,Krakow,Poland

    A R T I C L E I N F O

    Article history:

    Received 2 January 2015

    Received in revised form

    16 March 2015

    Accepted 17 March 2015

    Available online 8 May 2015

    Horizontal displacements/movements

    Surface deformations

    Mining exploitation

    Horizontal displacement coeffcient

    Center of gravitation(COG)zone

    The paper presents an analysis of the horizontal displacement of surfaces induced by exploitation in a longwall panel.The panel under discussion is No.698 of Prosper Haniel coal mine,Germany.The author discusses both the distribution of displacement vectors,according to the theory assuming surface point displacement towards the center of gravitation(COG)zone of a selected deposit element,and the analysis of horizontal displacement measurements,based on the assumption that the value of horizontal displacement is proportional to the slope of the subsidence trough.Finally,the value of horizontal displacement coeffcientBis estimated for particular longitudinal and transverse measurement section of the analyzed longwall No.698.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Underground longwall excavation creates deformations inside the rock mass which can appear on the surface.One indicator of such a deformation is the vector of rock mass movement,which can be easily divided into two components:vertical and horizontal movements.In the past,many scientists have dealt with the problem of vertical movement(subsidence)determination.Due to the subsidence of rock mass caused by underground mining,such operations have been observed and quantifed since early 20th century.Work on subsidence calculation methods was started by Schmitz(Lehmann et al.,1942).Later,Awierszyn(1947)proposed a methodology assuming the kinetics of the rock displacement process in analytical solutions,which allowed for the introduction of universal theoretical descriptions of rock mass movement.The above proposal gave rise to the intensive development of calculation methods,especially methods based on the normal distribution of mining infuence,like Knothe’s method(Knothe,1953,1984; Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).

    But in spite of the many theories and methods used to calculate surface deformations above underground operations,inter alia, Keinhorst(1925),Sann(Lehmann et al.,1942),Bals(1931/1932), Knothe(1953),NCB(1975),etc.,estimations of the values and distribution of horizontal movement are still unclear.

    This paper presents the monitoring and analysis of horizontal movements caused by a single longwall panel excavation,No.698. Analysiswas carried out based on two the most popularhypotheses of horizontal movements:

    (1)Theories assuming the displacement of surface points towards the center of gravitation(COG)of a selected element of deposit, e.g.the theories of:Keinhorst(1925),Bals(1931/1932), Lehmann et al.(1942),Sann,Beyer(Lehmann et al.,1942), etc.,and

    (2)Theories assuming that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y)(Awierszyn,1947),e.g.Knothe’s method and Ruhrkohle method.

    To sum up,both the COG theory and the hypothesis of Awierszyn(1947)indicate the proportionality between the vector of horizontal displacement and the vector of subsidence trough profle slope.

    2.Examples of the Gauss distribution method used to calculate mining-induced surface deformations

    Most theories used for surface deformation calculations are based on the Gauss distribution function.And from it,two methods were commonly used in Europe,China and the United States.These are:Knothe’s method(Knothe,1953,1984;Sroka et al.,2011)and Ruhrkohle method(Sroka,2010;Sroka et al.,2011).In a strictly mathematical sense,both the above-mentioned methods aresimilar.They differ,however,only in their defnitions of angles limiting the horizontal range of subsidence trough,which are defned by means of the following relation:

    Fig.1.Situation of exploitation fronts when the deformation measurement was stopped.

    whereβis the angle of main infuences’rangeaccording toKnothe’s theory,γis the limit angle of the Ruhrkohle method,andkis the coeffcient which is equal to-ln0.001.

    These classic theories suggest that mining-induced surface displacement can be described by means of the function of infuences,and in the case of a three-dimensional(3D)problem, exploitation of any feld results in the subsidence of pointAon a terrain surface,which can be illustrated with the following equation:

    wherew(xA,yA)is the subsidence of any pointA(mm);ais the subsidence coeffcient depending upon exploitation system,which is generally a relation of expected subsidence trough volume to a selected volume;gis the thickness of mined-out deposit(m);rK,rRare the radii of main infuences’range(m)for Knothe’s method and Ruhrkohle method,respectively;His the depth of exploitation(m); χis the parameter depending on chosen theory,χ=1 for Knothe’s method,χ=k/πfor Ruhrkohle method;dPis the surface of infnitesimally small element of mined-out deposit,and dP=dxdy;Pis the surface of mined-out space of deposit.

    From the differentiation of Eq.(2),further formulae can be obtained,which may in turn help to determine the values of such surface deformation indices as:slope of subsidence trough profle at any point(Tx,Ty)(Eq.(4))or curvature of subsidence trough profle(Kxx,Kyy,Kxy)(Eq.(5)).Also horizontal displacement(ux,uy) (Eq.(6))and horizontal deformation(εx,εy)(Eq.(7)and(8)-maximum and minimum horizontal deformations)can be determined if a proper coeffcient is assumed.

    Fig.2.Survey measurements contour lines along with measurements points of:(a)horizontal displacement inxdirection(mm),(b)horizontal displacement inydirection(mm).

    Fig.3.Surface subsidence measurements contour line(mm)along with measurement points.

    whereBis the displacement coeffcient(or horizontal deformation coeffcient).This coeffcient is then used to calculate horizontal movements and strains,assuming proportions between the slope of subsidence trough profle and horizontal movements.The hitherto determined empirical values of coeffcientB,for varied measurement bases and varied mining or geological conditions,can be defned in the following ranges(Tajduˊs,2013,2014):

    (1)For coal mines:from 0.15rto 0.7r,

    (2)For sulfur mines:from 0.15rto 0.26r,

    (3)For copper mines:from 0.23rto 0.77r.

