• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Strength criterion for rocks under compressive-tensile stresses and its application

    2015-02-09 01:28:54MingqingYou

    Mingqing You

    School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo,454010,China

    Strength criterion for rocks under compressive-tensile stresses and its application

    Mingqing You*

    School of Energy Science and Engineering,Henan Polytechnic University,Jiaozuo,454010,China

    A R T I C L EI N F O

    Article history:

    Received 17 January 2015

    Received in revised form

    16 May 2015

    Accepted 20 May 2015

    Available online 16 June 2015

    Strength criteria

    Tensile strength

    Exponential criterion

    Hydraulic fracturing

    Estimating in-situ stress with hydraulic borehole fracturing involves tensile strength of rock.Several strength criteria with three parameters result in tensile strengths with great differences,although they may describe the relation between strength of rock and confning pressure with low misfts.The exponential criterion provides acceptable magnitudes of tensile strengths for granites and over-estimates that for other rocks,but the criterion with tension cut-off is applicable to all rocks.The breakdown pressure will be lower than the shut-in pressure during hydraulic borehole fracturing,when the maximum horizontal principal stress is 2 times larger than the minor one;and it is not the peak value in the frst cycle,but the point where the slope of pressure-time curve begins to decline.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    Numerous tests have been carried out to determine the strengths of rocks under confning pressure(CP),as rocks in-situ are usually under compression state.However,tension usually appears in the vicinity of excavation and borehole,and the tensile strength of each rock is much lower than the compressive strength.

    The direct tension test is diffcult to perform for rock(You et al., 2006).In other hand,the Brazilian splitting test with rock disc is easy tocarryout in laboratoryand provides a reasonable estimation for the uniaxial tensile strength(UTS),although there are many issues argued all along(Fairhurst,1964;Hudson et al.,1972;Efmov, 2009;Yu et al.,2009;You et al.,2011).

    Many strength criteria have been proposed to describe the state of stresses in rock at failure,as reviewed in Yu(2002)and You (2011).Clearly,an ideal strength criterion needs to closely ft test data with acceptable accuracy over the stress state expected in practice.Therefore,the tensile strength predicted by a strength criterion is usually used in evaluating the criterion(Ghazvinian et al.,2008;Bineshian et al.,2012).Tensile strengths predicted by both the Coulomb criterion and the Griffth criterion are much higher than the measured magnitudes of almost all rocks,although the two criteria have clear physical backgrounds(Jaeger et al., 2007).

    Another issue is the effect of compressive stress on tensile strength,i.e.strength criterion in tension-compression region.It has practical utilization in the in-situ stress estimation with hydraulic breakout of borehole and some cases of wellbore stability.

    This paperdiscusses fourcriteriawith three material-dependent parameters using test data of nine rocks from the published literature.The exponential criterion with tension cut-off is recommended and adopted to estimate in-situ stress with hydraulic borehole fracturing.

    2.Strength criteria

    Coulomb criterion was initially proposed in 1773 for determination of the shear strength of soil,and introduced for rocks later.It is a linear equation with the principal stresses as

    whereσSis the major principal stress or rock compressive strength, σ3is the minor principal stress,σCis the uniaxial compressive strength(UCS),andmis a material-dependent parameter.However,test results from cylindrical specimens of rocks compressed under CP ofσ2=σ3exhibit convex curves of strength.Therefore, many nonlinear criteria were proposed as modifcations to the Coulomb criterion,and briefy reviewed as follows.

    Hobbs(1964)proposed an empirical criterion with three parameters:

    Its special case atm=2 andn=1/2 is the normal parabolic criterion(You,2011):

    The criterion with one parameter merely fts strengths of granular rocks better than the Coulomb criterion,nearly the same as the Hoek-Brown(H-B)criterion with two parameters.

    The Murrell criterion(Murrell,1965)was widely used atn=0.5 (Mogi,2007):

    The two criteria,Eqs.(2)and(4),are not applicable to negative σ3for power numbernis less than 1,and are certainly beyond the consideration for compressive-tensile strength.

    The Sheoreycriterion(Sheoreyet al.,1989)normalized with UCS is given in the following form:

    The criterion proposed in Carter et al.(1991)is in the similar form.The derivative ofσStoσ3for Eq.(5),and Eq.(4)as well,will be less than 1 whenσ3is large enough.That means the differential stressσS-σ3will decrease with increasing CP.The phenomenon appears really for Solnhofen limestone(Mogi,2007),and Indiana limestone(Schwartz,1964)as well,within the test range of CP,as illustrated by You(2011).It is totally different from the common knowledge.

    The most famous criterion inpower form is the generalized H-B criterion(Hoek et al.,1992):

    The specifc form atn=1/2 is called the H-B criterion(Hoek and Brown,1980)that has been widely used in rock engineering (Eberhardt,2012).The criterion fails to describe strength of ductile rocks,such as limestone and marble under high CP.

    Cohesion and friction in rocks do not act simultaneously at one point,and the cohesion will be replaced by the frictional resistance when crack initiates in the rock under compression(You,2005a). The intact rock under shearing will yield and lose its cohesion,but cracks do not slide macroscopically to increase the friction to the maximum when CP is high enough.The differential stressσS-σ3,or the maximum shear stress equivalently,has an upper limitation in rocks,and is able to be described with a general criterion(You, 2012):

    whereQ0is the UCS;Q∞is the limitation of differential stress when CP increases up to infnite;f(x)is a monotonically decreasing function,and satisfesf(0)=1,f(∞)=0,andf′(0)=-1;andxcan be written as

    whereK0is the increasing rate of strength atσ3=0.

