• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Carbon–oxygen isotopic covariations of calcite from Langdu skarn copper deposit,China:implications for sulfde precipitation

    2015-02-07 09:08:53???
    Acta Geochimica 2015年1期

    ???

    Carbon–oxygen isotopic covariations of calcite from Langdu skarn copper deposit,China:implications for sulfde precipitation

    Tao Ren?Xingchun Zhang?Runsheng Han?Baohong Hou

    The Langdu skarn copper deposit in the Zhongdian area,YunnanProvince,China,hasan average Cu grade of 6.49%.The deposit is related to a porphyry intrusion (~216 Ma),which was emplaced in the Upper Triassic sedimentary rocks of the Tumugou and Qugasi Formations. At the Langdu skarn copper deposit,carbon and oxygen isotope ratios of fresh limestones(δ18O=3.0–5.6‰relative to V-SMOW;δ13C=24.5–25.7‰ relative to PDB) and partly altered limestones(δ18O=27–7.2 to-1.9‰; δ13C=11.8–15.2‰)indicated that the deposit was a typical marine carbonate source.Oxygen and carbon isotope values for calcites formed at different hydrothermal stages are-9.1 to 0.2 and 10.1–16.3‰,respectively.Moreover, the carbon–oxygen isotopic composition of an ore-forming fuid(δ18O=5.0–9.5‰,δ13C=-7.3to-5.3‰)suggested the presence of magmatic water,which most likely came from the differentiation or melting of a homologous magma chamber.The deposition of Calcite I may arise from metasomatism inanopensystemwithaprogressivelydecreasingtemperature. Later,the minerals chalcopyrite,pyrrhotite,quartz and Calcite II were precipitated due to immiscibility.Water–rock interactioncouldpotentiallyberesponsibleforCalciteIIIprecipitation in the post-ore stage.

    Stable isotope·Copper deposit·Skarn·Fluid evolution·Yunnan province

    1 Introduction

    For decades,stable isotopes have been successfully used in geochemical studies as powerful petrogenetic tracers and paleothermometers.Quantitative stable isotope models and their applicationshave become themainstayofinternational stable isotope geochemistry.Using these models,researchers worldwide have elucidated the formation mechanisms of numerous deposits(e.g.,Zheng 1990;Zheng and Hoefs 1993;PengandHu2001;Choietal.2003;Zhouetal.2013a, b,c).Carbon and oxygen isotopic covariation in carbonates associated with hydrothermal mineralization can supply useful mineralization information,such as temperature and isotopiccompositionofhydrothermalfuid,andthenatureof dissolved carbon species(e.g.,Rye and Williams 1981; Matsuhisaetal.1985;Zheng1990).Inthispaper,wepresent the frst analysis of the isotopic compositions of carbon and oxygeninlimestone,marble,silicate-bearinglimestone,and calciteformedatdifferentstagesinthe Langduskarncopper deposit,Yunnan Province,China.Using the theoretical models of Zheng(1990)and Zheng and Hoefs(1993)with homogenized temperature data derived from fuid inclusions,this study investigates the nature and evolution of the hydrothermalfuidandthemechanismofcalcite,sulfde,and quartz precipitation.

    2 Geology of the Langdu skarn copper deposit

    The Langdu skarn copper deposit is located about 50 km northeast of Xianggelila City,Yunnan Province,China.The deposit was discovered in 1964 by Team No.1 of the Regional Geological Survey,Bureau of Geology and Mineral Resources,Yunnan Province,China.Recently (particularly during 2006 and 2007),Yunnan Huaxi Mining Co.,Ltd.has discovered several copper-rich ore bodies in the contact zone of porphyry bodies and marbleized limestone to the north and west of the original Langdu skarn deposit,containing 104,030 tons of copper reserves and over 50,000 tons of copper metal resources.With ongoing exploration,more copper metal resources may be discovered in the Langdu skarn copper deposit area.

    The outcropped strata in the Langdu deposit mainly include the Upper Triassic Qugasi and Tumugou Formations.The valley,a small part of the deposit area,is covered with Quaternary alluvial sediments with a thickness varying from 0 to 30 m.The Tumugou Formation is mainly in the southwestern corner of the district,which consists of slate,sericitic slate,meta-sandstone and limestone with a thickness of 1433 m.The Qugasi Formation is mainly exposed in the deposit area.The Qugasi Formation forms the core part of the Langdu anticline and consists of layered limestone,sericitic slate,fne meta-sandstone,with a total thickness varying from 487 to 2,683 m.Under the infuence of the porphyry intrusions,the clastic rock was hornfelsed to felsic hornfels and brecciated hornfels,and the limestone was metasomatized to skarn and marbleized in the contact zone.

