• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A theoretical derivation of the Hoek-Brown failure criterion for rock materials

    2015-02-09 01:28:34JinpingZuoHuihiLiuHongtoLi

    Jinping Zuo,Huihi Liu,Hongto Li

    aState Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing 100083,China

    bInstitute of Rock Mechanics and Fractals,School of Mechanics and Civil Engineering,China University of Mining and Technology,Beijing 100083,China

    cAramco Research Center,Houston,TX 77084,USA

    A theoretical derivation of the Hoek-Brown failure criterion for rock materials

    Jianping Zuoa,b,*,Huihai Liuc,Hongtao Lia

    aState Key Laboratory of Coal Resources and Safe Mining,China University of Mining and Technology,Beijing 100083,China

    bInstitute of Rock Mechanics and Fractals,School of Mechanics and Civil Engineering,China University of Mining and Technology,Beijing 100083,China

    cAramco Research Center,Houston,TX 77084,USA

    A R T I C L E I N F O

    Article history:

    Received 7 March 2015

    Received in revised form

    18 March 2015

    Accepted 20 March 2015

    Available online 7 April 2015

    Failure criterion

    Triaxial compression

    Micro-failure orientation

    Fracture mechanics

    Brittle-ductile transition

    This study uses a three-dimensional crack model to theoretically derive the Hoek-Brown rock failure criterion based on the linear elastic fracture theory.Specifcally,we argue that a failure characteristic factor needs to exceed a critical value when macro-failure occurs.This factor is a product of the microfailure orientation angle(characterizing the density and orientation of damaged micro-cracks)and the changing rate of the angle with respect to the major principal stress(characterizing the microscopic stability of damaged cracks).We further demonstrate that the factor mathematically leads to the empirical Hoek-Brown rock failure criterion.Thus,the proposed factor is able to successfully relate the evolution of microscopic damaged crack characteristics to macro-failure.Based on this theoretical development,we also propose a quantitative relationship between the brittle-ductile transition point and confning pressure,which is consistent with experimental observations.

    ?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    1.Introduction

    The strength theory of brittle materials,such as rock and concrete,has been a subject of intensive study for many years,because the failure of brittle material is of great concern in designing and evaluating the safety and stability of engineering structures and geological engineering facilities.Consequently,the failure criterion for brittle material has become one of the most important subjects in many areas(Yu,2004;Paterson and Wong,2005;Jaeger et al., 2007;Zuo et al.,2008).

    Griffth(1921)frst postulated that the fracture of brittle materials occurs when the energy-release rate during crack growth exceeds the rate that energy is required.Griffth’s theory,which indicates that micro-cracks are a major cause of failure of materials (Griffth,1921,1924),has been extended for a biaxially stressed body with randomly oriented cracks(Odé,1960).A macro-failure criterion,generally known as the Griffth’s criterion,is expressed in terms of the biaxial principal stressesσ1,σ2and the magnitude of the uniaxial tensile strengthT0,i.e.(σ1-σ2)2-8T0(σ1+σ2)=0 forσ1>-3σ2andσ2=T0forσ1<-3σ2.While Griffth’s criterion predicts that uniaxial compressive strengthσcis about eight times the uniaxial tensile strengthσt,most experimental results show that values forσc/σtare larger than 10,even up to 50.

    Murrell(1965)suggested that the biaxial criterion could be generalizedfortriaxialstressasaparaboloid:(σ2-σ3)2+(σ3-σ1)2+(σ1-σ2)2-24T0(σ1+σ2+σ3)=0.Under the uniaxial compression conditions forσ2=σ3=0 andσc=σ1,it can predict thatσc/σt=12.However,there seems to be no a priori reason for selecting this triaxial criterion except on empirical grounds.Based on a micro-mechanical analysis of sliding cracks, Wiebols and Cook(1968)proposed a new criterion.However,their theory suggests that with respect to polyaxial compression,the intermediate principal stress has a pronounced and predictable effect,which may not always be considered in the existing theories.

    The classic Hoek-Brown failure criterion,empirical in its formulation and based on numerous experimental data,has been widely used to predict the failure of rocks(Hoek and Brown,1980a, b).While the criterion has been modifed or extended for a number of felds,linkage between this well-known criterion and the micromechanical mechanisms of sliding cracks is still rare in the literature(Hoek,1983,1998;Hoek and Brown,1997),providing such a linkage would have signifcant implications for improving our understanding of rock damage/failure processes.

    The major objective of this study is to make an effort to establish the linkage mentioned above,based on a recent study in which Zuo et al.(2008)have derived a theoretical nonlinear strength criterion for rock-like material based on fracture mechanics,a criterion with a similar mathematical expression to the Hoek-Brown criterion. Hoek and Martin(2014)recentlycompared our theoretical criterion with Mohr-Coulomb and Griffth’s criterion in Fig.3 of their paper. This study is an effort to extend the work of Zuo et al.(2008)by including additional insights and analyses.The most important issue in Zuo et al.(2008)is how to choose the failure characteristic factor that relates the micro-mechanism to macro-failure,and our study provides more physical justifcations for the chosen factor. Also,the study of Zuo et al.(2008)was based on a two-dimensional model for an initial sliding crack,while in this study we focus on three-dimensional(3D)cases.In addition,we discuss how to interpret the brittle-ductile transition phenomenon in rocks.

