• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Infuence of urbanization on the thermal environment of meteorological station:Satellite-observed evidence

    2015-02-09 00:57:59YANGYunJin
    Advances in Climate Change Research 2015年1期

    ,YANG Yun-Jin,*

    aKey Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province,Anhui Institute of Meteorological Sciences,Hefei 230031,China

    bWuhu Meteorological Bureau,Wuhu,241000,China

    cNanjing University of Information Science and Technology,Nanjing 210044,China

    Infuence of urbanization on the thermal environment of meteorological station:Satellite-observed evidence

    SHI Taoa,b,HUANG Yonga,WANG Hongc,SHI Chun-Ea,YANG Yuan-Jiana,*

    aKey Laboratory of Atmospheric Sciences and Satellite Remote Sensing of Anhui Province,Anhui Institute of Meteorological Sciences,Hefei 230031,China

    bWuhu Meteorological Bureau,Wuhu,241000,China

    cNanjing University of Information Science and Technology,Nanjing 210044,China

    In this paper,fve national meteorological stations in Anhui province are taken as typical examples to explore the effects of local urbanization on their thermal environment by using Landsat data from 1990 to 2010.Satellite-based land use/land cover(LULC),land surface temperature (LST),normalized difference vegetation index(NDVI)are used to investigate the effects.The study shows that LULC around meteorological stations changed signifcantly due to urban expansion.Fast urbanization is the main factor that affects the spatial-temporal distribution of thermal environment around meteorological stations.Moreover,the normalized LSTand NDVI exhibit strong inverse correlations around meteorological stations,so the variability of LST can be monitored through evaluating the variability of NDVI.In addition,station-relocation plays an important role in improving representativeness of thermal environment.Notably,the environment representativeness was improved,but when using the data from the station to study climate change,the relocation-induced inhomogeneous data should be considered and adjusted.Consequently, controlling the scale and layout of the urban buildings and constructions around meteorological stations is an effective method to ameliorate observational thermal environment and to improve regional representativeness of station observation.The present work provides observational evidences that high resolution Landsat images can be used to evaluate the thermal environment of meteorological stations.

    Urbanization;Thermal environment;Representativeness;Land surface temperature;Normalized difference vegetation index(NDVI)

    1.Introduction

    Driven by the recent thirty-year economic booming,China has undergone rapid development and urbanization.Many meteorological stations used to be in rural area now are in urban area and their observational environments have changeddramatically(Ren et al.,2010;Zhang et al.,2010;Ren and Ren,2011;Shao et al.,2011;Yang et al.,2011,2013;Li et al.,2015).The changed thermal environment around meteorological stations signifcantly infuences the observations(Yan et al.,2010;Li et al.,2012;Shao et al.,2011;Ren and Ren,2011),which will further disturb local weather and climate analysis,such as the evaluation of heat island effect, one of the main features of a modern city(Kalnay and Cai, 2003;Li et al.,2004;Zhou et al.,2004;Chen et al.,2007; Ren et al.,2007,2008;Shi et al.,2011a;Zhao et al.,2013; Yang et al.,2013).For these reasons,objectively quantifying changes in thermal environment is crucial to evaluate the representativeness of meteorological stations.

    Land surface temperature(LST)is an important index to represent the thermal environment around meteorologicalstations.Satellite remote sensing,as a recently developed technique,provides a unique opportunity to monitor and study macroscopical and dynamic-continuous LST in different spatial scales.Satellite-derived LST images have been widely used in land use classifcation,urban heat island research, thermal environment and hydrological investigation in an urban or even larger scales(Yang,2000;Weng,2001;Zhang et al.,2005,2011;Hung et al.,2006;Shi et al.,2011b, 2013).However,only in recent years have satellite-derived LST data been used specifcally for evaluating thermal environment and observational stations'representativeness in China.For example,by using 1-km resolution MODIS LST dataset,Wang et al.(2011)evaluated the representativeness of 142 weather stations and investigated the relationship between the representativeness of a station and its surrounding conditions.Ren et al.(2010)and Ren and Ren(2011)proposed to combine remote sensing images from Google Earth and MODIS LST data to evaluate the representativeness of observational stations and investigate the effect of urban heat islands.Using Landsat remote sensing data,Li et al.(2015) calculated the normalized LST and the heat effect contribution index(HECI)of different land use/land cover(LULC) type to classify the stations'observational environment into three types(urban,sub-urban and rural),and these two indexes could be used conveniently,effectively and quantitatively to choose a reference station when analyzing observational data in weather and climate research.However,thermal environment and representativeness around many Chinese meteorological stations are still not clear,especially the ones located in the southeastern China where has undergone rapid urbanization.Therefore,it is essential to use satellite-derived LST to monitor spatial-temporal variations of thermal environment and representativeness of these meteorological stations.

    In this study,taking fve typical meteorological stations as samples in Anhui province,a southeastern province in China, where the tremendous growth of urban sprawl,population, vehicles and economy have occurred since the 1990s(Shi et al.,2008;Li et al.,2012;Yang et al.,2011,2013),spatiotemporal variations of LULC and thermal environment (LST)around meteorological stations are systematically explored by using Landsat remote sensing data.Moreover,the effects of urbanization on the thermal environment of meteorological stations are quantitatively evaluated by using LULC change around these meteorological stations.Finally,the relationship between LST and normalized difference vegetation index(NDVI)are quantitatively investigated.

    2.Data and method

    2.1.Data

    The Landsat-5 remote sensing data used in this study are obtained from the Open Spatial Data Sharing Project,which was launched by the Institute of Remote Sensing and Digital Earth of the Chinese Academy of Sciences(http://ids.ceode. ac.cn/en/).The TM(ETM)sensor which is on board of the Landsat-5 satellite has seven bands,and the sixth band(TM6, with the band wavelength 10.40-12.50 μm)is selected here for LST retrieval(Li et al.,2015).In addition,the fourth band (TM4,with the near infrared band wavelength 0.62-0.69 μm) and the third band(TM3,with the red band wavelength 0.76-0.96 μm)are also selected here for NDVI retrieval(Shi et al.,2011b).In order to better capture the local vegetation information in a similar season,only data during the vegetation growth periods(i.e.,May to September in China)in 1990, 2000 and 2010 are selected.