    The exponential criterion(You,2009,2010a)is a specifc case of Eq.(7)at

    The fractional form for Eq.(7)is equivalent to the criterion in Rafai(2011)and Bineshian et al.(2012),and the later manifested that the criterion was originally proposed in Bineshian(2000).In this paper,we called it as the fractional criterion,which is just parallel to the exponential criterion mentioned above.

    3.Fitting solutions of strength criteria and tensile strengths predicted

    In strength criteria,there are always material-dependent parameters,which are determined by ftting the criteria to test data. Test data of nine rocks,presented in Table 1,including granite, limestone,marble,sandstone,and halite,are cited from the literature(Von Kármán,1911;Schwartz,1964;Carter et al.,1991; Haimson and Chang,2000;Sriapai,2010;You,2010a)to evaluate the strength criteria.Averagemagnitude of strengthswith the same CP is used as one datum.

    Different solutions of ftting the criteria to test data will be obtained using various statistical methods.The least square method is mostly used for the convenience in mathematical calculation,but the ftting solution will depart signifcantly from normal data to reduce the squares deviation of abnormal data with huge error. Linear regression for a transformed equation of the H-B criterion may result in an imaginary number of UCS(You,2010a,2012). Therefore,the ftting solution on the least absolute deviation,i.e. the least mean misft,is chosen in this paper.

    The average values of the mean misfts for nine rocks are 2.9 MPa,2.9 MPa,3.1 MPa,and 3.5 MPa using the Sheorey criterion, the fractional criterion,the exponential criterion,and the generalized H-B criterion,respectively.Each criterion provides the least mean misfts for some rocks.The exponential criterion is the best one for three rocks.

    Certainly,the misft is not the single standard to evaluate strength criteria.As illustrated in You(2010a,2012),the exponential criterion may expose a few abnormal data of Mizuho trachyte and Jinping sandstone with huge misft.A new example of Maha Sarakham halite(Sriapai,2010)is shownin Figs.1 and 2.Clearly,the misft of the exponential criterion is mainly pronounced for two data indicated withAandB,as shown in Fig.1.At least,datumAmay be pointed as an abnormal one.If the datum is deleted,thenthe ftting solution using the exponential criterion is almost the same,but the mean misft decreases from 1.3 MPa to 0.9 MPa.

    Table 1Test data of conventional triaxial compression of nine rocks.

    The fractional criterion,bold line in Fig.2,also presents a low misft for the halite,but misft is distributed in four data,indicated withA,B,CandD,located in two sides of the ftting solution.If the datumAis deleted,then the ftting solution,thin line in Fig.2,has a signifcant change,but the mean misft only decreases from1.5 MPa to 1.4 MPa.Compared to the ftting solution using the exponential criterion as shown in Fig.1,the fractional criterion seems not to well describe the strengths under high CPs;hence,the limitation of differential stress from the fractional criterion,Q∞presented in Fig.2,has lower confdence than that from the exponential criterion.

    The UTSs predicted by the ftting solutions of four criteria are presented inTables 2 and 3.The measured tensile strengths of eight rocks with Brazilian test are also presented.The tensile strengths of Westerly granite and Carrara marble are cited from Cai(2010)and Ramsey and Chester(2004),respectively.

    The Sheorey criterion and the generalized H-B criterion predict reasonable tensile strengths only for Tyndall limestone and Indiana limestone,respectively.Except for a few rocks,the tensile strengths predicted by the two criteria are lower than the measured magnitudes.The ratios of UCS to UTS predicted by the generalized H-B criterion are 10.6-63 with an average of 31.8 as presented in Table 3,which is much higher than the practical value.

    Both Rafai(2011)and Bineshian et al.(2012)extended envelopes of the fractional criterion to tension range.The later argued that the criterion described tensile strengths well,but only test results of coal were presented.As listed in Table 2,however,the fractional criterion presents reasonable UTS values only for Westerly granite and Zhaogu sandstone.

    The exponential criterion provides reasonable UTS for four rocks:Bonnet granite,Westerly granite,Zhaogu sandstone,and Georgia marble.The tensile strength predicted by the exponential criterion is 6%lower than the measured magnitude for Bonnet granite,and higher than that of the other rocks,as presented in Table 2.It may be concluded that the exponential criterion tends to overestimate tensile strengths for rocks.

    Fig.1.Fitting solutions using the exponential criterion and the generalized H-B criterion for Maha Sarakham halite.

    Fig.2.Fitting solutions using the fractional criterion for Maha Sarakham halite.The thin line is for test data to the exclusion of datumA.

    Table 2Measured UTSs and the magnitudes predicted by four strength criteria.

    Table 3Ratios of UCS to UTS predicted by four strength criteria.

    4.Strength criterion for rocks under compressive-tensile stresses

    The four criteria have nearly the same average magnitudes of mean misft for nine rocks.However,UTSs predicted by the four criteria have great difference,as presented in Table 2.Clearly,the magnitudeTof UTS is an independent parameter for rock to bedetermined from test;and it is impossible to describe strength for all rocks under compressive-tensile stresses by simply extending a criterion that is optimized from compression test data.

    As the measured tensile strength of Bonnet granite,the merely one case,is slightly larger than the predicted value obtained from the exponential criterion,we may consider that the entireenvelopeoftheexponentialcriteriondescribesthe strength of Bonnet granite under compression-tension on the safety side,as shown in Fig.3.For other rocks,e.g.Zhaogu sandstone as shown in Fig.4,the exponential criterion with a tension cut-off atσ3=-Tis able to describe strength of rocks under compressive-tensile stresses.The exponential criterion is applicable low toσEfor the major principal stress as shown in Fig.4.