    2.Fundamental hypothesis and model

    There is abundant evidence for the existence of Griffth cracks or other crack-like faws in brittle materials(Griffth,1921,1924;Peng and Johnson,1972;Schovanec,1986;Mura,1987;Vardoulakis and Papamichos,1991).In addition,the low strength of some brittle materials results mainly from the presence of these micro-cracks or faws.In the present work,we assume that numerous Griffth micro-cracks are randomly distributed in rocks.A model of frictional sliding cracks has been discussed in the literature(Cook, 1965;Holcomb,1978;Kachanov,1982a,b;Li and Yang,2006). Although the crack interactions can be taken into account by modifcations of a self-consistent method,in this paper,these micro-crack interactions are neglected,so that traction on crack faces can be calculated as being induced by external load.In this way,a simplifed model for a sliding,disk-shaped,closed crack of diameter 2ain an infnite plate can be generated,as shown in Fig.1. We adopt the convention common in geologic and rock mechanics literature that compressive stress is positive and tensile stress is negative,and designate the major,intermediate,and minor principal stresses asσ1,σ2,σ3,respectively,where the three subscripts representthe coordinateaxesx1,x2,x3,respectively.The orientation of a disk-shaped crack can be defned bydirection cosinesl,m,n.If a unique sphere is built up with the following equation:

    then the orientation of the crack plane is determined by the normal direction of pointM.The normal stressσnand shear stress τncomponents on the disk-shaped crack can be given in terms of the three principal stresses,and as a function of the direction cosinesl,m,n:

    Fig.1.A disk-shaped crack of diameter 2ain an infnite plate under triaxial compression.

    3.Propagation conditions for a disk-shaped crack

    Although inelastic effects are involved at crack tips in various rocks(Hoagland et al.,1973),and even elastic behavior in the most highly stressed regions may be nonlinear,the practical analysis of the stress distribution in the neighborhood of the crack tip is usually based on the classical linear theory of elasticity.Therefore, according to linear elastic fracture mechanics(Anderson,2005),the crack mode in Fig.1 is in-plane shear(Mode II),a mode corresponding to in-plane shear loading that tends to slide one crack face with respect to the other.The stress intensity factor depends on both shear stressτnand friction stressτμ,which is parallel to the crack plane.According to Amontons’law,τμ=μσn,whereμandσnare the friction coeffcient for the pre-existing sliding crack surface and the normal stress acting on the disk plane,respectively.It is obvious thatτμis a key factor in suppressing crack propagation.The effective shear stressτecan be expressed as

    For the 3D problem,the effective shear stressτeinitiates frictional sliding.In addition,ifτeis suffciently high to overcome the frictional resistance along the initial crack,frictional slip results in tensile stress concentrations at the two tips of the sliding crack, which,in turn,may induce nucleation of“wing cracks”(Kachanov, 1982a).Prior tothe onsetof crack propagation,the maximum stress intensity factorKIImaxof mode II at the initial crack tip approximately is

    whereνis the Poisson’s ratio.

    If the wing crack length is infnitesimal,the propagation conditions for a disk-shaped crack under triaxial compression,based on the mixed fracture criterion,can be expressed as(Kachanov, 1982b;Cotterell and Rice,1980):

    Because thewing crack is caused by the local tensile stress at the disk-shaped crack tip,the fracture toughnessKIccan be calculated as

    whereσtis the local tensile strength at the tip of the disk-shaped crack.Substituting Eqs.(5)and(7)into Eq.(6),we then get:

    Usingβto denote(1-ν/2)κ,Eq.(8)can then be rewritten as

    4.The attitude angle parameterφto characterize microfailure orientation

    Assume there is a sphere with a unit length radius,with the coordinate originOas the center of the sphere.Based on the geometric symmetry of sphere,one can concentrate on the eight equal parts in the sphere,as shown in Fig.2.Since there are numerous Griffth micro-cracks distributed randomly in rock materials,we assume that all these cracks will converge.Assuming the movement of one endpoint of any disk-shaped crack to the coordinate originO,there develops an intersection point between the normal line of any cracks between the normal line of any cracks and the surface of the upper hemisphere.Fornrock samples under triaxial compression,all intersection points can make up an intersection region that depends on the three principal stresses.Although evidence has shown thatσ2does infuence the failure of rock(Al-Ajmi and Zimmerman,2005),the shape of the intersection region is rather complicated under true triaxial compression(σ1>σ2>σ3). Therefore,we discuss only the special case ofσ1>σ2=σ3.According to the axial symmetry,these intersection points will make up a band region located on two latitude linesABandCD(the shadow region in Fig.2).An angleθis used to denote the“microfailure orientation angle”under triaxial compression.The angleθ corresponds to the angleαin Zuo et al.(2008),and they have the same physical meaning,i.e.“micro-failure orientation angle”. Whenσ2=σ3,Eq.(2)becomes the following form derived from Eq. (1)and cosθ=l:

    Then,Eq.(3)can be further simplifed as

    From Eqs.(4)and(9)-(11),we can get

    Fig.2.The band region of intersecting point between the normal line of any microcracks and unit sphere.

    Then,we have

    where

    An attitude angle can be defned,i.e.φ=θ2-θ1,then we have

    Eq.(16)gives the relationship between attitude angleφand external load.In addition,the range of the attitude angleφis from 0 toπ/2.

    5.The failure characteristic factor for rocks and derivation of the Hoek-Brown criterion

    Rock failure processes can be approximately described as follows.There are various pre-existing micro-cracks in rock materials that are potentially of vital signifcance to their brittle behavior. When the external load achieves a critical value,pre-existing(and some new)micro-cracks will initiate and propagate.These microcracks will tend not to propagate in their own planes,but rather swing into an orientation more nearly parallel to the orientation of the major principal stressσ1(Diederichs,2003).With a further increase in external load,some subcritical micro-cracks will initiate,propagate,and tend to become unstable.When numerous micro-failures approach a critical condition,a macro-failure will occur,and the rock will then be broken.By contrast,micro-failures are usually constrained by the confning pressureσ3;thus,the higher the confning pressure,the smaller the micro-failure.