    To investigate the temporal-spatial variability of the meteorological stations'surrounding environment,the LULC types in the buffer zone of the station are categorized into three types,vegetation(including farmland,forest and grass land), water(including lakes,rivers and pools),and construction (including buildings and roads),which are derived exactly through supervised classifcation together with visual interpretation(Li et al.,2015).

    Five stations under rapid urbanization are selected as typical cases(Fig.1),i.e.,Suzhou(SZ),Hefei(HF),Chuzhou (CZ),Anqing(AQ)and Wuhu(WH);and fve reference stations in rural areas are also selected corresponding to the fve urban stations,i.e.,Lingbi(LB),Feixi(FX),Quanjiao(QJ), Huaining(HN)and Nanling(NL).In addition,the underlying surfaces around the fve reference stations experienced little changes during 1990-2010.The annual mean air temperatures for the period 1980-2010 were recorded at the above mentioned 10 meteorological stations in Anhui province.

    2.2.Method

    2.2.1.Critical radius for the buffer zone around station

    The buffer zone here is defned as the area within 2 km from the station based on two following reasons:1)In Anhui province,through feld survey it has been found that most of the meteorological stations were initially built 2 km away from the edge of cities.Therefore,by studying the 2 km radius area of a station,the infuence of city expansion on the stations'observational environment can be captured.2)According to recent studies(Ren et al.,2010;Yang et al.,2013;Li et al.,2015),the infuence of urbanization on a meteorological station in China can be refected by the observational environment within its 2-km radius.Therefore,2 km is chosen as the critical radius for the buffer zone.

    2.2.2.Retrieval of LST

    Brightness temperature is usually retrieved from thermal infrared band data.First,digital number values(QDN)of TM6 images are converted to thermal radiation intensity(R)(Weng, 2003),following,

    Here,QDNis the digital number of a pixel in the TM6 image. RMAXand RMINare the maximum and minimum radiation intensity received by TM6,which are set as 1.896 and 0.1534 mW cm-2sr-1mw-1μm-1,respectively.The maximum and minimum digital number QMAXand QMINare 255 and 0,respectively.As such,Equation(1)can be written as:

    Brightness temperature TB(units:K)for a black body is then calculated following:

    Here,K1=60.776 and K2=1260.56.However,the Earth is not a black body and has different underlying surface conditions at difference places.LST,which is different from TB,is then calculated using(Artis and Carnahan,1982;Weng,2001)

    Here,λ(≈11.5 μm)is the effective wavelength of TM6. ρ=hc/σ=1.438×10-2mK,where σ is the Boltzmann constant(1.38× 10-23J K-1),h is the Planck constant (6.626 × 10-34J s) and c is the lightvelocity (2.998×108m s-1).ε is emissivity whose value is 0.9925, 0.95 and 0.92 for water,vegetation and construction surfaces, respectively(Nichol,1994).

    2.2.3.Normalized LST

    To reveal the effects of changing underlying surface conditions on the stations'surrounding thermal environment during the recent 20 years,it is important to exclude the infuence of background weather conditions.To do so,LST is normalized as Iifollowing Li et al.(2015):

    Where Tiis the LSTof pixel i.Tmaxand Tminare the maximum and minimum LST in the considering area.Iiis the normalized LST index for pixel i,which ranges 0-1.With the data of all the pixels in the 2 km buffer zones of the 5 stations,I is categorized into 5 zones(i.e.,high,sub-high,medium,sublow and low temperature zones)using the Natural Breaks method in ArcGIS(Table 1).

    In addition,linear regression was applied to calculate the relationship between normalized LST and NDVI around the fve stations in 1990,2000,and 2010.Due to 60-m resolution of TM6,about 3000 pixels can be obtained in the 2 km buffer zones.After qualities controlled,about 2600 pixels in the 2 km buffer zones per panel are selected as samples for linear regression at each station.All correlation coeffcients were tested using a t-distribution.A p value associated with this test was applied.

    2.2.4.Heat effect contribution index(HECI)

    In the surrounding area of an observational station,various land use types contribute differently to the thermal environment.To quantitatively evaluate the heat contribution from each type of land use,an index(HECI)is introduced following Li et al.(2015):

    Where T is the average LST of the whole area.N is the total pixel number within the area.Tijis the LST of type i LULC in its jth pixel.Niis the pixel number of the area covered by type i LULC.HECIirepresents the heat contribution LULC from type i,and it varies from 0 to 100%.Larger HECIimeans larger contribution of type i LULC to the thermal environment.The sum of HECIioverall types LULC equals 100%.

    Table 1 Five zones of the thermal environment categorized by normalized LST.

    3.Results

    3.1.Impacts of urbanization on LULC around meteorological stations

    Fig.2 shows the temporal variation of LULC in the 2 km buffer zone of the fve urban stations.Generally,it can be seen that the LULC changed signifcantly primarily due to urban expansion.Taking CZ as an example,in 1990,the construction area covered approximately 30%of the buffer zone(Fig.2a), which then increased to approximately 45%in 2000(Fig.2b), while to approximately 70%in 2010(Fig.2c).Similarly,it is clear that other four stations have been in urban areas due to the tremendous urban construction sprawl since the 1990.In fact,they were in rural areas before the 1980s.Ten years later, the construction areas of the buffer zone increased continuously,accompanying with vegetation and water reductions around these four stations(Fig.2b).Until 2010,SZ and AQ had entered into city passively,except HF and WH(Fig.2c).It is evident that the measurements can be strongly affected by surrounding buildings.Therefore,in order to avoid disturbances from urban developments,HF and WH moved to rural areas in 2004 and 2006,respectively.After their relocations, vegetation areas increased signifcantly,while construction decreased drastically.

    3.2.Impacts of LULC on thermal environment around observational stations

    Fig.3 shows the fve-level thermal environment based on the normalized LST in the 2 km buffer zones of the fve stations.For SZ/AQ/CZ,the high and sub-high temperature zones with the construction LULC type kept increasing signifcantly, while the area of low,sub-low and medium temperature zones, as well as the vegetation and water LULC type kept decreasing from 1990 to 2010(Figs.2 and 3).As a result,the HECI of construction for SZ/AQ/CZ also kept increasing,e.g.,65.47%/ 54.20%/48.50%in 1990,80.96%/71.37%/50.66%in 2000, and 89.81%/80.17%/61.32%in 2010,respectively(Table 2), while that of vegetation and water also kept decreasing. Similarly,increase/decrease trends for thermal environment of construction/vegetation and water are found for HF and WH during 1990-2000(Fig.3,Table 2).However,after their relocation,the high and sub-high temperature zone and the construction LULC type in the 2 km buffer zone were drastically reduced,and the low,sub-low and medium temperature zone,as well as the vegetation and water LULC type were increased.The HECI of construction for HF and WH were 69.72%and 79.04%in 2000,while decreased to 21.90%and 29.97%in 2010,respectively(Table 2).The above results clearly indicate that the observational environment of ameteorological station can be greatly infuenced by LULC under local fast urbanization.