    It also should be noted that some measurements suggest that the coeffcientBis not constant,but depends upon the position of the measurement point in the formed subsidence trough(Tajduˊs, 2013,2014).The presented range of the coeffcientBvaries widely due to the fact that disturbance depends upon the following factors:number and thickness of mined-out seams,dimensions of mined-out felds in each seam,methods of void liquidation,mining rate,geological and hydro-geological structure of overburden, tectonics,strength and strain parameters of strata.

    Below,the author presents the analysis of horizontal movements for a single advancing longwall panel excavation taking into consideration the COG andTtouproportion theories.

    3.Horizontal displacement analysis for the sample mine of Prosper Haniel

    Analysis of horizontal displacements of the terrain surface was carried out for the sample area of the BW Prosper Haniel coal mine where the single longwall panel was excavated(DMT,2001).

    In 1999,the coal mine started exploitation of the wall No.698 in the seam O/N at an average depth of 960 m.Thewidth of mined-out wall was 270 m,its panel runwas 970 m,whereas its height ranged from 3.6 m to 4.3 m.Excavation of the longwall was initiated on 10 May 1999 and terminated on 23 November 1999.After the completion of mining in the longwall No.698,nevertheless still during the measurements of subsidence and horizontal movement of measurement points,the exploitation of the longwall No.682 with the thickness of 1.6 m commenced in the seam P1 at the depthH=920 m.The situation is presented in Fig.1.

    On the surface,above the Prosper Haniel coal mine,a measurement network system consisting of dispersed geodesic points was set up.Measurements were takenwith the use of GPS,which is characterized by the accuracy of below 5 mm(Sroka,2000).The frst measurement was carried out on 1 April 1999 for the points numbered from 1 to 48.The distribution of measurement points is presented in Fig.1.

    Fig.4.3D analyzed mining situation along with the position of surface measurement points(at the level of+60 m).

    The results of geodesic measurements taken in the period between the date of exploitation commencement of the wall No.698 and the date of 11 January 2000 indicate that the maximum subsidence measured in the central part of the trough reached thesteadystate.Only in the areaof exploitation end of thewall No.698, the points indicated their transient state.In addition,it should be noted that the layer of hard sandstone,with the thickness of approximately 90 m,occurring above the seam O/N,as well as the small dimensions of the excavated longwall No.698,caused the occurrence of partial subsidence trough on the surface.The trough was characterized by values of deformation indices lower by 50%in comparison to the values obtained during the prognosis carried out for that exploitation(Stocks and Sroka,2000).

    Figs.2 and 3 present the fnal values of deformation indices obtained from geodesic measurements.For survey measurements contour lines,matching was achieved according to the Kriging method,which attributes particular weighing,called Kriging coeffcients(weighing),to the samples inside the estimation feld (sample search area)in order to minimize the mean square prediction error(Kriging variance).The author used the linear variogram with no nugget effect.

    Fig.5.A spatial representation of the courses of all vector directions.

    3.1.Analysis of displacement vectors-searching COG inside the strata

    In the frst analysis of displacement vectors of measurement points,the author tried to fnd the area where the direction of the vectors of displacements met.To fulfll this task,the analysis of measurement points situated in the vicinity of longwall No.698 was used for a further study.Position changes of measurement points were analyzed and“virtual vectors”symbolizing the displacement of initial points(presented in Fig.4)towards the center of rock mass were marked on the basis of GPS satellite data (spatial coordinates(x,y,z)of each point).

    The author made the analysis for(mining and measurements) situations where only part of longwall panel was excavated(Fig.4). Such selected situations allow for the analysis of vector displacements of surface points with only a small disturbance from created goaf(in Fig.4,the part of excavated deposit was marked with a white feld with the dimensions of 294 m×270 m).Data from a total of 48 points were available;however,the analysis did not take the points numbered as 1,7,21,47 and 48 into consideration,since the results obtained in those points could not be treated as reliable due to the occurrence of some anomalies in the values of displacement.It had been assumed that the points,whose values of measured subsidence were lower than twice the measuring error (<5 mm),would be neglected in the study.Therefore,a total of 43 points were actually subject to analysis.A sample study of displacement direction of each measurement point was carried out on the basis of the analysis of the results of initial measurement and the measurement after 50 days from the commencement of exploitation(i.e.the ffth measurement taken on 29 June 1999).It corresponded to the mining situation with the wall advance of 294 m and with the exploitation panel opening approximate to a square(Fig.4).Fig.5 illustrates the course of all directions of displacement vectors,which appeared after matching the spatial coordinates(x,y,z)for the ffth measurement.Since the lines overlapped,which failed to produce a clear picture,it was decided that the same data should be presented by means of projecting the vectors into theyzplane,which is illustrated in Fig.6.For the sakeof better clarity and accuracy of the illustrations,the vectors of horizontal displacements were crossed with thexyplanes at the depths of 100 m,150 m,200 m,250 m,300 m,350m,400 m,500 m, 600 m,700 m,800 m and 900 m,respectively,thus creating regular sections between the planes.

    Fig.6.Graphic representation of the course of all vector directions in theyzplane.