    In Section 3,we obtained an expression for the portion of microcracks that are subjected to micro-damage.The key issue is how to relate this damage to macro-failures.The latter is determined by two microscopic variables.The frst variable is the attitude angle,φ. Obviously,a largerφcorresponds to a larger relative portion of damaged internal micro-cracks,and thus to a larger possibility for macro-failure.

    From Eq.(16),we have

    Substituting Eq.(19)into Eq.(18)yields

    Consequently,the critical value forFis the right part of Eq.(22). Substituting this value into Eq.(21),we have

    whereμis about 0.2-0.8(Paterson and Wong,2005).The parametersμ,β,σt,σcdepend on rock properties,and all can be obtained from experimental data.

    The original Hoek-Brown empirical criterion is(Hoek and Brown,1980a,b):

    wheremandsare the material parameters for the rock.Withs=1 for intact rock,Eq.(25)becomes

    Thus,Eq.(24)is the same as Eq.(26)form=μσc/(βσt).In other words,weare able toderive the Hoek-Brown criterion frommicromechanical considerations,based on the failure characteristic factor defned in Eq.(17).This fact in itself strongly supports the reasonableness and usefulness of our failure characteristic factor. While it is beyond the scope of this study,we speculate that this factor could be used as a damage variable in damage mechanics studies,because it is more or less equivalent to the Hoek-Brown criterion,as we have demonstrated here.Note that how to choose the damage variable is at present a key issue in the damage mechanics community.

    6.The micro-mechanisms of brittle-ductile transitions

    It is usually accepted that material failure is brittle type if no apparent plastic deformation takes place before fracturing.In ductile failure,by contrast,extensive plastic deformation takes place.Experimental results indicate that while most rocks exhibit brittleness under atmospheric pressure,ductility in rock can also be achieved in the laboratory with the aid of suffciently high confning pressures and temperatures(Paterson and Wong,2005; Jaeger et al.,2007).In other words,there exists a critical condition for the transition from brittleness to ductility.In this paper,we concern with the effects of confning pressure.The brittle-ductile transition occurs when the external confning pressure reaches a critical value.The state in which this change happens is called a brittle-ductile transition state.In addition,the investigation of the brittle-ductile transition has become very important in many geologic situations,and may also have relevance to some engineering applications.

    Studies of brittle-ductile transition phenomena have been reported by a number of researchers(Paterson and Wong,2005; Jaeger et al.,2007).However,most of these studies are from a macroscopic or phenomenological point of view,and take no accountofthemicro-mechanisms,especiallythemicro-crack mechanisms under high confning pressure.For example,some investigators artifcially defne the failure of rock as brittle type(or ductile type)if the value of strain or confning pressure of failure is less than(or larger than)a specifc value.For example,the strain value of 3%-5%corresponding to failure is often taken for defning the brittle-ductile transition(Heard,1960;Evans et al.,1990).Some investigators have proposed that,as a general rule,the brittleductile transition should be related to the strength of rocks(Mogi, 2005).For instance,in silicate rocks under compression,it occurs when the confning pressure is equal to roughly 1/3 the stress difference at failure;in carbonate rocks,at about 1/4 the stress difference.The ductility of rock in extension requires much higher confning pressures(Heard,1960).However,in the case of porous sandstone,the transition to ductility occurs at an effective confning pressure of about 0.15 times the critical effective pressure for the onset of grain crushing under hydrostatic pressure(Wong et al.,1997).In other words,there is no strict or unifed standard from which to choose the critical parameter for the brittle-ductile transition.Parameter selection varies with individual investigator or rock types,indicating the diffculty in making clear and strict defnitions of the brittle-ductile transition point on a macroscale. Therefore,it is necessary to revisit the concepts of brittle,ductile, and brittle-ductile transition states for the micro/mesoscale.This section provides some new information on the subject.

    In light of the previous derivation of the strength criterion,we defne the brittle-ductile transition as occurring in rock when the confning pressure achieves a suitable value.That value is achieved when the micro-failure in rock is completely restrained.This is a defnition of the rock brittle-ductile transition point at the micro/ mesoscale.Since there is clearly a causal relationship between micro-failure and rock dilatancy,this defnition is entirely equivalent to the macro-defnition.

    An empirical failure criterion has also been proposed in Wong et al.(1997),indicating that for most rocks,the confning pressure must always be smaller than the uniaxial compressive strength to maintain rock brittle behavior:

    Eq.(31)indicates that(the ratio of rock uniaxial compressive strengthσcto uniaxial tensile strengthσt)is an important parameter for evaluating rock brittleness.The greater this ratio,the more brittle the rock,and vice versa.

    7.Conclusions

    A 3D crack model is employed to theoretically derive the Hoek-Brown rock failure criterion based on the linear elastic fracture theory.Specifcally,we argue that our proposed failure characteristic factor needs to exceed a critical value when macro-failure occurs.This factor is a product of a micro-failure orientation angle(characterizing the density and orientation of damaged micro-cracks)and the changing rate of the anglewith respect tothe major principal stress(characterizing the microscopic stability of damaged cracks).We further demonstrate that the factor mathematically leads to the empirical Hoek-Brown rock failure criterion. One important implication of the study is that the proposed factoris able to relate the evolution of microscopic damaged-crack characteristics to macro-failure.

    Fig.3.The relationship between the confning pressureat brittleness-ductility transition and the value ofσc/σt.

    Based on our theoretical development,this paper also gives a clear interpretation of the brittleness and ductility of rock on the microscale.A quantitative relationship between the brittle-ductile transition point and confning pressure is derived and shown to be consistent with experimental observations.