    Overall,in low and sub-low temperature zones,vegetation and water are the main contributors,while in sub-high and high temperature zones,construction becomes dominant.In the medium temperature zone,vegetation and construction are mixed.Consequently,controlling the scale and layout of the urban buildings around the stations is an effective method to ameliorate observation thermal environment and to improve region representativeness of station observation.

    3.3.Relationship between normalized LST and NDVI around meteorological stations

    NDVI,as an important indicator of LULC,can be derived by visible/infrared(VIR)sensors aboard most satellites with the opportunity of high sampling frequency.Therefore,it is very important to investigate the relationship between LST and NDVI to study the thermal environment around meteorological stations,which can be further used to effectively improve and populate the technique that using VIR measurements to monitor the thermal environment around meteorological stations.Previous studies indicated that LST and NDVI were signifcantly negative correlation in urban areas(Shi et al.,2011b,2013;Zhang et al.,2011).To assess quantitative relationship between NDVI and LST around meteorological stations,the linear regressions of NDVI on the normalized LST in the 2 km buffer zone of each station are shown for the year 1990,2000,and 2010,respectively (Fig.4).In general,the normalized LST and NDVI exhibit greatnegative correlations,with the normalized LST increasing while NDVI decreasing around the stations (Fig.4).The correlation coeffcients are statistically signifcant at the 99%confdence level.These results indicate that NDVI can refect the changes of thermal environment conditions in respond to LULC changes around meteorologicalstations affected by urbanization.Therefore,the variability of thermal environment could also be monitored through evaluating the variability of NDVI.

    Table 2 The HECI of different LULC type around stations(unit:%).

    4.Discussion

    Different remote-sensing products have different advantages and disadvantages.For example,although some historical images are missing,images provided by Google Earth usually have high resolution(approximately 15 m)and can be used to evaluate the representativeness of observational stations in recent years(Ren et al.,2010;Ren and Ren,2011). Large quantities of MODIS LST products have been gathered for more than 14 years since the launch of MODIS,and they provide a unique opportunity to study the long-term representativeness of observational stations(Wang et al.,2011;Ren and Ren,2011).However,the resolution of MODIS LST products is 1 km,which is too coarse for investigating the surrounding conditions within a station's 1 km buffer zone. Moreover,because of the low spatial resolution of these products,it is diffcult to precisely construct the relationship between LULC and LST.In contrast,remote-sensing images provided by the Landsat project have both high spatial resolution(approximately 30 or 60 m)and long-term coverage(from 1979 to present).Landsat images have been widely used for land use classifcation and thermal environmental assessment around stations on a 1-km or smaller scale(Shao et al., 2011;Yang et al.,2013;Li et al.,2015).In the present study, Landsat images were reliable for constructing a relationship between LULC(or NDVI)and LST.Consequently,we found advantages in the combined LULC and LST method for station-type classifcation.

    To evaluate urbanization-related warming,Fig.5 shows the time series of the differences between the observed temperatures at fve urban stations and at reference stations between 1980 and 2010.These differences can be treated as the intensities of UHI for urban stations(Liu et al.,2007;Ren et al., 2008).The fgure clearly shows that UHI values for the fve urban stations increased with time over the past 20 years.In particular,the UHI values for the SZ,CZ,and AQ stations continued to increase signifcantly after 2000;however,this was not observed for the HF and WH stations because of their relocation.This implies that urbanization-related warming cannot be ignored(Ren and Zhou,2014;Ren et al.,2014). Wang et al.(2010)also indicated that the urban heat island effect and the decadal variation in ocean thermohaline circulation were responsible for the continuing warming in China, although a global warming hiatus occurred after 2000.In addition,Stewart and Oke(2012)pointed out that the effects of terrain and local wind patterns would infuence the representativeness of the stations and the local UHI.Therefore,the exact mechanisms underlying warming in China are complex and can vary from place to place.The analysis and separation of these mechanisms are beyond the scope of this paper but will be addressed in future research.

    Abrupt changes(i.e.,signifcant drops)in UHI values occurred at the HF(Fig.5b)and WH stations(Fig.5e)in 2004 and 2006,respectively,as indicated by the arrows.These detectible inhomogeneities were mainly associated with the station relocations in 2004 and 2006,which were also consistent with the LULC and thermal environment changes (Table 1,Figs.2 and 3).After relocation,the environmental representativeness improved,but the inhomogeneities in the data must be taken into account.There are methods available for adjusting some of these inhomogeneities(Yan et al.,2010; Li and Yan,2010;Cao and Yan,2012;Yang et al.,2013;Yang and Li,2014).

    We selected LST rather than in situ air temperatures for the present study because of the fact that LST can be monitored using macroscopic,large-scale,dynamic,continuous satellite remote-sensing images.In contrast,in situ air temperatures,as observed by meteorological stations,are taken from a single space point and therefore have weak spatial representativeness,particularly over heterogeneous urban surfaces.In fact,air temperature and LST are closely related,and air temperature can be estimated from satellitebased LST using the temperature/vegetation index(TVX) method and a statistical regression approach(Prihodko and Goward,1997;Florio et al.,2004;Stathopoulou et al., 2006;Shen and Leptoukh,2011).Therefore,the use of LST rather than in situ air temperatures was more advantageous in the present study.

    5.Summary

    We used Landsat-based LULC,LST,NDVI values to study the effects of local urbanization on the thermal environments of fve national meteorological stations in the Anhui province from 1990 to 2010.The results obtained in this study are summarized as follows:

    First,LULC around the observational stations changed signifcantly because of rapid local urban expansion between 1990 and 2010.Construction areas increased continuously, accompanied by reductions in vegetation and water bodies.Toavoid disturbances from these urban developments,the HF and WH stations were moved to new locations in 2004 and 2006, respectively.Therefore,in the areas surrounding these two stations,vegetation increased and construction decreased after the relocation,accompanied by improved environmental representativeness and inhomogeneity in the data.