    Tensile strengths predicted by the Sheorey criterion and the generalized H-B criterion,however,are much lower than the measured magnitudes for many rocks,such as Bonnet granite, Zhaogu sandstone,and Georgia marble,as presented inTable 2,and so does the fractional criterion for Georgia marble and Bonnet granite.Therefore,the tension cut-off is not applicable to the three criteria mentioned above.

    It should be noted that the strengths of rock especially under low CPs are always dispersed,e.g.six UCSs of Zhaogu sandstone are from 119.7 MPa to 142.9 MPa,as shown in Fig.4.Therefore, improvement for the tension cut-off as illustrated in You(2012) may not be necessary.

    The envelope of the exponential criterion for rocks under compressive-tensile stresses is illustrated nearly as a straight line for the variablexin the range of-T≤σ3≤0 for all rocks:

    in the range of-T≤σ3≤0 for all rocks.Therefore,we may use Eq. (11)instead of the exponential criterion in the tension range to simplify the calculation.The equation is not the Coulomb criterion, but the tangent line of the exponential criterion atσ3=0.The parameterK0is always larger than that in the Coulomb criterion. Tension cut-off is atσE=Q0-K0T,and tensile strength under compressive stress in the range ofσE≤σ1≤Q0is

    Fig.3.Envelopes of four criteria for rock under compressive-tensile stresses.The criteria are optimized from fracture strengths of Bonnet granite.

    Fig.4.Exponential criterion with a tension cut-off for Zhaogu sandstone.

    Strength criteria mentioned above do not consider the effect of the intermediate principal stress.In fact,the commonly utilized tension test under CP,also known as triaxial extension test, is conducted in a stress state ofσ3<0<σ2=σ1(Ramsey and Chester,2004;You,2010b),but the extension of conventional triaxialcompressioncriteriontothetensilestressmeans σ3=σ2<0<σ1,for which there is indeed no test result available for rocks.

    The biaxial compression strength is not equal to the UTS; therefore,the intermediate principal stress has more or less infuence on the strength when the minor principal stress is negative.However,as the tensile strength of rock is much lower than the UCS,the minor principal stress with a negative magnitude,i.e.tensile stress,will not be signifcantly infuenced by the intermediate principal stress at a given major principal stress.

    5.Hydraulic fracturing of rocks

    Hydraulic fracturing is a borehole feld test designed to assess the state of in-situ stress in the earth crust.The overburden stressσzisthoughtof as acting along the vertical direction,and theothers on the horizontal plane namedσHandσh,are calculated using three parameters,i.e.breakdownpressurePb,re-opening pressurePr,and shut-in pressurePsobtained from the pressure-time curve.

    The fracture induced hydraulically closes back at shut-in pressure

    after the pump is shut off.It is strongly recommended that more than one method be used for obtaining the crucialPs(Haimson and Cornet,2003).The re-opening pressure

    is also relative to the determining techniques,as it is not the peak value,but the point on the ascending portion of the pressure-time curve in subsequent cycles,where the slope begins to decline from that maintained in the breakdown cycle.

    The breakdown pressurePbis an identifed magnitude taken as the peak pressure attained in the frst pressure cycle.In the ISRM suggested methods(Haimson and Cornet,2003),it can be written as

    which means that the major principal stressσ1does not infuence the tensile failure of rock.However,it should involve strength criterion in compression-tension region.Based on the elastic fracture mechanics,the far-feld tensile stress and inner pressure,i.e.pore pressureP0,have the same effect on the Griffth crack(You,2005b), therefore the breakdown pressure is

    whereσ1is lower than the UCS,and parametersQ0andK0come from the exponential criterion,as illustrated in Fig.4 and Eq.(13). This provides another magnitude for 3σh-σH,based on the reopening pressurePr.

    As mentioned above,the breakdown pressurePbis the peak pressure in the frst pressure cycle.This implies an assumption thatPb<PSorPb<σh.Hence,the stresses must satisfy

    The pore pressure is not lower than the static hydraulic pressure at the test interval,which is 10 MPa at a depth of 1000 m.The tensile strength of rock is around and usually lower than 10 MPa. Therefore,the magnitude of right side of Eq.(18)is around zero.

    Certainly,the stress magnitudes obtained from hydraulic fracturing always satisfy Eq.(18).Stresses from fve boreholes(Chen et al.,2004;Tan et al.,2004;Kang et al.,2007)are in the region ofσH<2σh,as presented in Table 4.

    Table 4In-situ stresses measured with hydraulic fracturing test.

    Table 5In-situ stresses measured with overcoring test.

    However,the real in-situ stresses may be different from Eq.(18). For example,the in-situ stresses measured with overcoring test (Pine et al.,1983;Anderson andChristianson,2003;Tan et al.,2004; Cai et al.,2010)may exhibit large magnitudes ofσH-2σh,as presented inTable 5.Furthermore,magnitudes of 3σh-σHare negative at test locations in the South Crofty and Oskarshamn.The borehole should break under pore pressure about 5 MPa,not need pump pressure at all,if it was poured with water.The borehole of Ertan at a depth of 30 m would crack after drilling,for the magnitudes of 3σh-σHis low to-9 MPa,about the tensile strength of surrounding rocks.

    One principal stress is nearly along the vertical direction in every case presented in Table 5;therefore,the hydraulic fracturing method might be used in these situations,but breakdown pressurePbshould be lower than the shut-in pressure,i.e.the minor principal stressσh.In other words,Pbwould not be the peak value in the frst cycle,but the point where the slope of pressure-time curve begins to decline.

    6.Conclusions

    None of strength criteria,of which the parameters are determined from conventional triaxial compression strengths,might present reasonable tensile strength for all rocks.Tensile strength of rock is an independent parameter to be determined from test.