    Confict of interest

    The authors wish to confrm that there are no known conficts of interest associated with this publication and there has been no signifcant fnancial support for this work that could have infuenced its outcome.

    Acknowledgments

    This work is supported by the National Natural Science Foundation of China(No.51374215),Fok Ying Tung Education Foundation(No.142018),Beijing Major Scientifc and Technological Achievements into Ground Cultivation Project and the 111 Project (No.B14006).The second author(Huihai Liu)thanks the management of Aramco Research Center for approving publication of the work.Also,the authors would like to acknowledge the anonymous reviewers for their valuable comments and suggestions,which helped to signifcantly improve the quality of this paper.

    Al-Ajmi AM,Zimmerman RW.Relation between the Mogi and the Coulomb failure criteria.InternationalJournalofRockMechanicsandMiningSciences 2005;42(3):431-9.

    Anderson TL.Fracture mechanics:fundamentals and applications.Boca Raton,FL, USA:Taylor&Francis;2005.

    Cook NGW.The failure of rock.International Journal of Rock Mechanics and Mining Sciences 1965;2(4):389-403.

    Cotterell B,Rice JR.Slightly curved or kinked cracks.International Journal of Fracture 1980;16(2):155-69.

    Diederichs MS.Rock fracture and collapse under low confnement conditions.Rock Mechanics and Rock Engineering 2003;36(5):339-81.

    Erdogan F,Sih GC.On the crack extension in plates under plane loading and transverse shear.Journal of Fluids Engineering 1963;85(4):519-25.

    Evans B,Frederich JT,Wong TF.The brittle-ductile transition in rocks:recent experimental and theoretical progress.In:Duba AG,Durham WB,Handin JW, Wang HF,editors.The brittle-ductile transition in rocks.Washington DC,USA: American Geophysical Union;1990.p.1-20.

    Griffth AA.The phenomena of rupture and fow in solids.Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences 1921;221:163-98.

    Griffth AA.The theory of rupture.In:Biezeno CG,Burgers JM,editors.Proceedings of the 1st International Congress for Applied Mechanics.Delft,Netherlands: Waltman;1924.p.54-63.

    Heard HC.Transition from brittle fracture to ductile fow in Solenhofen limestone as a function of temperature,confning pressure,and interstitial fuid pressure.In: Griggs D,Handin J,editors.Rock deformation.Boulder,Colorado,USA: Geological Society of America;1960.p.193-226.

    Hoagland RG,Hahn GT,Rosenfeld AR.Infuence of microstructure on fracture propagation in rock.Rock Mechanics 1973;5(2):77-106.

    Hoek E,Brown ET.Empirical strength criterion for rock mass.Journal of Geotechnical and Geoenvironmental Engineering 1980a;106(9):1013-35.

    Hoek E,Brown ET.Underground excavations in rock.London,UK:Institution of Mining and Metallurgy;1980b.

    Hoek E.Strength of jointed rock masses.Géotechnique 1983;23(3):187-223.

    Hoek E,Brown ET.Practical estimates of rock mass strength.International Journal of Rock Mechanics and Mining Sciences 1997;34(8):1165-86.

    Hoek E,Martin CD.Fracture initiation and propagation in intact rock-a review. Journal of Rock Mechanics and Geotechnical Engineering 2014;6(4):287-300.

    Hoek E.Reliability of Hoek-Brown estimates of rock mass properties and their impact on design.International Journal of Rock Mechanics and Mining Sciences 1998;35(1):63-8.

    Holcomb DJ.A quantitative model of dilatancy in dry rock and its application to Westerly granite.Journal of Geophysical Research 1978;83(B10):4941-50.

    Jaeger JC,Cook NGW,Zimmerman RW.Fundamentals of rock mechanics.4th ed. Oxford,UK:Blackwell;2007.

    Kachanov ML.A microcrack model of rock inelasticity,part I:frictional sliding on microcracks.Mechanics of Materials 1982a;1(1):19-27.

    Kachanov ML.A microcrack model of rock inelasticity,part II:propagation of microcracks.Mechanics of Materials 1982b;1(1):29-41.

    Li YP,Yang CH.On sliding crack model for brittle solids.International Journal of Fracture 2006;142(3-4):323-30.

    McLintock FA,Walsh JB.Friction on Griffth cracks in rocks under pressure.In: Proceedings of the 4th U.S.National Congress of Applied Mechanics,Berkeley, California,vol.II;1962.p.1015-21.

    Mogi K.Experimental rock mechanics.London,UK:Taylor&Francis;2005.

    Mura T.Micromechanics of defects in solids.Dordrecht,Netherlands:Kluwer Academic Publishers;1987.

    Murrell SAF.The effect of triaxial stress systems on the strength of rocks at atmospheric temperatures.Geophysical Journal of the Royal Astronomical Society 1965;10(3):231-81.

    Nuismer RJ.An energy release rate criterion for mixed mode fracture.International Journal of Fracture 1975;11(2):245-50.

    Odé H.Faulting as a velocity discontinuity in plastic deformation.In:Griggs D, Handin J,editors.Rock deformation.Boulder,Colorado,USA:Geological Society of America;1960.p.293-321.

    Paterson MS,Wong TF.Experimental rock deformation-the brittle feld.Berlin, Germany:Springer;2005.

    Peng S,Johnson AM.Crack growth and faulting in cylindrical specimens of Chelmsford granite.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1972;9(1):37-86.

    Schovanec LA.Griffth crack problem for an inhomogeneous elastic material.Acta Mechanica 1986;58(1-2):67-80.

    Sih GC,Macdonald B.Fracture mechanics applied to engineering problems-strain energy density fracture criterion.Engineering Fracture Mechanics 1974;6(2): 361-86.