    Second,the observational environment of a meteorological station can be greatly infuenced by LULC changes.In particular,vegetation and water are the main contributors in low and sub-low temperature zones,while construction is dominant in sub-high and high temperature zones.In the medium temperature zone,the infuences of vegetation and construction are mixed.

    Finally,the normalized LST and NDVI values signifcantly exhibit negative correlations,with LST increasing and NDVI decreasing around the stations.Therefore,it is reasonable to use NDVI as another indicator of thermal environmental conditions around meteorological stations.By evaluating the variability of NDVI values,the variability of the thermal environment can also be monitored.The scale and layout of construction around a station can be changed by its relocation, and this is an effective way to improve the observational thermal environment and to improve regional representativeness of station observations.In addition,when choosing a new site for a station,this study provides a method for examining the thermal environment around the intended location with high-resolution Landsat images.

    Acknowledgements

    This study was supported by the National Natural Science Foundation of China(41205126 and 41475085),Anhui Provincial Natural Science Foundation(1408085MKL60 and 1508085MD64)and Meteorological Research Fund of Anhui Meteorological Bureau(KM201520).We also appreciated the constructive comments and suggestions by the editors and two anonymous reviewers.

    Artis,D.A.,Carnahan,W.H.,1982.Survey of emissivity variability in thermography of urban areas.Remote Sens.Environ.12(4),313-329.

    Cao,L.-J.,Yan,Z.-W.,2012.Progress in research on homogenization of climate data.Adv.Clim.Change Res.3(2),59-67.

    Chen,Z.-H.,Wang,H.-J.,Ren,G.-Y.,2007.Asymmetrical change of urban heat island intensity in Wuhan,China.Adv.Clim.Change Res.3(5), 282-286(in Chinese).

    Florio,E.N.,Lele,S.R.,Chang,C.Y.,et al.,2004.Integrating AVHRR satellite data and NOAA ground observations to predict surface air temperature:a statistical approach.Int.J.Remote Sens.25(15),2797-2994.

    Hung,T.,Uchihama,D.,Ochi,S.,2006.Assessment with satellite data of the urban heat island effects in Asian mega cities.Int.J.Appl.Earth Obs.8 (1),34-38.

    Kalnay,E.,Cai,M.,2003.Impact of urbanization and land use change on climate.Nature 423(6939),528-531.

    Li,Q.,Zhang,H.,Liu,X.,et al.,2004.Urban heat island effect on annual mean temperature during the last 50 years in China.Theor.Appl.Climatol. 79(3-4),165-174.

    Li,Y.-B.,Shi,T.,Yang,Y.-J.,et al.,2015.Satellite-based investigation and evaluation of the observational environment of meteorological stations in Anhui province,China.Pure Appl.Geophys.172(6),1717-1733.http:// dx.doi.org/10.1007/s00024-014-1011-8.

    Li,Z.,Yan,Z.,2010.Application of multiple analysis of series for homogenization(MASH)to Beijing daily temperature series 1960-2006. Adv.Atmos.Sci.27(4),777-787.http://dx.doi.org/10.1007/s00376-009-9052-0.

    Li,Z.-H.,Yang,J.,Shi,C.-E.,et al.,2012.Urbanization effects on fog in China:feld research and modeling.Pure Appl.Geophys.169(5-6), 927-939.

    Liu,W.,Ji,C.,Zhong,J.,et al.,2007.Temporal characteristics of the Beijing urban heat island.Theor.Appl.Clim.87(1-4),213-221.http:// dx.doi.org/10.1007/s00704-005-0192-6.

    Nichol,J.E.,1994.A GIS-based approach to microclimate monitoring in Singapore's high-rise housing estates.Photogramm.Eng.Rem.S.60(10), 1225-1232.

    Prihodko,L.,Goward,S.N.,1997.Estimation of air temperature from remotely sensed surface observations.Remote Sens.Environ.60(3),335-346.

    Ren,G.-Y.,Zhou,Y.-Q.,2014.Urbanization effect on trends of extreme temperature indices of national stations over mainland China,1961-2008. J.Clim.27(6),2340-2360.

    Ren,G.-Y.,Chu,Z.-Y.,Chen,Z.-H.,et al.,2007.Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations.Geophys.Res.Lett.34 http://dx.doi.org/10.1029/2006GL027927. Ren,G.-Y.,Zhou,Y.-Q.,Chu,Z.-Y.,et al.,2008.Urbanization effects on observed surface air temperature trends in North China.J.Clim.21(6), 1333-1348.

    Ren,G.-Y.,Zhang,A.-Y.,Chu,Z.-Y.,et al.,2010.Principles and procedure for selecting reference surface air temperature stations in China.Meteor.Sci. Technol.38(1),78-85(in Chinese).

    Ren,G.-Y.,Ren,Y.-Y.,Li,Q.-X.,et al.,2014.An overview on global land surface air temperature change.Adv.Earth Sci.29(8),934-946(in Chinese).

    Ren,Y.-Y.,Ren,G.-Y.,2011.A remote-sensing method of selecting reference stations for evaluating urbanization effect on surface air temperature trends.J.Clim.24(13),3179-3189.

    Shao,Q.-Q.,Sun,C.-Y.,Liu,J.-Y.,et al.,2011.Impact of urban expansion on meteorological observation data and overestimation to regional air temperature in China.J.Geogr.Sci.21(6),994-1006.

    Shen,S.-H.,Leptoukh,G.-G.,2011.Estimation of surface air temperature over central and eastern Eurasia from MODIS land surface temperature.Environ.Res.Lett.6(4),http://dx.doi.org/10.1088/1748-9326/6/4/045206.

    Shi,C.,Roth,M.,Zhang,H.,et al.,2008.Impacts of urbanization on longterm variation of fog in Anhui province,China.Atmos.Environ.42 (11),8484-8492.

    Shi,T.,Yang,Y.-J.,Jiang,Y.-L.,et al.,2011a.Impact of the variation of urban heat island intensity on temperature series in Anhui province.Clim.Environ.Res.16 (6),779-788.http://dx.doi.org/10.3878/j.issn.1006-9585.06.13(in Chinese).