    The generalized H-B criterion usually presents a tensile strength lower than the measured magnitude.However,the exponential criterion predicts well tensile strengths for granites, but overestimates for other rocks;therefore,the criterion may be extended to tensile-compressive stresses with the tangent line combined a tension cut-off,and applicable to rock engineering, such as the estimation of in-situ stress with hydraulic fracturing.

    Breakdown pressure may be lower than the shut-in pressure in some cases;and it is not the peak value in the frst cycle,but the point where the slope of pressure-time curve begins to decline.

    Confict of interest

    The author wishes to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    The author would like to acknowledge the reviewers for their valuable comments and suggestions,and thanks to Reviewer#1 for his reminding the initial proposer of the fractional criterion.

    Anderson C,Christianson R.Variability of hydraulic fracturing rock stress measurements and comparison of triaxial overcoring results made in the same borehole.In:Rock stress.Rotterdam:A.A.Balkema;2003.p.315-20.

    Bineshian H.Verifcation of the applicability of rock failure criteria in relation to the limestone of Iran and suggestion of a suitable failure criterion.MS Thesis. Tehran,Iran:Tarbiat Modares University;2000.

    Bineshian H,Ghazvinian A,Bineshian Z.Comprehensive compressive-tensile strength criterion for intact rock.Journal of Rock Mechanics and Geotechnical Engineering 2012;4(2):140-8.

    Cai M.Practical estimates of tensile strength and Hoek-Brown strength parametermiof brittle rocks.Rock Mechanics and Rock Engineering 2010;43(2):167-84.

    Cai MF,Liu WD,Li Y.In-situ stress measurement at deep position of Linglong Gold Mine and distribution law of in-situ stress feld in mine area.Chinese Journal of Rock Mechanics and Engineering 2010;29(2):227-33(in Chinese).

    Carter BJ,Duncan SEJ,Lajtai EZ.Fitting strength criteria to intact rock.Geotechnical and Geological Engineering 1991;9(1):73-81.

    Chen QC,Mao JZ,Hou YH.Study on infuence of topography on in-situ stress by interpretation of measurement data of in-situ stress.Chinese Journal of Rock Mechanics and Engineering 2004;23(23):3990-5.

    Eberhardt E.ISRM suggested method:the Hoek-Brown failure criterion.Rock Mechanics and Rock Engineering 2012;45(6):981-8.

    Efmov VP.The rock strength in different tension conditions.Journal of Mining Science 2009;45(6):569-75.

    Fairhurst C.On the validity of the“Brazilian”test for the brittle materials.International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1964;1(4):535-46.

    Ghazvinian AH,Fathi A,Moradian ZA.Failure behavior of marlstone under triaxial compression.International Journal of Rock Mechanics and Mining Sciences 2008;45(5):807-14.

    Haimson B,Chang C.A new true triaxial cell for testing mechanical properties of rock, and its use to determine rock strength and deformability of westerly granite.International Journal of Rock Mechanics and Mining Sciences 2000;37(3):285-96.

    Haimson BC,Cornet FH.ISRM suggested methods for rock stress estimation-Part 3:hydraulic fracturing(HF)and/or hydraulic testing of pre-existing fractures (HTPF).InternationalJournalofRockMechanicsandMiningSciences 2003;40(6):1011-20.

    Hobbs DW.The strength and stress-strain characteristics of coal in triaxial compression.Journal of Geology 1964;72(2):214-31.

    Hoek E,Wood D,Shah S.A modifed Hoek-Brown criterion for jointed rock masses. In:Proceedings of the Rock Characterization Symposium of ISRM:Eurock 92. London,UK:British Geotechnical Society;1992.p.209-24.

    Hoek E,Brown ET.Underground excavation of rock.London,UK:Institution of Mining and Metallurgy;1980.

    Hudson JA,Brown ET,Rummel F.The controlled failure of rock discs and rings loaded in diametral compression.International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1972;9(2):241-8.

    Jaeger JC,Cook NGW,Zimmerman RW.Fundamentals of rock mechanics.New York, USA:Wiley-Blackwell;2007.

    Kang HP,Lin J,Hang X.Research and application of in-situ stress measurement in deep mines.Chinese Journal of Rock Mechanics and Engineering 2007;26(5): 929-33(in Chinese).

    Mogi K.Experimental rock mechanics.London,UK:Taylor and Francis;2007.

    Murrell SAF.The effect of triaxial stress systems on the strength of rock at atmospherictemperatures.GeophysicalJournalRoyalAstronomicalSociety 1965;10(3):231-81.

    Pine RJ,Tunbridge LW,Kwakwa K.In-situ stress measurement in the Carnmenellis granite.International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 1983;20(2):51-62.

    Rafai H.New empirical polyaxial criterion for rock strength.International Journal of Rock Mechanics and Mining Sciences 2011;48(5):922-31.

    Ramsey JM,Chester MF.Hybrid fracture and the transition from extension fracture to shear fracture.Nature 2004;428(1):63-6.

    Schwartz AE.Failure of rock in the triaxial shear test.In:Proceedings of the 6th US Symposium on Rock Mechanics,Rolla,Missouri,USA;1964.p.109-51.

    Sheorey PR,Ak Biswas,Choubey VD.An empirical failure criterion for rocks and jointed rock masses.Engineering Geology 1989;26(2):141-59.

    Sriapai T.True triaxial compressive strengths of Maha Sarakham rock salt.MS Thesis. Nakhon Ratchasima,Thailand:Suranaree University of Technology;2010.