    The character of the course of the majority of vectors seems to clearly indicate that the measurement points on the surface tend to displace towards the exploitation void,which appeared as a result of the excavation of the feld marked with a white rectangle.Such a situation is even more evident in the horizontalxycross-sections made at various depths(Fig.7).For example,if we study Fig.7b more carefully,presenting the displacement vectors from the initial position of measurement points to their position for the ffth measurement and the direction of those vectors to the point they cut through the horizontal plane at the depth of 250 m,it can be clearly seen that,for the considerable number of measurement points,their displacement vectors run within the feld positioned above the exploitation void.

    Generally,the observations and analyses indicated that the vectors of displacements marked for the measurement points,as well as their directions,approach a particular zone with a shape of ellipsoid,which is positioned above the exploitation void.The zone can be referred to as“the COG zone”.Fig.8 presents three ellipsoids simulating the COG zone with the areas of 7667 m2for ellipse P1, 28,203 m2for ellipse P2,and 70,418 m2for ellipse P3.These ellipses were drawn for three different cross-sections at the depths of 200 m,250 m and 300 m,respectively.It was observed that at the depth of 250 m,the ellipse P1embraces 13 points crossing betweenthe section and the directions of measured vectors of displacements;ellipse P2embraces 7 such points,whereas ellipse P3embraces 11 points.

    Fig.7.Displacement vectors of measurement points for characteristic cross-sections at the depths of:(a)200 m,(b)250 m,(c)300 m,and(d)350 m,respectively.

    For the 40 analyzed measurement points and the sample exploitation panel of 270 m×294 m,such a zone occurs at the depth of approximately 250 m.In its vicinity,there appears to be a large concentration of vector directions marked on the basis of the measurements of 3D displacements of the given points(example in Fig.9).Only the displacement vectors of several points(i.e.16,20, 32,33 and 36)and marking their directions have a dissimilar course,which may be caused by numerous geological factors or by a measurement error.

    Fig.8.Ellipses of“COG zones”(P1=1,P2=2,P3=3)for various cross-sections.

    3.2.Analysis of displacement coeffcient B variations

    Different approaches to the analysis of horizontal surface movements are based on the assumption that the value of horizontal displacementu(x,y)is proportional to the slope of subsidence trough profleT(x,y).But to properly calculate horizontal deformations,the value of displacement coeffcientBshould be estimated.

    In order to analyze the distribution of coeffcientBvalues for the exploitation area of the longwall panel No.698 of the Prosper Haniel coal mine,as many as a dozen measurement cross-sections perpendicular to the panel length were made(Fig.10).

    For the above-mentioned cross-sections,a diagram presenting the values of horizontal displacement(movements)in the direction of the cross-sectionu(α)in the function of slope value in the same cross-sectionT(α)was made.Fig.11a and b show the sample diagrams of horizontal displacement in the directionu(α)in the slope functionT(α)for the cross-sections Nos.7(a)and 12(b),respectively.

    Fig.9.Graphic representation of selected vectors projected on theyzplane crossing the horizontalxyplane at the depth of approximately 250 m.

    For the cross-sections presented above,function correlations between horizontal displacements and slopes were determined using linear regression method(cf.Table 1).In the formulaepresented in the table,the values of horizontal displacements were given in millimeters,whereas the slope was given in mm/m,which means that the value of parameterBis expressed in meters.

    On the basis of the analysis of the matching formulae for linear regression for twelve cross-sections(Table 1),it can be observed that the results for cross-section No.1 seem barely satisfactory, whereas for the remaining cross-sections it is far more accurate, especially for all the sections from No.7.Those conclusions were verifed by analyzing the summary values for the sections No.1 to No.6(Fig.12a)to the middle of panel length,as well as for the sections No.7 to No.12(Fig.12b).

    Fortheabove-mentionedsummarycross-sections,the following matching was obtained:

    (1)For the sections No.1 to No.6:u(α)=-264.3T+85.1,with matchingR2=0.883;

    (2)For the sections No.7 to No.12:u(α)=-170.5T+10.3,with

    matchingR2=0.91.

    Fig.10.Measurement cross-sections perpendicular to the longwall panel No.698.

    The most likely reason for such signifcant disproportions in matching the regression lines between summary matching for sections No.1 to No.6 and No.7 to No.12 is a relatively short period of measurement duration.The completion of exploitation of the longwall panel No.698 took place on 23 November 1999 and nearly two months later(i.e.11 January 2000)these measurements were completed.Such a short measurement period for the points positioned in the vicinity of the ultimate phase of exploitation meant that in those points,the fnal stationary values of deformation indices were not obtained.In German mines,it is assumed that the minimum period necessary for reaching a fnal stationary value of deformation is approximately 3-6 months(Sroka,2010),depending on rock mass quality and exploitation depth.

    For all the summary cross-sections,i.e.No.1 to No.12,the following formula was obtained:u(α)=-211.3T+31.9,with matchingR2=0.806.

    Subsequently,the analysis of the distribution of the coeffcientBvalues was carried out for the cross-section perpendicular to the longwall panel No.698,crossing the middle of the longwall.The following formula for linear regression was obtained:u(α)=-190.4T+40.6,with matchingR2=0.854.

    The comparison of coeffcientBfor the cross-section parallel to the panel length with that for the cross-section perpendicular to the panel length indicates that the coeffcientBfor the parallel section is approximately 10%lower than that for the perpendicular section.