    Shi,T.,Yang,Y.-J.,Zhang,A.-M.,et al.,2011b.Study of thermal environment of Hefei city based on TM and GIS.Remote Sens.Technol.Appl.26(2), 156-162(in Chinese).

    Shi,T.,Yang,Y.-J.,Ma,J.,et al.,2013.Study on spatial-temporal characteristics of urban heat island in Anhui province based on MODIS:typical cases study.J.Appl.Meteror.Sci.24(4),484-494(in Chinese).

    Stathopoulou,M.,Cartalis,C.,Chrysoulakis,N.,2006.Using midday surface temperature to estimate cooling degree-days from NOAA-AVHRR thermal infrared data:an application for Athens,Greece.Sol.Energy 80(4), 414-422.

    Stewart,I.D.,Oke,T.R.,2012.Local climate zones for urban temperature studies.Bull.Amer.Meteorol.Soc.93(12),1879-1900.

    Wang,S.-W.,Wen,X.-Y.,Luo,Y.,et al.,2010.Does the global warming pause in the last decade:1999-2008?Adv.Clim.Change Res.1(1),49-54.

    Wang,Y.-Y.,Li,G.-C.,Zhang,Y.,2011.Regional representativeness analysis of national reference climatological stations based on MODIS/LST product.J.Appl.Meteror.Sci.22(2),214-220(in Chinese).

    Weng,Q.,2001.A remote sensing-GIS evaluation of urban expansion and its impact on surface temperature in the Zhujiang Delta,China.Int.J.Remote Sens.22(10),1999-2014.

    Weng,Q.,2003.Fractal analysis of satellite-detected urban heat island effect. Photogramm.Eng.Rem.S.69(5),555-565.

    Yan,Z.,Li,Z.,Li,Q.,et al.,2010.Effects of site-change and urbanisation in the Beijing temperature series 1977-2006.Int.J.Climatol.30(8), 1226-1234.

    Yang,L.,2000.Integration of a numerical model and remotely sensed data to study urban/rural land surface climate processes.Comput.Geosci.26(4), 451-468.

    Yang,S.,Li,Q.-X.,2014.Improvement in homogeneity analysis method and update of China precipitation data.Prog.Inquisitiones De.Mutat.Clim.10 (4),276-281(in Chinese).

    Yang,Y.-J.,Shi,T.,Tang,W.-A.,et al.,2011.Study of observational environment of meteorological station based on remote sensing:cases in six stations of Anhui province.Remote Sens.Technol.Appl.26(6),791-797 (in Chinese).

    Yang,Y.-J.,Wu,B.-W.,Shi,C.-E.,et al.,2013.Impacts of urbanization and station-relocation on surface air temperature series in Anhui province, China.Pure Appl.Geophys.170(11),1969-1983.

    Zhang,A.-Y.,Ren,G.-Y.,Zhou,J.-X.,et al.,2010.On the urbanization effect on surface air temperature trends over China.Acta Meteor.Sin.68(6), 957-966(in Chinese).

    Zhang,H.-Q.,Yang,Y.-J.,Xun,S.-P.,et al.,2011.Seasonal and spatial variability of vegetation and land surface temperature in Anhui province.J. Appl.Meteror.Sci.22(2),232-240(in Chinese).

    Zhang,J.-H.,Hou,Y.-Y.,Li,G.-C.,et al.,2005.The diurnal and seasonal characteristics of urban heat island variation in Beijing city and surrounding areas and impact factors based on remote sensing satellite data. Sci.China Earth Sci.48,S220-S229.

    Zhao,Z.-C.,Luo,Y.,Huang,J.-B.,2013.Are there impacts of urban heat island on future climate change?Adv.Clim.Change Res.4(2), 133-136.

    Zhou,L.M.,Robert,E.D.,Tian,Y.H.,et al.,2004.Evidence for a signifcant urbanization effect on climate in China.Proc.Natl.Acad.Sci.U.S.A.101 (26),9540-9544.

    Received 9 February 2015;revised 17 April 2015;accepted 17 July 2015

    Available online 28 July 2015

    *Corresponding author.

    E-mail address:yyj1985@mail.ustc.edu.cn(YANG Y.-J.).

    Peer review under responsibility of National Climate Center(China Meteorological Administration).