    Tan CX,Shi L,Sun WF,Lei WZ,Sun Y,Wang RJ,Wu SR.Research on tectonic stress plane.Chinese Journal of Rock Mechanics and Engineering 2004;23(23):3970-8 (in Chinese).

    Von Kármán T.Festigkeitsversuche unter all seitigem Druck.Z Verein Deut Ingr 1911;55:1749-59.

    You MQ.True-triaxial strength criteria for rock.International Journal of Rock Mechanics and Mining Sciences 2009;46(1):115-27.

    You MQ.Mechanical characteristics of the exponential strength criterion under conventional triaxial stresses.International Journal of Rock Mechanics and Mining Sciences 2010a;47(2):195-204.

    You MQ.Comparison of the accuracy of some conventional triaxial strength criteria for intact rock.International Journal of Rock Mechanics and Mining Sciences 2011;48(5):852-63.

    You MQ.Comparison of two true-triaxial strength criteria.International Journal of Rock Mechanics and Mining Sciences 2012;54:114-24.

    You MQ.Study of deformation and failure of rock based on properties of cohesion and friction.Journal of Geomechanics 2005a;11(3):286-95(in Chinese).

    You MQ.Study on the geo-stresses measurement with hydro-fracture of borehole. Chinese Journal of Geotechnical Engineering 2005b;27(3):350-3(in Chinese).

    You MQ.Strength and failure of rock due to hydraulic fracture.In:Rock stress and earthquake.London,UK:Taylor and Francis;2010b.p.185-8.

    You MQ,Su CD,Chen XL.Brazilian splitting strengths of discs and rings of rocks in dry and saturated conditions.Chinese Journal of Rock Mechanics and Engineering 2011;30(3):464-72(in Chinese).

    You MQ,Zhou ST,Su CD.Direct tensile experiment of rock specimens under confning pressure.Journal of Henan Polytechnic University 2006;25(4):255-61(in Chinese).

    Yu MH.Advances in strength theories for materials under complex stress state in the 20th Century.Applied Mechanics Review 2002;55(2):169-218.

    Yu Y,Zhang J,Zhang J.A modifed Brazilian disk tension test.International Journal of Rock Mechanics and Mining Sciences 2009;46(3):421-5.

    Mingqing Youobtained his B.Sc.from Fudan University, Shanghai,and M.Sc.and Ph.D.degrees from China University of Mining and Technology,Xuzhou,China.He is now a professor of Henan Polytechnic University.He has been involved in mechanical and geotechnical research and education for nearly 30 years.He is the author or coauthor of more than 100 scientifc papers and he serves in the Editorial BoardofChinese Journal of RockMechanics and Engineering.

    *Tel.:+86 391 3988278.

    E-mail addresses:youmq@hpu.edu.cn,youmq640930@aliyun.com.

    Peer review under responsibility of Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.05.002