    The above-mentioned formulae for matching the regression lines to the measurement resultsdifferfrom theassumedhypothesis of Awierszyn(1947)by the value of the intercept.In order to approximate those values for the solution presented by Awierszyn(1947),it was assumed that the linear regression lines cross exactly in the origin.The results of such a matching were presented for several sample summary cross-sections:

    Table 1Matching formulae for linear regression for the cross-sections perpendicular to the longwall panel No.698.

    Fig.11.Horizontal displacement diagram in the cross-section directionu(α)in the slope functionT(α)for the cross-sections No.7(a)and No.12(b).

    (1)For the summary cross-sections No.1 to No.6:u(α)=-237.4T, whereR2=0.755;

    (2)For the summary cross-sections No.7 to No.12:u(α)=-170.8T, whereR2=0.905;

    (3)For the summary cross-sections No.1 to No.12:u(α)=-205.7T, whereR2=0.779.

    Fig.12.Matching formula of linear regression for the summary values of parameterBfor the cross-sections:(a)No.1 to No.6,and(b)No.7 to No.12.

    For the estimated values of the horizontal deformation coeffcientB,the value of standard deviation ofS=59 mwas determined, which means that a single value of coeffcientBwas determined with the accuracy of 26%.

    4.Conclusions

    The prognostic values of horizontal surface displacements above a mining exploitation area still pose numerous doubts regarding their validity.Studies and observations carried out in situ seem to indicate that the following factors,inter alia,infuence the distribution of horizontal displacement:the position of a given point in relation to exploitation,rock mass properties,hydrogeological conditions,tectonics,depth of exploitation,thickness of excavated deposit,method of exploitation or speed of mining performance.

    The analysis of the course of horizontal displacement vectors after excavation of wall No.698 proved logical and expected senses and directions of measured vectors.Therefore,in relation to the general character of the vector course it is justifed to assume the existing of concentration area of virtual vectors,determined on the basis of measurements of spatial displacement of points.Based on the analysis,where the strata were parted with horizontal planes (from the seam level up to the surface with interval of 50 m),it was revealed that the best agreement of the displacements vectors concentration is achieved for the depth of approximately 250 m.

    Analysis of the distribution of horizontal displacement coeffcientB,carried out for the exploitation of the wall No.698 in the seam O/N of Prosper Haniel coal mine,indicated the proportionality between the horizontal displacement vector and the vector of subsidence trough slope profle.

    The study also specifed that the average displacement coeffcient for cross-sections perpendicular to the advance of the mining front equalsB=205 m(B=0.21H,orB=0.47rfor tanβ=2.2).It should be noted that,according to numerous studies on the infuence of time on the distribution of measured deformations hitherto carried out in German mines,a minimum period necessary for achieving a stabilized(stationary)subsidence trough ranges between 3 and 6 months.This means that analyses for the initial cross-sections numbered as 1 and 2 were actually carried out for non-stationary deformations.The determined value of coeffcientBfor the sections numbered from 3 to 12 wasB=204 m(B=0.21H, orB=0.47rfor tanβ=2.2).

    In summary,optimal matching was obtained for the sections crossing the middle of exploitation feld(No.7),as well as for sections outside the contour of the wall(Nos.11 and 12).

    Confict of interest

    The author wishes to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    The project was fnanced by the National Science Center of Poland granted on the grounds of decision No.DEC-2011/01/D/ ST8/07280.

    Awierszyn SG.Mining-induced rock mass subsidence.Moscow,Russia:Ugletiechizdat;1947(in Russian).

    Bals R.Problem of mining subsidence prediction.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen;1931/ 1932.s.42/43:98-111(in German).

    Deutsche Montan Technologie GmbH(DMT).BW Prosper Haniel measurements point-“Schwarze Heide”.2001(not published)(in German).

    Keinhorst H.Calculations of surface subsidence in Emscher.In:25 Jahre der Emschergenossenschaft 1900-1925;1925.p.53-64(in German).

    Knothe S.Time infuence on shaping of subsidence trough.Archive of Mining Science 1953;1:21-31.

    Knothe S.Prediction of mining infuence.Katowice,Poland:ˊSla?sk;1984(in Polish). Lehmann K,Neubert K,Schafstein K.Calculation and presentation of ground movements above underground mining exploitation.Stuttgart,Germany:Deutscher Markscheider-Verein e.V,Mitteilungen aus dem Markscheidewesen; 1942(in German).

    National Coal Board(NCB).Subsidence engineers’handbook.London,UK:Mining Department,National Coal Board;1975.

    Sroka A.Surface movement measurements using GPS above turning longwall panel. In:IGSMiE PAN,Kraków,vol.1.Kraków,Poland:Kraków Publishing House; 2000.p.361-70(in Polish).

    Sroka A.Infuence of exploitation velocity on surface deformation.In:IGSMiE PAN, Krakówvol.1.Kraków,Poland:Kraków Publishing House;2010.p.523-48(in Polish).

    Sroka A,Tajduˊs K,Preusse A.Calculation of subsidence for room and pillar and longwall panels.In:Proceedings of the 11th Underground Coal Operations’Conference,University of Wollongong&the Australasian Institute of Mining and Metallurgy;2011.p.83-90.

    Stocks S,Sroka A.Design of longwall panels for mining damage reduction.In: Proceedings of the 11th International Congress of the ISM,Kraków;2000. p.183-90(in German).

    Tajduˊs K.Mining-induced surface horizontal displacement:the case of BW Prosper Haniel mine.Archive of Mining Science 2013;58(4):1037-55.