    Production and Hosting by Elsevier on behalf of KeAi

    http://dx.doi.org/10.1016/j.accre.2015.07.001

    1674-9278/Copyright?2015,National Climate Center(China Meteorological Administration).Production and hosting by Elsevier B.V.on behalf of KeAi. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    亚洲第一区二区三区不卡| 欧美变态另类bdsm刘玥| 亚洲av中文av极速乱| 韩国高清视频一区二区三区| 欧美少妇被猛烈插入视频| av在线观看视频网站免费| 国产爽快片一区二区三区| 中文字幕最新亚洲高清| 日本黄大片高清| 自线自在国产av| 王馨瑶露胸无遮挡在线观看| 日本色播在线视频| 高清视频免费观看一区二区| 中文乱码字字幕精品一区二区三区| 亚洲欧美成人综合另类久久久| 日日摸夜夜添夜夜添av毛片| 一本久久精品| 国产精品偷伦视频观看了| 一区二区日韩欧美中文字幕 | 亚洲美女搞黄在线观看| 亚洲精品第二区| 日日撸夜夜添| 国产熟女欧美一区二区| 欧美丝袜亚洲另类| 日本av手机在线免费观看| 午夜日本视频在线| 精品视频人人做人人爽| 午夜福利视频精品| 国产极品粉嫩免费观看在线 | 国产成人精品在线电影| 亚洲国产成人一精品久久久| 美女xxoo啪啪120秒动态图| 国产色婷婷99| 毛片一级片免费看久久久久| 精品久久久久久久久亚洲| 女性生殖器流出的白浆| 免费黄色在线免费观看| 一级片'在线观看视频| 欧美日韩成人在线一区二区| 亚洲在久久综合| 久久精品久久久久久久性| 国产黄片视频在线免费观看| 亚洲欧洲国产日韩| 国产熟女欧美一区二区| 男女无遮挡免费网站观看| 亚洲av综合色区一区| 国语对白做爰xxxⅹ性视频网站| 国产精品久久久久久久久免| 搡老乐熟女国产| 久久精品久久久久久噜噜老黄| 一级毛片黄色毛片免费观看视频| 亚洲第一av免费看| 亚洲欧美中文字幕日韩二区| 青春草亚洲视频在线观看| 3wmmmm亚洲av在线观看| 黄色配什么色好看| 高清在线视频一区二区三区| 免费日韩欧美在线观看| 亚洲情色 制服丝袜| 女人精品久久久久毛片| 亚洲精品,欧美精品| 最近中文字幕2019免费版| 一区二区日韩欧美中文字幕 | 亚洲av福利一区| 欧美精品一区二区大全| 亚洲精品一二三| 欧美日韩av久久| 丰满迷人的少妇在线观看| 国产一区二区在线观看av| 亚洲精品aⅴ在线观看| 欧美老熟妇乱子伦牲交| 在线免费观看不下载黄p国产| 高清av免费在线| 久久99蜜桃精品久久| .国产精品久久| 午夜免费观看性视频| 中文字幕免费在线视频6| 99久久精品国产国产毛片| 亚洲国产欧美在线一区| 日本与韩国留学比较| 国产精品久久久久久久电影| 国产精品人妻久久久久久| 精品亚洲乱码少妇综合久久| 国产成人aa在线观看| 99久久综合免费| 午夜久久久在线观看| 大香蕉久久成人网| 久久久国产精品麻豆| 美女中出高潮动态图| 欧美丝袜亚洲另类| 国语对白做爰xxxⅹ性视频网站| 成人18禁高潮啪啪吃奶动态图 | 少妇被粗大猛烈的视频| 人体艺术视频欧美日本| 国产av一区二区精品久久| 国产一级毛片在线| a级毛片黄视频| 91在线精品国自产拍蜜月| 国产国拍精品亚洲av在线观看| 国产精品秋霞免费鲁丝片| 国产精品一国产av| 高清黄色对白视频在线免费看| 最近中文字幕2019免费版| 午夜免费观看性视频| 亚洲精品一区蜜桃| 麻豆精品久久久久久蜜桃| 一本大道久久a久久精品| 在线观看国产h片| 中国三级夫妇交换| 亚洲精品日韩在线中文字幕| 久久精品人人爽人人爽视色| 欧美老熟妇乱子伦牲交| 国产日韩欧美在线精品| 韩国高清视频一区二区三区| 中文字幕精品免费在线观看视频 | 91午夜精品亚洲一区二区三区| 不卡视频在线观看欧美| 日韩电影二区| 国产精品蜜桃在线观看| 美女国产高潮福利片在线看| 久久 成人 亚洲| 青青草视频在线视频观看| 十分钟在线观看高清视频www| 99热国产这里只有精品6| 日韩av在线免费看完整版不卡| 国产成人精品福利久久| 午夜视频国产福利| 久久久久久久亚洲中文字幕| 亚洲国产成人一精品久久久| av不卡在线播放| 男女高潮啪啪啪动态图| 国产深夜福利视频在线观看| 在线观看一区二区三区激情| 亚洲精品美女久久av网站| 国产探花极品一区二区| 一级毛片aaaaaa免费看小| 亚洲成人一二三区av| 国产黄色视频一区二区在线观看| 一本久久精品| 免费观看无遮挡的男女| 国产视频首页在线观看| 高清av免费在线| 欧美精品一区二区免费开放| 男女啪啪激烈高潮av片| 天堂中文最新版在线下载| 女人久久www免费人成看片| 成人综合一区亚洲| 伊人久久国产一区二区| 亚洲人成网站在线播| 嘟嘟电影网在线观看| 国产亚洲精品久久久com| 国产精品久久久久久av不卡| 精品一区在线观看国产| 亚洲怡红院男人天堂| 日本av免费视频播放| 亚洲av欧美aⅴ国产| 成人亚洲欧美一区二区av| 久久久国产欧美日韩av| 99热这里只有精品一区| 99热这里只有是精品在线观看| av女优亚洲男人天堂| 18禁在线播放成人免费| 亚洲色图综合在线观看| 99九九在线精品视频| 国产成人freesex在线| 久久毛片免费看一区二区三区| 在线播放无遮挡| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 久久久精品94久久精品| 国产精品一区二区在线不卡| 欧美日韩一级在线毛片| 亚洲色图 男人天堂 中文字幕| 俄罗斯特黄特色一大片| 国产日韩欧美亚洲二区| 麻豆乱淫一区二区| 亚洲av成人一区二区三| 高潮久久久久久久久久久不卡| 男人操女人黄网站| 青草久久国产| 午夜老司机福利片| 精品午夜福利视频在线观看一区 | 搡老乐熟女国产| 一级毛片精品| 91九色精品人成在线观看| 香蕉久久夜色| 国产精品熟女久久久久浪| 在线观看66精品国产| 中文亚洲av片在线观看爽 | 欧美性长视频在线观看| 一边摸一边抽搐一进一出视频| 