    久久精品熟女亚洲av麻豆精品| 亚洲精品一二三| 亚洲国产精品999| 亚洲人成77777在线视频| 只有这里有精品99| 国产成人av激情在线播放| a级毛片黄视频| 午夜福利视频在线观看免费| 国产白丝娇喘喷水9色精品| 国产精品无大码| 亚洲精品国产色婷婷电影| www日本在线高清视频| 中文字幕制服av| 99国产精品免费福利视频| 日韩人妻精品一区2区三区| 亚洲一级一片aⅴ在线观看| 最近中文字幕高清免费大全6| 国产乱来视频区| 80岁老熟妇乱子伦牲交| 久久久亚洲精品成人影院| 日韩一本色道免费dvd| 日韩制服骚丝袜av| 亚洲综合精品二区| 99久久人妻综合| 高清在线视频一区二区三区| 亚洲av电影在线进入| 免费高清在线观看日韩| 一区二区av电影网| 王馨瑶露胸无遮挡在线观看| av在线app专区| 美女高潮到喷水免费观看| 91aial.com中文字幕在线观看| 久久久国产一区二区| 丰满迷人的少妇在线观看| 国产高清国产精品国产三级| 国产毛片在线视频| 99国产精品免费福利视频| 国产白丝娇喘喷水9色精品| 亚洲精品aⅴ在线观看| 国产极品天堂在线| 精品国产乱码久久久久久小说| 色吧在线观看| 欧美精品av麻豆av| 黄色毛片三级朝国网站| 午夜福利视频精品| 国产精品秋霞免费鲁丝片| 欧美中文综合在线视频| 一二三四中文在线观看免费高清| 2021少妇久久久久久久久久久| 久久久久国产精品人妻一区二区| 亚洲图色成人| 久久狼人影院| 国产色婷婷99| 巨乳人妻的诱惑在线观看| 日韩,欧美,国产一区二区三区| 午夜福利在线免费观看网站| 国产成人精品无人区| 免费高清在线观看视频在线观看| 菩萨蛮人人尽说江南好唐韦庄| 国产精品免费大片| 卡戴珊不雅视频在线播放| 欧美国产精品va在线观看不卡| 青春草国产在线视频| 在线观看www视频免费| 韩国精品一区二区三区| 免费少妇av软件| 一区福利在线观看| 精品少妇黑人巨大在线播放| 丝袜美腿诱惑在线| 男女啪啪激烈高潮av片| 1024视频免费在线观看| 视频在线观看一区二区三区| av在线观看视频网站免费| 成人国产麻豆网| 亚洲综合色惰| 一级毛片电影观看| 丰满少妇做爰视频| 99久久精品国产国产毛片| 免费黄色在线免费观看| 伊人久久大香线蕉亚洲五| 伊人亚洲综合成人网| 男女边摸边吃奶| 波多野结衣一区麻豆| 99久久中文字幕三级久久日本| 欧美精品国产亚洲| 有码 亚洲区| 久久97久久精品| 国精品久久久久久国模美| 色播在线永久视频| av.在线天堂| 你懂的网址亚洲精品在线观看| 高清黄色对白视频在线免费看| 狠狠婷婷综合久久久久久88av| 午夜福利在线观看免费完整高清在| 久久久久久久久久久免费av| 欧美最新免费一区二区三区| 精品国产乱码久久久久久男人| 寂寞人妻少妇视频99o| 一区二区三区激情视频| 国产精品久久久久久精品古装| 热re99久久精品国产66热6| 久久久久久人妻| 亚洲精品国产色婷婷电影| 日日摸夜夜添夜夜爱| 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| 久久精品熟女亚洲av麻豆精品| 大话2 男鬼变身卡| 一本色道久久久久久精品综合| 91精品国产国语对白视频| 三级国产精品片| 考比视频在线观看| 亚洲中文av在线| 亚洲一码二码三码区别大吗| 大香蕉久久成人网| 成人国产麻豆网| 伦精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 欧美亚洲 丝袜 人妻 在线| 一区二区av电影网| 久久综合国产亚洲精品| 国产av国产精品国产| 国产片特级美女逼逼视频| 韩国高清视频一区二区三区| 久久久久久人人人人人| 午夜福利一区二区在线看| 国产男女超爽视频在线观看| 一级,二级,三级黄色视频| 国产麻豆69| 久久人人爽av亚洲精品天堂| 99久国产av精品国产电影| 晚上一个人看的免费电影| 秋霞伦理黄片| 国产高清不卡午夜福利| 亚洲精品,欧美精品| 亚洲av男天堂| 久久99热这里只频精品6学生| 在线免费观看不下载黄p国产| 久久精品国产亚洲av天美| 日韩欧美一区视频在线观看| 欧美激情 高清一区二区三区| 狂野欧美激情性bbbbbb| 国产在线一区二区三区精| 男人添女人高潮全过程视频| 国产精品.久久久| 欧美精品一区二区大全| 日韩一卡2卡3卡4卡2021年| 国产高清国产精品国产三级| 成年人午夜在线观看视频| av女优亚洲男人天堂| 日韩大片免费观看网站| 午夜久久久在线观看| av卡一久久| 欧美 日韩 精品 国产| 18+在线观看网站| 日韩熟女老妇一区二区性免费视频| 天堂中文最新版在线下载| 亚洲人成电影观看| 久久久久国产一级毛片高清牌| 一区二区三区四区激情视频| 国产精品久久久久成人av| 99久久人妻综合| 国产白丝娇喘喷水9色精品| 香蕉国产在线看| 青青草视频在线视频观看| 久久久精品区二区三区| 国产在线视频一区二区| 免费在线观看黄色视频的| 久久影院123| 九色亚洲精品在线播放| 秋霞伦理黄片| 国产精品 国内视频| av一本久久久久| 亚洲五月色婷婷综合| 亚洲,欧美,日韩| 欧美日韩精品成人综合77777| 国产成人a∨麻豆精品| 乱人伦中国视频| 国产精品.