    Tajduˊs K.The nature of mining-induced horizontal displacement of surface on the example of several coal mines.Archive of Mining Science 2014;59(4):971-86.

    Krzysztof Tajduˊsgraduated as a Mining Engineer(2003) from AGH University of Science and Technology in Krakow (AGH-UST),Poland.He got MSc Engineer in Geomechanics. After graduation he started working for Strata Mechanics Research Institute of the Polish Academy of Sciences(2003 up today).In 2008 he defended a double Ph.D.degree:one in the feld of mining and geological engineering at AGHUST in Krakow,Poland,the other in the feld of soil mechanics at TU Bergakademie Freiberg,Germany.In 2009 he has become the youngest member of the Polish Committee on the State Mining Authority for the state of water and rock roof collapse hazard in Salt Mine“Wieliczka”S.A. Since 2010 he has been a full member of the Polish Commission of the State Mining Authority for the Surface Protection.In 2011-2014 he was working at the AGH-UST,Faculty of Drilling,Oil and Gas and from 2014 he is a guest professor at Binh Duong University,Vietnam.He has working in more than 60 projects in whole Europe related to mining-induced rock mass deformation and mining damages,rock mass stabilization,rockburst,tunneling,hydraulic fracturing,CBM.He is currently the member of ISRM and the Section of Rock Mechanics and Underground Building,Committee of Mining,Polish Academy of Sciences.

    *Tel.:+48 126376200(55).

    E-mail address:tajdus@img-pan.krakow.pl.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.012