欧美激情久久久久久爽电影 | 制服人妻中文乱码| 亚洲欧洲日产国产| 日本撒尿小便嘘嘘汇集6| 国产97色在线日韩免费| 中文字幕色久视频| 色综合欧美亚洲国产小说| 国产激情久久老熟女| 成人18禁在线播放| 色视频在线一区二区三区| 啦啦啦在线免费观看视频4| 亚洲av成人一区二区三| 男男h啪啪无遮挡| 男男h啪啪无遮挡| svipshipincom国产片| 国产精品亚洲av一区麻豆| 视频区图区小说| 亚洲免费av在线视频| 精品久久蜜臀av无| 国精品久久久久久国模美| 动漫黄色视频在线观看| 国产欧美日韩精品亚洲av| 波多野结衣一区麻豆| 亚洲色图综合在线观看| 天天躁夜夜躁狠狠躁躁| 久久精品人人爽人人爽视色| 麻豆国产av国片精品| 啦啦啦在线免费观看视频4| 亚洲国产成人一精品久久久| 女性生殖器流出的白浆| 首页视频小说图片口味搜索| 美国免费a级毛片| 免费少妇av软件| 免费女性裸体啪啪无遮挡网站| 成年动漫av网址| 成人免费观看视频高清| 99热网站在线观看| netflix在线观看网站| 精品亚洲乱码少妇综合久久| 久久国产精品大桥未久av| 亚洲人成伊人成综合网2020| 99九九在线精品视频| 在线观看人妻少妇| 黄频高清免费视频| 精品欧美一区二区三区在线| 午夜激情av网站| 亚洲第一青青草原| 麻豆国产av国片精品| 免费久久久久久久精品成人欧美视频| 久久人人爽av亚洲精品天堂| 成人永久免费在线观看视频 | 亚洲精品自拍成人| 午夜久久久在线观看| 一本久久精品| 建设人人有责人人尽责人人享有的| 三上悠亚av全集在线观看| 国产精品久久久av美女十八| av有码第一页| 大香蕉久久成人网| 日韩一卡2卡3卡4卡2021年| 欧美一级毛片孕妇| 黄片播放在线免费| 又黄又粗又硬又大视频| 欧美成人午夜精品| 国产野战对白在线观看| av在线播放免费不卡| 91av网站免费观看| 午夜老司机福利片| 成人影院久久| 国产老妇伦熟女老妇高清| 伊人久久大香线蕉亚洲五| 亚洲,欧美精品.| 69av精品久久久久久 | 久久久精品区二区三区| 99re在线观看精品视频| 亚洲av电影在线进入| 国产成人影院久久av| 国产成人啪精品午夜网站| 一边摸一边做爽爽视频免费| 亚洲少妇的诱惑av| 日韩精品免费视频一区二区三区| 久久中文字幕人妻熟女| 又大又爽又粗| 日本一区二区免费在线视频| av又黄又爽大尺度在线免费看| 最新美女视频免费是黄的| 久久久久网色| 99re在线观看精品视频| 国产精品久久久久久人妻精品电影 | 国产亚洲欧美在线一区二区| 一个人免费在线观看的高清视频| av网站免费在线观看视频| 性少妇av在线| 91大片在线观看| av电影中文网址| 久久久久久久大尺度免费视频| 亚洲av成人不卡在线观看播放网| 乱人伦中国视频| 日韩欧美一区二区三区在线观看 | 午夜视频精品福利| 国产欧美日韩一区二区三| 亚洲欧美一区二区三区黑人| 18禁黄网站禁片午夜丰满| 欧美久久黑人一区二区| 成年人午夜在线观看视频| 午夜福利视频在线观看免费| 人妻一区二区av| 一级片免费观看大全| 在线av久久热| 久久青草综合色| 变态另类成人亚洲欧美熟女 | 国产成人欧美| 午夜福利一区二区在线看| 精品国产一区二区三区久久久樱花| 亚洲人成电影观看| 成人国产av品久久久| 美女视频免费永久观看网站| 成年动漫av网址| 免费女性裸体啪啪无遮挡网站| 18禁黄网站禁片午夜丰满| 亚洲情色 制服丝袜| 水蜜桃什么品种好| 国产不卡一卡二| 亚洲欧美一区二区三区黑人| 操出白浆在线播放| 午夜久久久在线观看| 黄片播放在线免费| 91九色精品人成在线观看| 亚洲精品在线美女| 久久国产精品男人的天堂亚洲| 狠狠狠狠99中文字幕| 在线播放国产精品三级| 国产精品国产高清国产av | 亚洲全国av大片| 久久久久精品人妻al黑| 精品熟女少妇八av免费久了| 热re99久久国产66热| 日本欧美视频一区| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区| 久久久久久人人人人人| 18禁国产床啪视频网站| 日韩大码丰满熟妇| 我的亚洲天堂| 国产深夜福利视频在线观看| 精品国产一区二区三区久久久樱花| 大码成人一级视频| 亚洲专区国产一区二区| 国产在线免费精品| 黄色片一级片一级黄色片| 丰满少妇做爰视频| 午夜福利欧美成人| 国产成人精品无人区| 国产成人啪精品午夜网站| 激情视频va一区二区三区| 成年人免费黄色播放视频| aaaaa片日本免费| 欧美激情久久久久久爽电影 | 在线天堂中文资源库| 国产单亲对白刺激| 亚洲欧美精品综合一区二区三区| 捣出白浆h1v1| 99久久精品国产亚洲精品| 99国产精品一区二区三区| 午夜福利乱码中文字幕| 一区二区三区精品91| 国产av国产精品国产| 乱人伦中国视频| 亚洲七黄色美女视频| 18禁裸乳无遮挡动漫免费视频| 成年人午夜在线观看视频| 国产一区二区激情短视频| 欧美黄色淫秽网站| 欧美 日韩 精品 国产| 性高湖久久久久久久久免费观看| 国产成人啪精品午夜网站| 97在线人人人人妻| 久久精品亚洲av国产电影网| 欧美精品亚洲一区二区| 欧美激情极品国产一区二区三区| av一本久久久久| 99久久精品国产亚洲精品| 久久热在线av| 午夜福利欧美成人| 一进一出抽搐动态| 久久国产精品影院| av有码第一页| 亚洲avbb在线观看| 99re6热这里在线精品视频| 热99re8久久精品国产| 黄色视频在线播放观看不卡| 国产成人精品在线电影| 2018国产大陆天天弄谢| 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 正在播放国产对白刺激| 黑人猛操日本美女一级片| 少妇粗大呻吟视频| 露出奶头的视频| 多毛熟女@视频| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 亚洲一卡2卡3卡4卡5卡精品中文| 天天躁日日躁夜夜躁夜夜| 男女无遮挡免费网站观看| 老鸭窝网址在线观看| 精品少妇久久久久久888优播| 丁香六月天网| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 久久久久久久国产电影| 