久久久| 中文字幕人妻熟女乱码| 在线观看免费高清a一片| 久久久久久免费高清国产稀缺| 久久婷婷青草| 久久久久久久久久久久大奶| 欧美日韩亚洲国产一区二区在线观看 | 宅男免费午夜| 中文字幕人妻丝袜一区二区 | 女人精品久久久久毛片| 亚洲,一卡二卡三卡| 国产亚洲一区二区精品| 午夜福利一区二区在线看| 女性生殖器流出的白浆| 久久久久久久久久久久大奶| 777米奇影视久久| 9191精品国产免费久久| 久热久热在线精品观看| 午夜影院在线不卡| 性高湖久久久久久久久免费观看| 亚洲人成电影观看| 国产日韩一区二区三区精品不卡| 九九爱精品视频在线观看| 中文字幕人妻丝袜制服| 成人18禁高潮啪啪吃奶动态图| 久久精品国产鲁丝片午夜精品| av网站免费在线观看视频| 一二三四中文在线观看免费高清| 午夜福利一区二区在线看| 国产国语露脸激情在线看| 欧美日韩av久久| 国产在线免费精品| 男女国产视频网站| 欧美精品高潮呻吟av久久| 大香蕉久久成人网| 欧美日韩精品网址| 狠狠婷婷综合久久久久久88av| 黑人欧美特级aaaaaa片| 久久婷婷青草| 亚洲欧洲国产日韩| 亚洲国产精品成人久久小说| 99精国产麻豆久久婷婷| 免费观看性生交大片5| 精品一区二区三卡| 国产成人91sexporn| 秋霞在线观看毛片| 亚洲一码二码三码区别大吗| 国语对白做爰xxxⅹ性视频网站| 午夜免费男女啪啪视频观看| 一本—道久久a久久精品蜜桃钙片| 亚洲三区欧美一区| 纵有疾风起免费观看全集完整版| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 欧美精品国产亚洲| 91成人精品电影| 两性夫妻黄色片| av不卡在线播放| 精品人妻熟女毛片av久久网站| 各种免费的搞黄视频| 色婷婷久久久亚洲欧美| 国产av一区二区精品久久| 精品一区二区三区四区五区乱码 | 国产成人精品婷婷| 国产亚洲精品第一综合不卡| 国产精品一国产av| 亚洲一区中文字幕在线| 岛国毛片在线播放| 色视频在线一区二区三区| 美女午夜性视频免费| 又大又黄又爽视频免费| 热re99久久精品国产66热6| 男女免费视频国产| 亚洲国产最新在线播放| 深夜精品福利| 在线观看国产h片| 极品少妇高潮喷水抽搐| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡| 五月伊人婷婷丁香| 亚洲成人一二三区av| 国产福利在线免费观看视频| 一本大道久久a久久精品| 看免费成人av毛片| 黄片播放在线免费| 亚洲视频免费观看视频| 97在线视频观看| 97在线人人人人妻| 波多野结衣一区麻豆| 午夜激情av网站| 国产在线视频一区二区| 99热国产这里只有精品6| 黄片小视频在线播放| videosex国产| 欧美精品一区二区免费开放| 久久综合国产亚洲精品| 免费看av在线观看网站| 黄片小视频在线播放| 中文字幕人妻熟女乱码| 菩萨蛮人人尽说江南好唐韦庄| 中文字幕色久视频| 国产成人aa在线观看| 91成人精品电影| 国产精品.久久久| 又大又黄又爽视频免费| 高清欧美精品videossex| 精品亚洲成a人片在线观看| 国产有黄有色有爽视频| 国产成人91sexporn| 人妻人人澡人人爽人人| 久久毛片免费看一区二区三区| 性少妇av在线| 亚洲欧美一区二区三区国产| 国产免费现黄频在线看| 自拍欧美九色日韩亚洲蝌蚪91| 国产一级毛片在线| 五月开心婷婷网| www.熟女人妻精品国产| 国产深夜福利视频在线观看| 精品福利永久在线观看| 国产成人a∨麻豆精品| 午夜福利乱码中文字幕| 又大又黄又爽视频免费| 欧美人与性动交α欧美软件| 蜜桃在线观看..| 美女主播在线视频| 精品国产国语对白av| 丝袜喷水一区| 麻豆av在线久日| 91久久精品国产一区二区三区| 久久久久久人人人人人| 国产精品av久久久久免费| 欧美精品国产亚洲| 97精品久久久久久久久久精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 免费人妻精品一区二区三区视频| 中文字幕最新亚洲高清| 国产成人欧美| 女性生殖器流出的白浆| 大码成人一级视频| 麻豆精品久久久久久蜜桃| 欧美激情极品国产一区二区三区| 日本vs欧美在线观看视频| 亚洲国产精品成人久久小说| 18+在线观看网站| 少妇被粗大猛烈的视频| 精品久久久精品久久久| 日韩视频在线欧美| 大香蕉久久成人网| 日韩免费高清中文字幕av| 亚洲精品国产av蜜桃| 亚洲精品,欧美精品| 一级毛片我不卡| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 日日爽夜夜爽网站| 另类亚洲欧美激情| 亚洲欧洲国产日韩| 国产日韩欧美视频二区| 国产成人精品在线电影| 搡老乐熟女国产| 国产免费又黄又爽又色| 极品人妻少妇av视频| 青春草国产在线视频| 亚洲av电影在线进入| 国产高清国产精品国产三级| tube8黄色片| 免费在线观看黄色视频的| 精品国产超薄肉色丝袜足j| 成人毛片60女人毛片免费| 热re99久久国产66热| 18禁国产床啪视频网站| 国产成人免费观看mmmm| 国产一级毛片在线| 亚洲成色77777| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 日韩精品有码人妻一区| 一二三四在线观看免费中文在| 精品国产一区二区三区久久久樱花| av一本久久久久| 亚洲少妇的诱惑av| 亚洲美女黄色视频免费看| 国产免费一区二区三区四区乱码| 赤兔流量卡办理| 又大又黄又爽视频免费| 亚洲精品第二区| 国产有黄有色有爽视频| xxx大片免费视频| 一二三四在线观看免费中文在| 精品酒店卫生间| 在线观看三级黄色| 欧美成人午夜精品| 久久精品人人爽人人爽视色| 日韩av免费高清视频| 超碰97精品在线观看| 欧美xxⅹ黑人| 亚洲精品久久午夜乱码| 精品视频人人做人人爽| 日韩av不卡免费在线播放| 校园人妻丝袜中文字幕| 丁香六月天网| 国产精品国产三级专区第一集| 久久青草综合色| 久久婷婷青草| 成人国产麻豆网| 中文乱码字字幕精品一区二区三区| 亚洲精品美女久久av网站| 日韩av免费高清视频| 精品99又大又爽又粗少妇毛片| 一区二区三区精品91| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 美女视频免费永久观看网站| 少妇人妻 视频| 十八禁高潮呻吟视频| 99久久中文字幕三级久久日本| tube8黄色片| 啦啦啦在线观看免费高清www| 国产淫语在线视频| 国产极品粉嫩免费观看在线| 国产野战对白在线观看| 熟女少妇亚洲综合色aaa.