    久久精品久久精品一区二区三区| 日韩欧美一区视频在线观看| 久久国产精品大桥未久av| 最新的欧美精品一区二区| 爱豆传媒免费全集在线观看| 午夜91福利影院| 啦啦啦啦在线视频资源| 亚洲精华国产精华液的使用体验| 蜜桃在线观看..| 在线看a的网站| 日本vs欧美在线观看视频| 久久99热这里只频精品6学生| 97精品久久久久久久久久精品| 日本欧美视频一区| 边亲边吃奶的免费视频| 黑人猛操日本美女一级片| 99久国产av精品国产电影| 国产欧美日韩一区二区三区在线| 久久av网站| 蜜臀久久99精品久久宅男| 一级a做视频免费观看| 国产亚洲精品久久久com| 十八禁高潮呻吟视频| 国产成人精品福利久久| 极品人妻少妇av视频| 卡戴珊不雅视频在线播放| 国产精品久久久久久久久免| 亚洲精品美女久久久久99蜜臀 | 毛片一级片免费看久久久久| 高清毛片免费看| 捣出白浆h1v1| 哪个播放器可以免费观看大片| av天堂久久9| 欧美xxxx性猛交bbbb| 日韩视频在线欧美| 伊人亚洲综合成人网| 啦啦啦在线观看免费高清www| 春色校园在线视频观看| 亚洲三级黄色毛片| 男女免费视频国产| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 国产午夜精品一二区理论片| 日本与韩国留学比较| 久久午夜综合久久蜜桃| 亚洲精品成人av观看孕妇| 精品人妻在线不人妻| av网站免费在线观看视频| 欧美精品国产亚洲| 日韩一区二区三区影片| 捣出白浆h1v1| 少妇人妻 视频| 一二三四中文在线观看免费高清| 男女午夜视频在线观看 | a 毛片基地| 欧美97在线视频| 制服丝袜香蕉在线| 国产一区亚洲一区在线观看| 国产成人aa在线观看| 美女中出高潮动态图| 大话2 男鬼变身卡| 中文字幕最新亚洲高清| 飞空精品影院首页| 老司机影院毛片| 极品人妻少妇av视频| videossex国产| 99久久人妻综合| 人人妻人人澡人人爽人人夜夜| 成人国产麻豆网| 99久久综合免费| 天天躁夜夜躁狠狠躁躁| 欧美变态另类bdsm刘玥| 只有这里有精品99| 精品少妇久久久久久888优播| 欧美 日韩 精品 国产| 久久久久国产网址| 亚洲av成人精品一二三区| 丰满迷人的少妇在线观看| 三级国产精品片| 国产午夜精品一二区理论片| 久久精品国产自在天天线| 久久97久久精品| 午夜精品国产一区二区电影| 中文字幕另类日韩欧美亚洲嫩草| 国产亚洲午夜精品一区二区久久| 99热6这里只有精品| 熟女av电影| 91国产中文字幕| 午夜免费鲁丝| 高清在线视频一区二区三区| 成人毛片a级毛片在线播放| 国产亚洲午夜精品一区二区久久| 美女视频免费永久观看网站| 夜夜爽夜夜爽视频| 欧美+日韩+精品| 国产有黄有色有爽视频| 最新中文字幕久久久久| 成人影院久久| 欧美精品亚洲一区二区| 国产精品国产三级国产专区5o| 久久精品国产鲁丝片午夜精品| 女人被躁到高潮嗷嗷叫费观| 久久久a久久爽久久v久久| 欧美+日韩+精品| 免费av不卡在线播放| 熟女电影av网| 国产高清不卡午夜福利| 九九在线视频观看精品| 国产精品国产三级专区第一集| av播播在线观看一区| 哪个播放器可以免费观看大片| 中国三级夫妇交换| 777米奇影视久久| 看免费av毛片| 99久久精品国产国产毛片| 欧美成人午夜免费资源| a级片在线免费高清观看视频| 汤姆久久久久久久影院中文字幕| 在线观看美女被高潮喷水网站| 在线观看www视频免费| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 久久97久久精品| 亚洲国产精品国产精品| 欧美精品一区二区大全| 久久人人爽av亚洲精品天堂| 三上悠亚av全集在线观看| 看十八女毛片水多多多| 亚洲av.av天堂| 婷婷色综合www| 亚洲第一av免费看| 91国产中文字幕| 国产1区2区3区精品| 久久精品国产鲁丝片午夜精品| 成年美女黄网站色视频大全免费| 观看美女的网站| 成年av动漫网址| 97超碰精品成人国产| 只有这里有精品99| 午夜91福利影院| 国产成人精品一,二区| 亚洲av欧美aⅴ国产| 中国国产av一级| 飞空精品影院首页| 午夜福利在线观看免费完整高清在| 大片电影免费在线观看免费| 中文字幕亚洲精品专区| 国产成人精品久久久久久| 精品久久国产蜜桃| 男人舔女人的私密视频| 亚洲av欧美aⅴ国产| 欧美性感艳星| 一个人免费看片子| 亚洲精品久久久久久婷婷小说| 久久久久久久精品精品| 国产一区有黄有色的免费视频| 22中文网久久字幕| 高清不卡的av网站| 夜夜爽夜夜爽视频| 69精品国产乱码久久久| 中文乱码字字幕精品一区二区三区| 18+在线观看网站| 香蕉国产在线看| 嫩草影院入口| 80岁老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 国产免费一区二区三区四区乱码| 宅男免费午夜| 99久久中文字幕三级久久日本| a 毛片基地| 不卡视频在线观看欧美| 黑人高潮一二区| 欧美人与性动交α欧美软件 | 精品福利永久在线观看| 男人操女人黄网站| av免费在线看不卡| 午夜免费鲁丝| 久久人人97超碰香蕉20202| 国产高清不卡午夜福利| 中国三级夫妇交换| 九色亚洲精品在线播放| 日韩在线高清观看一区二区三区| 国产精品一国产av| 99久久综合免费| 一级爰片在线观看| 精品人妻偷拍中文字幕| 两个人看的免费小视频| 女人被躁到高潮嗷嗷叫费观| 国产白丝娇喘喷水9色精品| 精品国产一区二区久久| 2021少妇久久久久久久久久久| h视频一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲美女视频黄频| 色视频在线一区二区三区| 18禁在线无遮挡免费观看视频| 51国产日韩欧美| 欧美成人精品欧美一级黄| 日本91视频免费播放| 久久久国产精品麻豆| 欧美精品一区二区免费开放| 多毛熟女@视频| 国语对白做爰xxxⅹ性视频网站| 秋霞在线观看毛片| 