    The major structure of the deposit area includes the NW-trending Langdu anticline and some NW-trending and NE-trending faults.The NW-trending fractures are mainly inter-layer fractures along the striking of the Langdu anticline.A part of the NE-trending Bidu fault cuts through the core part of the Langdu anticline.The copper mineralization mainly occurs in the conjunction between the NW and NE trending faults,in the southwest limb of the Langdu anticline.

    The known copper ore bodies occur mainly in the contact zone between the porphyry bodies and limestone of the Upper Triassic Qugasi Formation.Using Ar–Ar dating of biotite which had been separated from the intrusive rock, Zeng et al.(2004)obtained the age of 216.93 Ma.The only ore body that occurs within the monzonite porphyry is orebody III3.Currently,6 ore blocks and 21 ore bodies have been identifed in the deposits(Fig.1).Ore blocks I, III,and IV,which collectively contain 13 ore bodies,are under mining operation.

    The Langdu deposit is characterized by multistage skarn formation and complex mineralization which result in a diversity of minerals.Dominant Ca–Fe anhydrous silicate minerals(andradite and hedenbergite)were formed during the prograde skarn stage(Ia).Electron microprobe analyses show that the composition of andradite varies from Ad57to Ad94,while that of pyroxene is Hd78–92Di3–11Jo5–11. Hydrous silicate minerals,including actinolite and grunerite,form during the retrograde stage(I),with later a deposition of minor Cu–Fe sulfde,quartz,and calcite. Chalcopyrite and pyrrhotite dominate the main ore-forming stage(II).These minerals occur as veins,veinlets or patches in the coarse veins of quartz or calcite,which contain an average copper grade of 6.49 wt%(exceeding 10 wt% in some localities).During the later ore-forming stage, chalcopyrite occurs as veins or veinlets that fll the fssures of marble,or as patches in Fe–dolomite coarse veins.Postore hydrothermal minerals(III)are prominent and occur with calcite,quartz,and chlorite.

    3 Sampling and analytical methods

    Based on its petrochemical characteristics,limestone is divided into two distinct groups:fresh limestone and silicate-bearing limestone.The fresh limestone is light gray and fne-grained,whereas silicate-bearing limestone is brown and coarse-grained and characterized by its high SiO2content and low CaO content.For analysis,21 grains of calcites were collected from the Langdu deposit.These calcites were classifed into Calcite I,Calcite II,and Calcite III,according to their geological characteristics and mineral assemblages.Calcite I is usually white,and flls the fractures of altered pyroxene or garnet in patches or veins (Fig.2a,b).Calcite II is generally milky and associated with quartz,pyrrhotite,and chalcopyrite(Fig.2c).Calcite III occurs as coarse veins(Fig.2d).Carbonate samples were crushed and reacted with phosphoric acid at 25°C, and the carbon and oxygen isotopes(δ13C and δ18O, respectively)in the liberated CO2gas were measured using a mass spectrometer with a precision of±0.2‰(Finnigan MAT252)at the State Key Laboratory of Environmental Geochemistry,Chinese Academy of Sciences.

    4 Results and discussion

    4.1 Results

    The fresh limestones were more enriched in carbon and oxygen isotopic compositions (Table 1;δ13C=3.0–5.6‰,δ18O=24.5–25.7‰)in comparison to the marbles(δ13C=2.0–2.8‰,δ18O=24.9–25.4‰).Similarly,the δ13C and δ18O values of the marbles were higher than those of silicate-bearing carbonate rocks(δ13C= -7.2 to-1.9‰,δ18O=11.8–15.2‰).This decreasing trend of carbon and oxygen isotope ratios from limestones to silicate-bearing limestones indicates that the fresh limestones were modifed due to repeatedly interacting with a hydrothermal fuid with a lower carbon and oxygenisotope ratio.Different carbon and oxygen isotope ratios in marbles and silicate-bearing limestones are attributed to different water/rock ratios.As shown in Fig.3,the carbon and oxygen isotope values of fresh limestones are generally consistent with those of marine carbonates.Theoretical models indicate that marbles form at temperatures below 100°C and have water/rock ratios less than 0.5(Fig.4). This suggests that limestone recrystallized at low temperatures and its heat energy was most likely derived from nearby magmatic fuid/rocks.

    Fig.1 a Simplifed geological map of the tectonic framework of the Sanjiang Tethys.b Simplifed geological map of the Langdu deposit, adapted from the detailed geological report of the Langdu skarn deposit

    The carbon isotope values of the calcites(Calcite I and Calcite II)in the ore-forming stage were similar to those of calcites in porphyry copper deposits of the Zhongdian region,ranging from-9.1 to-7.6‰ (Table 1).These carbon isotopic compositions show that the carbon in the hydrothermal fuid may originate from deep regions of the earth(i.e.,from the mantle or lower crust)or from the mixture of carbonate and organic matter.However,its narrow range of δ13C values excludes the possibility of an organic origin.The oxygen isotopic compositions of theore-forming stage range from 10.1 to 12.6‰.Carbon and oxygen isotopic compositions of syn-ore and post-ore calcites(III)are signifcantly different from each other.In fact,the carbon and oxygen isotopic compositions of postore calcites(III)are similar to those of marine carbonates.