| 午夜免费观看性视频| 夫妻午夜视频| 欧美人与善性xxx| 亚洲 欧美一区二区三区| 久久久久国产网址| 精品国产国语对白av| 中文字幕另类日韩欧美亚洲嫩草| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 日韩 亚洲 欧美在线| 日产精品乱码卡一卡2卡三| 丰满饥渴人妻一区二区三| 日本午夜av视频| 狠狠精品人妻久久久久久综合| 日韩不卡一区二区三区视频在线| 波多野结衣av一区二区av| 国产成人精品婷婷| 欧美老熟妇乱子伦牲交| 免费观看无遮挡的男女| 99国产综合亚洲精品| 婷婷色综合www| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品久久午夜乱码| 91成人精品电影| 午夜免费观看性视频| 欧美人与性动交α欧美精品济南到 | 两性夫妻黄色片| 最近手机中文字幕大全| 久久精品国产亚洲av涩爱| 少妇的丰满在线观看| 欧美成人精品欧美一级黄| 欧美xxⅹ黑人| 最近中文字幕高清免费大全6| videos熟女内射| av福利片在线| 亚洲精品成人av观看孕妇| 免费观看在线日韩| av在线播放精品| 亚洲,欧美精品.| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 亚洲精品久久久久久婷婷小说| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 美女福利国产在线| 黄片小视频在线播放| 色哟哟·www| 亚洲国产毛片av蜜桃av| 国产熟女午夜一区二区三区| 秋霞在线观看毛片| 永久网站在线| 免费日韩欧美在线观看| 丝袜美腿诱惑在线| 国产成人aa在线观看| 日产精品乱码卡一卡2卡三| 女的被弄到高潮叫床怎么办| 亚洲精品乱久久久久久| 国产精品国产av在线观看| 日本爱情动作片www.在线观看| 免费高清在线观看日韩| 欧美日韩精品网址| 五月伊人婷婷丁香| 一级爰片在线观看| 两个人看的免费小视频| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| 欧美日韩精品成人综合77777| videos熟女内射| 国产精品 欧美亚洲| 亚洲男人天堂网一区| 大片免费播放器 马上看| 久久精品国产亚洲av高清一级| 麻豆乱淫一区二区| 亚洲国产av新网站| 久久精品aⅴ一区二区三区四区 | 久热久热在线精品观看| 免费观看a级毛片全部| 99久久精品国产国产毛片| 亚洲图色成人| 久久亚洲国产成人精品v| 观看美女的网站| 十八禁网站网址无遮挡| 亚洲精品久久午夜乱码| 中文字幕人妻丝袜一区二区 | 免费观看性生交大片5| 国产欧美亚洲国产| 久久97久久精品| 日韩,欧美,国产一区二区三区| 国产综合精华液| 欧美激情 高清一区二区三区| 国产亚洲午夜精品一区二区久久| 欧美精品高潮呻吟av久久| 国产精品亚洲av一区麻豆 | 亚洲精品久久成人aⅴ小说| 日本vs欧美在线观看视频| 一级爰片在线观看| 丰满乱子伦码专区| 尾随美女入室| 欧美另类一区| 日韩电影二区| 成人影院久久| 热99久久久久精品小说推荐| 亚洲综合色网址| 日本欧美视频一区| 国产精品亚洲av一区麻豆 | 80岁老熟妇乱子伦牲交| 久久久国产一区二区| 久久久久久久亚洲中文字幕| 啦啦啦在线观看免费高清www| av在线app专区| 日本色播在线视频| 日韩中文字幕欧美一区二区 | 国产一区有黄有色的免费视频| 久久这里只有精品19| 欧美成人午夜免费资源| 最新中文字幕久久久久| 国产一级毛片在线| 成人黄色视频免费在线看| 婷婷成人精品国产| 亚洲天堂av无毛| 蜜桃国产av成人99| 亚洲av国产av综合av卡| 亚洲欧美日韩另类电影网站| 午夜福利在线观看免费完整高清在| av国产久精品久网站免费入址| 成人亚洲欧美一区二区av| 在线观看免费高清a一片| 国产成人精品在线电影| 国语对白做爰xxxⅹ性视频网站| 国产av码专区亚洲av| 亚洲欧美清纯卡通| 叶爱在线成人免费视频播放| 啦啦啦视频在线资源免费观看| kizo精华| 啦啦啦视频在线资源免费观看| 肉色欧美久久久久久久蜜桃| 亚洲欧洲精品一区二区精品久久久 | 亚洲内射少妇av| 亚洲视频免费观看视频| av在线播放精品| 亚洲成色77777| 欧美国产精品va在线观看不卡| 中文天堂在线官网| 久久久久国产精品人妻一区二区| 日本av免费视频播放| 狠狠精品人妻久久久久久综合| 成人国产麻豆网| 丁香六月天网| 日本猛色少妇xxxxx猛交久久| 国产精品不卡视频一区二区| 看免费av毛片| 九草在线视频观看| 人妻人人澡人人爽人人| 在线看a的网站| 狂野欧美激情性bbbbbb| av在线观看视频网站免费| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻熟女乱码| 18禁动态无遮挡网站| 久久久久精品久久久久真实原创| 十八禁高潮呻吟视频| 大码成人一级视频| 成人午夜精彩视频在线观看| 成人18禁高潮啪啪吃奶动态图| 日本黄色日本黄色录像| 午夜老司机福利剧场| 人成视频在线观看免费观看| 99九九在线精品视频| 久久鲁丝午夜福利片| 热re99久久国产66热| 欧美日韩综合久久久久久| 在现免费观看毛片| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 精品福利永久在线观看| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 最近的中文字幕免费完整| 亚洲一码二码三码区别大吗| 一区二区三区乱码不卡18| 久久99一区二区三区| 人妻系列 视频| 看非洲黑人一级黄片| 久久久国产欧美日韩av| 国产综合精华液| 人成视频在线观看免费观看| 亚洲精品一区蜜桃| 综合色丁香网| 老鸭窝网址在线观看| 男女午夜视频在线观看| 久久久久久久久免费视频了| 永久免费av网站大全| 亚洲精品一区蜜桃| 我的亚洲天堂| 精品人妻偷拍中文字幕| 精品亚洲成a人片在线观看| xxxhd国产人妻xxx| 电影成人av| 精品亚洲成国产av| 久久精品久久精品一区二区三区| 美女大奶头黄色视频| 国产亚洲精品第一综合不卡| 91在线精品国自产拍蜜月| 麻豆av在线久日| 国产一区有黄有色的免费视频| 久久 成人 亚洲| 大香蕉久久成人网| 日韩视频在线欧美| av国产久精品久网站免费入址| 午夜av观看不卡|