    Sih GC.Strain-energy-density factor applied to mixed mode crack problems.International Journal of Fracture 1974;10(3):305-21.

    Vardoulakis I,Papamichos E.Surface instabilities in elastic anisotropic media with surface-parallel Griffth cracks.International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts 1991;28(2-3):163-73.

    Wiebols GA,Cook NGW.An energy criterion for the strength of rock in polyaxial compression.International Journal of Rock Mechanics and Mining Sciences& Geomechanics Abstracts 1968;5(6):529-49.

    Wong TF,David C,Zhu W.The transition from brittle faulting to cataclastic fow in porous sandstones:mechanical deformation.Journal of Geophysical Research 1997;102(B2):3009-25.

    Yu MH.Unifed strength theory and its applications.Berlin,Germany:Springer; 2004.

    Zuo JP,Li HT,Xie HP,Ju Y,Peng SP.A nonlinear strength criterion for rocklike materials based on fracture mechanics.International Journal of Rock Mechanics and Mining Sciences 2008;45(4):594-9.

    Jianping Zuoobtained his M.Sc.and Ph.D.from China University of Mining and Technology(Beijing),China.He is professor of Engineering Mechanics at the China University of Mining and Technology(Beijing)where he has been Head of the Department of Engineering Mechanics,School of Mechanics and Civil Engineering.He has been involved in rock mechanics and mining engineering research, consulting and teaching for more than 10 years.He is in charge of and/or participates in 12 scientifc research projects,which were funded by National Natural Science Foundation of China,National Basic Research Program of China(973 Program),Beijing Major Scientifc and Technological Achievements into Ground Cultivation Project, the 111 Project and Coal Mines Corporations.He is the author or co-author of more than 90 scientifc papers.He has received 3 national patents,and 2 Natural Science and Technology Progress Awards.In recent years,he has been awarded National Excellent Doctoral Dissertation Award(2009),New Century Excellent Talents of the Ministry of Education(2009),Coal Youth Science and Technology Award in China(2010),Beijing Outstanding Young Talent(2014),Fok Excellent Young Teachers Award(2014).

    *Corresponding author.Tel.:+86 10 62331358.

    E-mail address:zjp@cumtb.edu.cn(J.Zuo).

    Peer review under responsibility of Institute of Rock and Soil Mechanics, Chinese Academy of Sciences.

    1674-7755?2015 Institute of Rock and Soil Mechanics,Chinese Academy of Sciences.Production and hosting by Elsevier B.V.All rights reserved.