岛国毛片在线播放| 久久精品国产99精品国产亚洲性色 | 国产精品影院久久| 黄色视频,在线免费观看| 首页视频小说图片口味搜索| 久久精品亚洲熟妇少妇任你| 久久毛片免费看一区二区三区| 制服诱惑二区| 精品国产国语对白av| 巨乳人妻的诱惑在线观看| 色精品久久人妻99蜜桃| 人人澡人人妻人| 日韩制服丝袜自拍偷拍| 欧美激情高清一区二区三区| 欧美另类亚洲清纯唯美| 一边摸一边做爽爽视频免费| 啦啦啦 在线观看视频| 一本—道久久a久久精品蜜桃钙片| 老司机亚洲免费影院| 一进一出好大好爽视频| 久久久国产成人免费| 在线观看舔阴道视频| 成年动漫av网址| 午夜精品久久久久久毛片777| 色综合婷婷激情| 男女无遮挡免费网站观看| 十八禁人妻一区二区| 精品国产乱子伦一区二区三区| 新久久久久国产一级毛片| 一级,二级,三级黄色视频| 久久热在线av| 亚洲精品在线观看二区| 99国产精品一区二区蜜桃av | 熟女少妇亚洲综合色aaa.| 建设人人有责人人尽责人人享有的| 国产一区二区三区综合在线观看| 日本wwww免费看| 曰老女人黄片| 久久久欧美国产精品| 99香蕉大伊视频| 又黄又粗又硬又大视频| 另类亚洲欧美激情| 欧美日韩福利视频一区二区| 精品国内亚洲2022精品成人 | 国产成人精品久久二区二区免费| 巨乳人妻的诱惑在线观看| 国产成人影院久久av| 国产av国产精品国产| 日本撒尿小便嘘嘘汇集6| 99久久99久久久精品蜜桃| 亚洲欧美激情在线| 天天影视国产精品| 亚洲精品国产精品久久久不卡| 黄色视频不卡| 男女边摸边吃奶| 精品一区二区三区四区五区乱码| 2018国产大陆天天弄谢| 亚洲欧美一区二区三区久久| 好男人电影高清在线观看| 久久中文看片网| 天堂中文最新版在线下载| 成人手机av| 久久久久精品国产欧美久久久| av不卡在线播放| 丝瓜视频免费看黄片| 99精品欧美一区二区三区四区| 狠狠狠狠99中文字幕| 亚洲人成伊人成综合网2020| 亚洲av成人一区二区三| 亚洲精品中文字幕在线视频| 国产不卡一卡二| 国内毛片毛片毛片毛片毛片| 亚洲精品乱久久久久久| 黑人操中国人逼视频| 亚洲伊人色综图| 91精品三级在线观看| a级毛片在线看网站| av片东京热男人的天堂| 久久 成人 亚洲| 一区二区三区激情视频| tube8黄色片| 亚洲精品粉嫩美女一区| 汤姆久久久久久久影院中文字幕| 大码成人一级视频| 欧美激情久久久久久爽电影 | 波多野结衣av一区二区av| 国产一区二区激情短视频| 嫁个100分男人电影在线观看| 亚洲精品国产一区二区精华液| 色播在线永久视频| 黄色 视频免费看| 日韩视频在线欧美| 亚洲人成77777在线视频| 日本av免费视频播放| 多毛熟女@视频| 国产免费视频播放在线视频| 亚洲成人免费电影在线观看| 99re在线观看精品视频| 国产精品二区激情视频| 18禁裸乳无遮挡动漫免费视频| 在线十欧美十亚洲十日本专区| 午夜福利乱码中文字幕| 这个男人来自地球电影免费观看| 国产精品一区二区免费欧美| 国产日韩欧美视频二区| 91精品三级在线观看| 国产麻豆69| 国产精品久久久久成人av| 欧美黑人精品巨大| 国产精品美女特级片免费视频播放器 | 亚洲一区二区三区欧美精品| 亚洲精品久久午夜乱码| 午夜精品国产一区二区电影| 欧美激情高清一区二区三区| 亚洲第一欧美日韩一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 他把我摸到了高潮在线观看 | 超碰成人久久| 久久久欧美国产精品| bbb黄色大片| 中文字幕高清在线视频| 欧美在线黄色| 亚洲国产欧美一区二区综合| 99国产精品99久久久久| 日韩视频在线欧美| 母亲3免费完整高清在线观看| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡| 91国产中文字幕| 久久精品国产综合久久久| 一区二区日韩欧美中文字幕| 久9热在线精品视频| 亚洲专区国产一区二区| 肉色欧美久久久久久久蜜桃| 精品第一国产精品| 午夜福利视频在线观看免费| 欧美亚洲 丝袜 人妻 在线| 精品高清国产在线一区| 国产又爽黄色视频| 欧美乱妇无乱码| www日本在线高清视频| 一本一本久久a久久精品综合妖精| 极品人妻少妇av视频| 亚洲专区国产一区二区| 日韩三级视频一区二区三区| 国产麻豆69| 日韩一区二区三区影片| 捣出白浆h1v1| 亚洲欧洲日产国产| 久热爱精品视频在线9| 18禁美女被吸乳视频| 欧美精品av麻豆av| 久久久精品区二区三区| 考比视频在线观看| 亚洲一区二区三区欧美精品| 18禁裸乳无遮挡动漫免费视频| 国产亚洲av高清不卡| 国产三级黄色录像| 首页视频小说图片口味搜索| 亚洲欧美激情在线| 久久人妻福利社区极品人妻图片| 大片电影免费在线观看免费| 亚洲精品一卡2卡三卡4卡5卡| 亚洲av电影在线进入| 国产精品欧美亚洲77777| 老汉色∧v一级毛片| 黑丝袜美女国产一区| www.精华液| 国产精品影院久久| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 一区二区三区国产精品乱码| 久久狼人影院| 人妻久久中文字幕网| 80岁老熟妇乱子伦牲交| 91大片在线观看| 精品人妻熟女毛片av久久网站| av国产精品久久久久影院| 黄色视频不卡| 丝袜美足系列| 国产有黄有色有爽视频| 五月天丁香电影| 国产成人影院久久av| 不卡一级毛片| 久久久精品国产亚洲av高清涩受| 国产精品影院久久| 成人国产av品久久久| 欧美精品一区二区大全| 黄色成人免费大全| 亚洲人成电影观看| 丝袜在线中文字幕| 日韩一卡2卡3卡4卡2021年| 日本欧美视频一区| 色尼玛亚洲综合影院| 人妻一区二区av| 啦啦啦视频在线资源免费观看| 国产一区二区三区在线臀色熟女 | 汤姆久久久久久久影院中文字幕| 成人特级黄色片久久久久久久 | 少妇猛男粗大的猛烈进出视频| 精品国产一区二区三区久久久樱花| 欧美国产精品va在线观看不卡| 交换朋友夫妻互换小说| 丰满饥渴人妻一区二区三| 别揉我奶头~嗯~啊~动态视频| 极品少妇高潮喷水抽搐| 国产男女内射视频| 久久中文看片网| 少妇猛男粗大的猛烈进出视频| 天堂中文最新版在线下载| 国产精品99久久99久久久不卡|