免费少妇av软件| 九草在线视频观看| 亚洲精品自拍成人| 日韩中文字幕视频在线看片| 一本大道久久a久久精品| 高清在线视频一区二区三区| 国产 一区精品| 我要看黄色一级片免费的| 亚洲精品一二三| 国产极品粉嫩免费观看在线| 国产乱来视频区| 久久国产精品大桥未久av| 久久ye,这里只有精品| 亚洲av在线观看美女高潮| 人成视频在线观看免费观看| 精品久久久精品久久久| 亚洲中文av在线| 又粗又硬又长又爽又黄的视频| 国产成人欧美| 国产女主播在线喷水免费视频网站| 午夜免费鲁丝| 午夜免费男女啪啪视频观看| 国产男人的电影天堂91| 99久久人妻综合| 免费高清在线观看视频在线观看| 亚洲国产精品成人久久小说| 免费高清在线观看日韩| 人人妻人人添人人爽欧美一区卜| 男女无遮挡免费网站观看| 日韩中字成人| 亚洲精品成人av观看孕妇| 九九在线视频观看精品| 黄色毛片三级朝国网站| 国产伦理片在线播放av一区| 97在线视频观看| 亚洲国产成人一精品久久久| 亚洲精品视频女| 王馨瑶露胸无遮挡在线观看| 夜夜爽夜夜爽视频| 婷婷色麻豆天堂久久| 18禁在线无遮挡免费观看视频| 99久久人妻综合| 一级毛片黄色毛片免费观看视频| 国产成人免费无遮挡视频| 在线观看免费视频网站a站| 亚洲av成人精品一二三区| 99热全是精品| 纵有疾风起免费观看全集完整版| av电影中文网址| 欧美激情国产日韩精品一区| 丰满乱子伦码专区| 欧美精品高潮呻吟av久久| 精品国产乱码久久久久久小说| 亚洲人与动物交配视频| 国产成人精品久久久久久| 一区二区三区四区激情视频| 日韩一区二区视频免费看| 免费播放大片免费观看视频在线观看| 丰满饥渴人妻一区二区三| 亚洲欧美精品自产自拍| 久久午夜福利片| 人妻一区二区av| 精品午夜福利在线看| 精品99又大又爽又粗少妇毛片| freevideosex欧美| 一区二区三区乱码不卡18| 十八禁网站网址无遮挡| 国产成人免费观看mmmm| 久久精品久久精品一区二区三区| 亚洲精品视频女| 两性夫妻黄色片 | 亚洲四区av| 亚洲精品一二三| 欧美日韩视频精品一区| 亚洲色图综合在线观看| 丝瓜视频免费看黄片| 国产不卡av网站在线观看| 高清黄色对白视频在线免费看| 久久这里只有精品19| 成人无遮挡网站| 欧美xxxx性猛交bbbb| 国产乱人偷精品视频| 人体艺术视频欧美日本| 久久久久精品久久久久真实原创| 高清欧美精品videossex| 欧美变态另类bdsm刘玥| 国产欧美日韩综合在线一区二区| 午夜91福利影院| 老女人水多毛片| 国产极品天堂在线| 啦啦啦中文免费视频观看日本| 91成人精品电影| 最近最新中文字幕大全免费视频 | 69精品国产乱码久久久| 男女高潮啪啪啪动态图| 少妇人妻精品综合一区二区| 国产高清不卡午夜福利| 欧美性感艳星| 天天影视国产精品| av福利片在线| 人妻少妇偷人精品九色| 国产一区二区激情短视频 | 午夜久久久在线观看| 中文字幕免费在线视频6| 亚洲激情五月婷婷啪啪| 一本久久精品| 久久亚洲国产成人精品v| 一级,二级,三级黄色视频| 国产综合精华液| 亚洲人与动物交配视频| 深夜精品福利| 成人黄色视频免费在线看| 多毛熟女@视频| 亚洲国产最新在线播放| 亚洲少妇的诱惑av| 交换朋友夫妻互换小说| 狂野欧美激情性xxxx在线观看| 男人爽女人下面视频在线观看| 国产免费又黄又爽又色| 女人久久www免费人成看片| 免费人妻精品一区二区三区视频| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频 | 黄色毛片三级朝国网站| av在线老鸭窝| 成人黄色视频免费在线看| 天美传媒精品一区二区| 亚洲欧美日韩另类电影网站| 人妻 亚洲 视频| 69精品国产乱码久久久| 亚洲综合精品二区| 在线观看一区二区三区激情| 久久久久久久久久人人人人人人| 成人国语在线视频| 下体分泌物呈黄色| 亚洲国产精品999| 草草在线视频免费看| 黄网站色视频无遮挡免费观看| 精品少妇黑人巨大在线播放| 中国三级夫妇交换| 久久人人爽人人片av| 黄色一级大片看看| 亚洲国产欧美在线一区| 人妻人人澡人人爽人人| 久久久欧美国产精品| 精品久久久久久电影网| 超碰97精品在线观看| 最近中文字幕2019免费版| 一级片'在线观看视频| 人妻少妇偷人精品九色| 亚洲性久久影院| 日韩中字成人| 51国产日韩欧美| 午夜福利在线观看免费完整高清在| 午夜福利视频精品| 亚洲性久久影院| 十分钟在线观看高清视频www| 国产无遮挡羞羞视频在线观看| 国产女主播在线喷水免费视频网站| 午夜91福利影院| 国产精品.久久久| 观看美女的网站| 18+在线观看网站| 一边亲一边摸免费视频| 日韩成人av中文字幕在线观看| 精品一品国产午夜福利视频| 亚洲av男天堂| 九九爱精品视频在线观看| 母亲3免费完整高清在线观看 | 国产免费一级a男人的天堂| 校园人妻丝袜中文字幕| 亚洲少妇的诱惑av| 黄片无遮挡物在线观看| 曰老女人黄片| 成人免费观看视频高清| √禁漫天堂资源中文www| 丝瓜视频免费看黄片| 中文字幕另类日韩欧美亚洲嫩草| 男女高潮啪啪啪动态图| 日韩精品免费视频一区二区三区 | 9色porny在线观看| 亚洲av综合色区一区| 国产精品久久久久久久电影| 国产成人精品婷婷| 99热6这里只有精品| 久久精品国产亚洲av涩爱| www.色视频.com| 欧美 亚洲 国产 日韩一| 国产精品国产av在线观看| 69精品国产乱码久久久| 国产视频首页在线观看| 欧美日韩亚洲高清精品| 性高湖久久久久久久久免费观看| 国产极品粉嫩免费观看在线| 水蜜桃什么品种好| 日本黄色日本黄色录像| 极品人妻少妇av视频| 日韩一区二区三区影片| 亚洲欧美一区二区三区黑人 | 男女边吃奶边做爰视频| 亚洲av综合色区一区| 色网站视频免费| 国产综合精华液| 蜜桃在线观看..