    http://dx.doi.org/10.1016/j.jrmge.2015.03.008

    欧美日韩综合久久久久久| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 香蕉丝袜av| 精品人妻一区二区三区麻豆| 国精品久久久久久国模美| 国产极品天堂在线| 午夜影院在线不卡| 狂野欧美激情性bbbbbb| 国产精品免费大片| 国产黄色免费在线视频| 精品一区二区三卡| 久久久久精品性色| 美女xxoo啪啪120秒动态图| 老鸭窝网址在线观看| 免费在线观看完整版高清| 男人舔女人的私密视频| 三级国产精品片| 美女xxoo啪啪120秒动态图| 制服诱惑二区| 看免费成人av毛片| 极品少妇高潮喷水抽搐| a级毛片黄视频| 男女边吃奶边做爰视频| 日韩av在线免费看完整版不卡| av.在线天堂| 波野结衣二区三区在线| 在线观看人妻少妇| 久久国内精品自在自线图片| 高清av免费在线| 天天躁夜夜躁狠狠久久av| 久久av网站| 99久久人妻综合| 亚洲国产色片| 欧美国产精品一级二级三级| 成人黄色视频免费在线看| 亚洲av电影在线进入| 男女无遮挡免费网站观看| 妹子高潮喷水视频| 国产免费一区二区三区四区乱码| 日本猛色少妇xxxxx猛交久久| a级毛片在线看网站| 岛国毛片在线播放| 精品人妻一区二区三区麻豆| 国产成人欧美| 一级毛片我不卡| 国产成人av激情在线播放| 久久久精品国产亚洲av高清涩受| 久久人妻熟女aⅴ| 男女无遮挡免费网站观看| 热re99久久精品国产66热6| 91在线精品国自产拍蜜月| 爱豆传媒免费全集在线观看| 亚洲精品日韩在线中文字幕| 欧美日本中文国产一区发布| 国产日韩欧美在线精品| 热re99久久精品国产66热6| 晚上一个人看的免费电影| 精品亚洲乱码少妇综合久久| 亚洲国产欧美日韩在线播放| 大片电影免费在线观看免费| 国产成人91sexporn| 老鸭窝网址在线观看| 日韩一本色道免费dvd| 日本av免费视频播放| 丝袜美腿诱惑在线| 国产极品粉嫩免费观看在线| 五月开心婷婷网| 久久久久久久亚洲中文字幕| 日韩中文字幕欧美一区二区 | 国产97色在线日韩免费| 亚洲av中文av极速乱| 成年人免费黄色播放视频| 午夜免费观看性视频| 成人亚洲精品一区在线观看| 久久久久久久亚洲中文字幕| 99热全是精品| 久久午夜综合久久蜜桃| 国产一区二区在线观看av| 男女下面插进去视频免费观看| 黄片小视频在线播放| 999久久久国产精品视频| 不卡av一区二区三区| 多毛熟女@视频| 国产精品一区二区在线不卡| 欧美少妇被猛烈插入视频| 青草久久国产| 狠狠婷婷综合久久久久久88av| 午夜福利乱码中文字幕| 国产精品久久久久久久久免| 亚洲综合精品二区| 天堂8中文在线网| 熟女少妇亚洲综合色aaa.| 亚洲欧洲国产日韩| 国产精品 国内视频| 成人亚洲精品一区在线观看| 成年动漫av网址| 欧美 日韩 精品 国产| av国产久精品久网站免费入址| 久久午夜综合久久蜜桃| 亚洲一级一片aⅴ在线观看| 欧美人与性动交α欧美精品济南到 | 国产亚洲欧美精品永久| 国产极品天堂在线| 亚洲国产精品一区二区三区在线| 捣出白浆h1v1| 两个人免费观看高清视频| av线在线观看网站| 性色av一级| 色婷婷久久久亚洲欧美| 婷婷色综合www| 人人妻人人添人人爽欧美一区卜| 十分钟在线观看高清视频www| 制服诱惑二区| 丝袜人妻中文字幕| 黄频高清免费视频| 伦理电影大哥的女人| a级片在线免费高清观看视频| 亚洲伊人色综图| av卡一久久| 久久午夜综合久久蜜桃| 免费观看a级毛片全部| 国产在线免费精品| 超碰97精品在线观看| 777久久人妻少妇嫩草av网站| 大片免费播放器 马上看| 精品国产国语对白av| 天美传媒精品一区二区| 伦理电影免费视频| xxx大片免费视频| 性少妇av在线| 少妇人妻久久综合中文| 五月伊人婷婷丁香| 香蕉国产在线看| 国产女主播在线喷水免费视频网站| 黄色一级大片看看| 国产精品国产av在线观看| 精品人妻一区二区三区麻豆| www.自偷自拍.com| 亚洲精品中文字幕在线视频| 99热全是精品| 老司机亚洲免费影院| 啦啦啦在线免费观看视频4| 91久久精品国产一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 男女啪啪激烈高潮av片| 伦理电影大哥的女人| 深夜精品福利| 国产又色又爽无遮挡免| 久久精品aⅴ一区二区三区四区 | 久久婷婷青草| 国产淫语在线视频| 欧美在线黄色| 日韩电影二区| 日本欧美视频一区| 国产免费又黄又爽又色| 亚洲精品一区蜜桃| 新久久久久国产一级毛片| 久久精品国产鲁丝片午夜精品| 九九爱精品视频在线观看| 18禁观看日本| 亚洲美女搞黄在线观看| 九九爱精品视频在线观看| 国产日韩欧美在线精品| 极品少妇高潮喷水抽搐| 丁香六月天网| 久久久国产欧美日韩av| 欧美精品高潮呻吟av久久| 十八禁高潮呻吟视频| 99久久人妻综合| 女人高潮潮喷娇喘18禁视频| 精品亚洲乱码少妇综合久久| 午夜影院在线不卡| 在线观看免费视频网站a站| 两个人免费观看高清视频| 久久亚洲国产成人精品v| 久久鲁丝午夜福利片| 黄片小视频在线播放| 午夜免费男女啪啪视频观看| 另类亚洲欧美激情| 欧美黄色片欧美黄色片| 国产不卡av网站在线观看| 亚洲视频免费观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 免费久久久久久久精品成人欧美视频| 一本大道久久a久久精品| 三上悠亚av全集在线观看| 亚洲在久久综合| 午夜精品国产一区二区电影| 国产精品国产三级国产专区5o| 麻豆精品久久久久久蜜桃| 国产精品国产三级国产专区5o| 丰满饥渴人妻一区二区三| 亚洲国产欧美日韩在线播放| 亚洲美女搞黄在线观看| 亚洲精品国产av蜜桃| 丝瓜视频免费看黄片| 91成人精品电影| 精品视频人人做人人爽| 肉色欧美久久久久久久蜜桃| 国产极品粉嫩免费观看在线| 亚洲国产精品一区三区| 午夜免费鲁丝| 大片免费播放器 马上看| 欧美人与性动交α欧美软件| www日本在线高清视频| 亚洲国产精品成人久久小说| a 毛片基地| 一二三四在线观看免费中文在| 亚洲精品第二区| 国产无遮挡羞羞视频在线观看| 黄色 视频免费看| 久久精品国产亚洲av天美| 日本91视频免费播放| 精品亚洲乱码少妇综合久久| 91成人精品电影| 精品人妻在线不人妻| 午夜福利,免费看| 99国产精品免费福利视频| 大陆偷拍与自拍| 夫妻性生交免费视频一级片| 大香蕉久久网| 叶爱在线成人免费视频播放| 久久99一区二区三区| 免费观看在线日韩| 午夜日本视频在线| av福利片在线| 女人精品久久久久毛片| 高清av免费在线| 久久99热这里只频精品6学生| 999精品在线视频| 久久狼人影院| 亚洲精品久久成人aⅴ小说| 免费少妇av软件| 国产av一区二区精品久久| 宅男免费午夜| 国产精品一区二区在线观看99| 欧美激情高清一区二区三区 | 少妇的逼水好多| 欧美日本中文国产一区发布| 满18在线观看网站| 如日韩欧美国产精品一区二区三区| 久久久精品国产亚洲av高清涩受| 国产成人精品婷婷| av天堂久久9| 亚洲国产欧美网| 亚洲精品成人av观看孕妇| 成年av动漫网址| 国产精品国产av在线观看| 国产有黄有色有爽视频| 这个男人来自地球电影免费观看 | 国产福利在线免费观看视频| 国产极品粉嫩免费观看在线| 欧美另类一区| 日韩欧美精品免费久久| 最近的中文字幕免费完整| 妹子高潮喷水视频| 国产精品久久久av美女十八| 亚洲精品美女久久久久99蜜臀 | 久久久久久久久免费视频了| 精品卡一卡二卡四卡免费| 亚洲一区中文字幕在线| 国产xxxxx性猛交| 日本91视频免费播放| 一区福利在线观看| 成年人免费黄色播放视频| 在线天堂最新版资源| 日本av免费视频播放| 国产男人的电影天堂91| 精品少妇久久久久久888优播| 亚洲精品国产av成人精品| 啦啦啦啦在线视频资源| 极品少妇高潮喷水抽搐| 国产午夜精品一二区理论片| 日韩熟女老妇一区二区性免费视频| 看非洲黑人一级黄片| 久久久久视频综合| videossex国产| 婷婷色av中文字幕| 精品人妻一区二区三区麻豆| 欧美黄色片欧美黄色片| 欧美xxⅹ黑人| 又大又黄又爽视频免费| 激情五月婷婷亚洲| av国产久精品久网站免费入址| 亚洲精品在线美女| 国产亚洲精品第一综合不卡| 一区福利在线观看| 国产av精品麻豆| 丝袜人妻中文字幕| 精品久久蜜臀av无| 久久 成人 亚洲| 麻豆精品久久久久久蜜桃| 一个人免费看片子| 亚洲国产日韩一区二区| 日韩av在线免费看完整版不卡| 久久久久视频综合| 亚洲婷婷狠狠爱综合网| 激情视频va一区二区三区| 亚洲国产毛片av蜜桃av| 国产免费现黄频在线看| 制服诱惑二区| 男女国产视频网站| 国产精品熟女久久久久浪| 亚洲精品一区蜜桃| 美女高潮到喷水免费观看| 国产精品偷伦视频观看了| 日本猛色少妇xxxxx猛交久久| 色播在线永久视频| 国产精品久久久久久精品古装| 国产精品国产av在线观看| 亚洲欧美精品自产自拍| 国产麻豆69| 看免费av毛片| 天堂俺去俺来也www色官网| 亚洲久久久国产精品| 久久久亚洲精品成人影院| 少妇的丰满在线观看| 国产免费视频播放在线视频| 秋霞在线观看毛片| 一区二区日韩欧美中文字幕| 亚洲欧美精品自产自拍| 亚洲av.av天堂| 在线观看免费高清a一片| 美女视频免费永久观看网站| 少妇被粗大的猛进出69影院| 高清黄色对白视频在线免费看| 七月丁香在线播放| 大片免费播放器 马上看| 久久精品久久久久久久性| 日韩欧美一区视频在线观看| 国产成人精品久久久久久| 亚洲美女视频黄频| 国产av国产精品国产| 999精品在线视频| 欧美黄色片欧美黄色片| 视频在线观看一区二区三区| 久久久久国产一级毛片高清牌| 最近手机中文字幕大全| 涩涩av久久男人的天堂| 久久久久国产网址| 久久久久精品人妻al黑| 亚洲精品,欧美精品| 欧美中文综合在线视频| 男男h啪啪无遮挡| 日韩欧美精品免费久久| 久热久热在线精品观看| 久久人人97超碰香蕉20202| 宅男免费午夜| 成人手机av| 啦啦啦中文免费视频观看日本| 少妇 在线观看| 精品人妻在线不人妻| 满18在线观看网站| 国产精品亚洲av一区麻豆 | 国产精品免费大片| 美国免费a级毛片| 自线自在国产av| 免费大片黄手机在线观看| 成人手机av| 丰满迷人的少妇在线观看| 下体分泌物呈黄色| 久久久久久久亚洲中文字幕| 黑丝袜美女国产一区| 日韩精品有码人妻一区| 国精品久久久久久国模美| 久久久久久人人人人人| 伦精品一区二区三区| 免费高清在线观看视频在线观看| 男女国产视频网站| 亚洲欧美精品综合一区二区三区 | 岛国毛片在线播放| 国产一区二区三区av在线| √禁漫天堂资源中文www| 99久国产av精品国产电影| 欧美av亚洲av综合av国产av | 日韩欧美一区视频在线观看| 欧美xxⅹ黑人| 日本wwww免费看| 精品少妇内射三级| 大香蕉久久网| 在线观看免费日韩欧美大片| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 热99久久久久精品小说推荐| 欧美精品一区二区大全| 国产精品 欧美亚洲| 不卡av一区二区三区| 在线观看人妻少妇| 你懂的网址亚洲精品在线观看| 久久久久久伊人网av| 热re99久久国产66热| 久久精品国产鲁丝片午夜精品| 久久久国产精品麻豆| 日韩不卡一区二区三区视频在线| 久久青草综合色| 国产精品一二三区在线看| 亚洲成色77777| 久久久国产一区二区| 我要看黄色一级片免费的| 新久久久久国产一级毛片| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产av影院在线观看| 久久精品国产综合久久久| 老熟女久久久| 亚洲中文av在线| 国产成人免费观看mmmm| 欧美 亚洲 国产 日韩一| 午夜福利乱码中文字幕| 国产精品国产三级专区第一集| 青青草视频在线视频观看| 免费看av在线观看网站| 国产伦理片在线播放av一区| 中文欧美无线码| 国产免费视频播放在线视频| 少妇精品久久久久久久| 