| 国产精品人妻久久久影院| 性色av一级| 边亲边吃奶的免费视频| 美女福利国产在线| av视频免费观看在线观看| 久久精品久久久久久噜噜老黄| 秋霞在线观看毛片| 欧美xxⅹ黑人| 啦啦啦中文免费视频观看日本| 国产一区二区三区av在线| 色视频在线一区二区三区| 精品亚洲成a人片在线观看| 亚洲欧美成人综合另类久久久| 国产精品一二三区在线看| 免费看不卡的av| 日韩制服骚丝袜av| 狠狠精品人妻久久久久久综合| 91aial.com中文字幕在线观看| 97人妻天天添夜夜摸| 不卡视频在线观看欧美| 精品一区二区三区四区五区乱码 | xxxhd国产人妻xxx| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 99热全是精品| 九草在线视频观看| 成人影院久久| 欧美激情 高清一区二区三区| www.熟女人妻精品国产 | 日韩av不卡免费在线播放| 看免费av毛片| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 99国产综合亚洲精品| 久久综合国产亚洲精品| 国产xxxxx性猛交| 亚洲精品色激情综合| 亚洲国产成人一精品久久久| 1024视频免费在线观看| 大香蕉97超碰在线| 伦精品一区二区三区| 亚洲内射少妇av| 男女无遮挡免费网站观看| 亚洲av.av天堂| 纯流量卡能插随身wifi吗| 伊人亚洲综合成人网| 亚洲高清免费不卡视频| 日本av手机在线免费观看| 日日啪夜夜爽| 两性夫妻黄色片 | 18+在线观看网站| 亚洲国产欧美在线一区| 高清在线视频一区二区三区| av福利片在线| 国产乱人偷精品视频| 国产成人精品婷婷| 免费在线观看完整版高清| 男男h啪啪无遮挡| 全区人妻精品视频| 日韩 亚洲 欧美在线| 成人黄色视频免费在线看| 熟妇人妻不卡中文字幕| 亚洲av福利一区| 热99久久久久精品小说推荐| 一二三四中文在线观看免费高清| 亚洲第一区二区三区不卡| 国产成人aa在线观看| 午夜av观看不卡| 99久久人妻综合| 国产国拍精品亚洲av在线观看| 亚洲欧美成人精品一区二区| 热re99久久国产66热| 男女免费视频国产| 啦啦啦啦在线视频资源| 亚洲av男天堂| 国产色婷婷99| 国产一区亚洲一区在线观看| 欧美丝袜亚洲另类| 亚洲国产欧美日韩在线播放| 日韩人妻精品一区2区三区| 大香蕉97超碰在线| 久久久久国产网址| 久久久久久久精品精品| 另类亚洲欧美激情| 午夜久久久在线观看| 91成人精品电影| 99热网站在线观看| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 国产爽快片一区二区三区| 波多野结衣一区麻豆| 在线观看www视频免费| 免费人妻精品一区二区三区视频| 黄色视频在线播放观看不卡| 男女下面插进去视频免费观看 | 蜜桃在线观看..| 国产高清国产精品国产三级| 日韩欧美一区视频在线观看| √禁漫天堂资源中文www| 国产淫语在线视频| 一边亲一边摸免费视频| 久久国产精品男人的天堂亚洲 | 男女午夜视频在线观看 | 国产在线一区二区三区精| 亚洲av国产av综合av卡| 丝袜脚勾引网站| 色网站视频免费| 亚洲色图综合在线观看| 欧美激情极品国产一区二区三区 | 精品少妇黑人巨大在线播放| 青青草视频在线视频观看| 精品少妇黑人巨大在线播放| 国产成人av激情在线播放| 欧美+日韩+精品| 人人澡人人妻人| 亚洲精品美女久久久久99蜜臀 | 性色av一级| 男人添女人高潮全过程视频| 一本色道久久久久久精品综合| 精品亚洲成a人片在线观看| 桃花免费在线播放| videos熟女内射| 18禁裸乳无遮挡动漫免费视频| 久久人人97超碰香蕉20202| 一区二区av电影网| av黄色大香蕉| 午夜视频国产福利| 国产欧美另类精品又又久久亚洲欧美| 婷婷色av中文字幕| av福利片在线| 男女午夜视频在线观看 | a级毛片黄视频| 亚洲一码二码三码区别大吗| 五月天丁香电影| 人成视频在线观看免费观看| 人妻少妇偷人精品九色| 亚洲激情五月婷婷啪啪| 韩国av在线不卡| 18禁观看日本| 久久99精品国语久久久| 日韩 亚洲 欧美在线| 天天操日日干夜夜撸| 久久国内精品自在自线图片| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产最新在线播放| 国产精品.久久久| 精品国产国语对白av| 免费大片黄手机在线观看| 久久综合国产亚洲精品| 久久久久国产网址| 高清不卡的av网站| 亚洲av电影在线进入| 精品国产国语对白av| 全区人妻精品视频| 夜夜骑夜夜射夜夜干| 欧美日韩一区二区视频在线观看视频在线| 国产在视频线精品| videosex国产| 性色avwww在线观看| 免费女性裸体啪啪无遮挡网站| 9热在线视频观看99| 日韩人妻精品一区2区三区| 一级黄片播放器| 亚洲av中文av极速乱| 纯流量卡能插随身wifi吗| 国产男女内射视频| 国产成人精品在线电影| 一区二区日韩欧美中文字幕 | 午夜福利视频在线观看免费| 国产精品女同一区二区软件| 香蕉丝袜av| 久热久热在线精品观看| 国产精品人妻久久久影院| 免费看不卡的av| 春色校园在线视频观看| 黄片无遮挡物在线观看| 天天影视国产精品| 人人妻人人添人人爽欧美一区卜| 边亲边吃奶的免费视频| 亚洲美女搞黄在线观看| 久久午夜综合久久蜜桃| 免费女性裸体啪啪无遮挡网站| 国产无遮挡羞羞视频在线观看| 一本—道久久a久久精品蜜桃钙片| 免费在线观看完整版高清| 女性被躁到高潮视频| 草草在线视频免费看| 国产伦理片在线播放av一区| 国产老妇伦熟女老妇高清| av福利片在线| 久久久欧美国产精品| 春色校园在线视频观看| av免费观看日本| 国产午夜精品一二区理论片| av电影中文网址| 制服诱惑二区| 日韩精品免费视频一区二区三区 | 在线天堂中文资源库| av不卡在线播放| 日韩不卡一区二区三区视频在线| 免费在线观看完整版高清| 国产片特级美女逼逼视频| 日本vs欧美在线观看视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 美国免费a级毛片| 日本av免费视频播放|