纵有疾风起免费观看全集完整版| 国产精品 欧美亚洲| 精品少妇一区二区三区视频日本电影 | 丝袜人妻中文字幕| 青青草视频在线视频观看| 成年av动漫网址| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 另类精品久久| 伦理电影大哥的女人| 亚洲综合色惰| 国产片特级美女逼逼视频| kizo精华| 亚洲伊人久久精品综合| 日韩欧美精品免费久久| 少妇被粗大的猛进出69影院| av福利片在线| 五月天丁香电影| 免费在线观看完整版高清| 亚洲国产av影院在线观看| 亚洲国产精品成人久久小说| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 亚洲四区av| 久久亚洲国产成人精品v| 最新中文字幕久久久久| 亚洲国产色片| 在线天堂中文资源库| 精品久久蜜臀av无| 欧美成人午夜精品| 国产精品一区二区在线观看99| 在线观看三级黄色| 另类精品久久| 免费观看av网站的网址| 黑人欧美特级aaaaaa片| 男女午夜视频在线观看| 亚洲精品久久久久久婷婷小说| av卡一久久| 亚洲人成网站在线观看播放| 亚洲av成人精品一二三区| 水蜜桃什么品种好| 制服丝袜香蕉在线| 亚洲伊人久久精品综合| 一本久久精品| h视频一区二区三区| 你懂的网址亚洲精品在线观看| 久久精品亚洲av国产电影网| 波多野结衣一区麻豆| 啦啦啦在线观看免费高清www| 国产精品欧美亚洲77777| 久久97久久精品| 亚洲欧美清纯卡通| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 欧美日韩国产mv在线观看视频| av在线老鸭窝| 欧美精品一区二区免费开放| 亚洲欧美一区二区三区久久| 国产av一区二区精品久久| 国产一区二区三区av在线| 超碰成人久久| 91精品三级在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 少妇人妻精品综合一区二区| 久久精品人人爽人人爽视色| 免费av中文字幕在线| 婷婷成人精品国产| 免费观看在线日韩| 观看美女的网站| 欧美在线黄色| 婷婷色综合大香蕉| 美女国产高潮福利片在线看| 在线精品无人区一区二区三| 精品午夜福利在线看| 老汉色∧v一级毛片| 午夜福利网站1000一区二区三区| 精品少妇久久久久久888优播| 精品国产一区二区三区四区第35| 国产精品亚洲av一区麻豆 | 免费黄频网站在线观看国产| 91国产中文字幕| 99久国产av精品国产电影| 亚洲精品美女久久久久99蜜臀 | 18禁观看日本| 18在线观看网站| 精品久久久精品久久久| 国产午夜精品一二区理论片| 午夜福利,免费看| 国产一区二区在线观看av| 热re99久久精品国产66热6| 欧美日韩一区二区视频在线观看视频在线| 美女xxoo啪啪120秒动态图| 涩涩av久久男人的天堂| 亚洲熟女精品中文字幕| 99热全是精品| 在线看a的网站| 91精品伊人久久大香线蕉| 久久这里有精品视频免费| 精品国产乱码久久久久久小说| 黄色视频在线播放观看不卡| 久久久久久久久久久免费av| 久久午夜综合久久蜜桃| 国产日韩欧美在线精品| 久久久久精品久久久久真实原创| 韩国av在线不卡| 亚洲欧美一区二区三区黑人 | 不卡视频在线观看欧美| 国产片内射在线| 高清在线视频一区二区三区| 中文欧美无线码| 亚洲国产精品成人久久小说| 亚洲,欧美精品.| 最黄视频免费看| 国产黄色视频一区二区在线观看| 欧美最新免费一区二区三区| 天堂8中文在线网| 欧美变态另类bdsm刘玥| 久久久久视频综合| av线在线观看网站| 成人黄色视频免费在线看| 国产精品免费视频内射| 亚洲第一区二区三区不卡| 亚洲 欧美一区二区三区| 日韩在线高清观看一区二区三区| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲av天美| 香蕉国产在线看| 侵犯人妻中文字幕一二三四区| 亚洲国产精品一区二区三区在线| 久久国产亚洲av麻豆专区| 熟女av电影| 丰满乱子伦码专区| 国产又爽黄色视频| 国产97色在线日韩免费| 999久久久国产精品视频| 亚洲天堂av无毛| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 春色校园在线视频观看| 成人亚洲精品一区在线观看| 91在线精品国自产拍蜜月| 高清视频免费观看一区二区| 高清av免费在线| 国产色婷婷99| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 日韩三级伦理在线观看| av在线app专区| 少妇人妻久久综合中文| 亚洲图色成人| 视频区图区小说| 女的被弄到高潮叫床怎么办| 91aial.com中文字幕在线观看| 青春草国产在线视频| 亚洲av中文av极速乱| 最近的中文字幕免费完整| 伊人亚洲综合成人网| 国产成人aa在线观看| 欧美精品一区二区大全| 亚洲国产精品成人久久小说| 最近最新中文字幕大全免费视频 | 五月开心婷婷网| 久久久久久久精品精品| 午夜福利,免费看| 久久热在线av| 熟女av电影| 9色porny在线观看| 国产成人一区二区在线| 天堂8中文在线网| 1024香蕉在线观看| www.熟女人妻精品国产| 国产精品国产av在线观看| 欧美少妇被猛烈插入视频| 欧美变态另类bdsm刘玥| 91久久精品国产一区二区三区| 免费看不卡的av| 久久久久人妻精品一区果冻| 亚洲精华国产精华液的使用体验| 国产视频首页在线观看| 考比视频在线观看| 欧美另类一区| 欧美老熟妇乱子伦牲交| 亚洲情色 制服丝袜| 亚洲,欧美,日韩| 人人妻人人添人人爽欧美一区卜| 亚洲精品美女久久久久99蜜臀 | 国产淫语在线视频| www.精华液| 国产av一区二区精品久久| 男女高潮啪啪啪动态图| 亚洲精品一二三| 我的亚洲天堂| 黄色配什么色好看| 9191精品国产免费久久| 亚洲成人av在线免费| 中文字幕精品免费在线观看视频| 亚洲欧美一区二区三区黑人 | 国产有黄有色有爽视频| 亚洲精品日本国产第一区|