    Fig.2 Specimen photos:a cavity in the garnet flled by patch calcite;b calcite veins/veinlets occurring in pyroxene fractures;c coarse veins of calcite,quartz,and sulfde;d coarse veins of barren-sulfde calcite

    From the plot of δ13C versus δ18O(Fig.3),we observe that mostofthesamplesoriginatedfromtheigneousorsurrounding felds.The isotopic composition progressively increased from thesyn-orestage(IandII)tothepost-orestage(III).According to theoretical models of water/rock interactions,calcites that form in the syn-ore stage at temperatures ranging from 300 to 400°C(Fig.4)are consistent with the principal microthermometric results of fuid inclusions in sulfde-bearing quartz. The water/rock ratios are greater than 20(Fig.4),indicating that the isotopic compositions of these samples were largely affected by that of the hydrothermal fuid.The formation temperatures of the post-ore calcites vary from 200 to 300°C, and the water/rock ratios range from 2 to 10(Fig.4).These results suggest that both limestone and hydrothermal fuid contribute to the isotopic composition of Calcite III.

    4.2 Origin of the hydrothermal fuid

    The isotopic composition of the hydrothermal fuid, assuming that it existed in isotopic equilibrium with the hydrothermal minerals,can be calculated from the isotopic composition of the minerals,the fractionation equation at a given temperature,and the mineral precipitation temperature.The oxygen isotope fractionation equation between calcite and water occurs from 200 to 700°C(O’Neil et al. 1969),whereas the carbon isotope fractionation equation between CO2and calcite occurs from 0 to 700°C(Bottinga 1969).We assume that there is no fractionation between CO2and H2CO3in the calculation.

    The isotopic compositions were calculated from measured isotope values.The precipitation temperatures of Calcites I and II taken from fuid inclusions(which refect the principal temperatures of fuid inclusions measured from quartz coexisting with calcite)range from 300 to 400°C.While calculating the relevant isotopic value of the hydrothermal fuid,the formation temperature of Calcite IIIis assumed as 200°C.Based on the aforementioned parameters,the stable isotopic compositions of Stage I, Stage II,and Stage III hydrothermal fuids that equilibrated with Calcite I,Calcite II,and Calcite III are δ18O= 5.0–9.5‰,δ13C=-6.7 to-5.5‰;δ18O=6.3–8.8‰, δ13C=-7.3 to -5.3‰; and δ18O=3.0–7.2‰, δ13C=-6.0 to 0.6‰,respectively.

    Table 1 Oxygen and carbon isotope data and calculated compositions of equilibrium waters

    Three types of fuids of different origins magmatic water, meteoric water,and seawater contributed to the formation of the hydrothermal minerals.Each fuid has a distinctive stable isotopic composition.The calculated stable isotopic compositions of ore-forming fuids in equilibrium with syn-ore calcite are consistent with the composition of magmatic water.High temperatures(300–400°C)and high salinity (10–20 equiv.wt%NaCl)also typify fuid inclusions.This suggests that the ore-forming fuid was magmatic water supplied from the Langdu intrusives or the igneous chamber. This means that the post-ore fuid is in fact more complicated than previously suspected and that the input of seawater cannot be excluded.

    Fig.3 Carbon and oxygen isotopic compositions of the Langdu deposit.Carbon and oxygen isotope data of igneous calcite and marine carbonates are from Ray et al.(2000)and Zheng(2001), respectively

    4.3 Fluid evolution,calcite and sulfde precipitation

    The observed positive correlation between the δ13C and δ18O values of all calcites shown in Fig.3 can be explained by two processes:the mixing of two fuids with different isotopic compositions or the calcite precipitation,which is due to a temperature effect in the open system coupled with either CO2outgassing or fuid/rock interactions.

    If fuid mixing were responsible for calcite precipitation, then two different fuids with distinct isotopic compositions and temperatures would have been observed.However,the δ13C values of the calcites(particularly those of Calcites I and II)do not to support this mechanism.Although we found no evidence of CO2-bearing fuid inclusions,there is a possibility that the outgassing of CO2led to calcite precipitation.This mechanism is possible because CO2concentration in hydrothermal fuid is below 1.0 mol and therefore,the observed three-phase inclusions should not exist(Zheng 1990).Since the carbon isotopic fractionation factor between calcite and CO2is negative(temperature>200°C),CO2outgassing will inevitably deplete the quantity of carbon isotope in later-deposited calcites.On account of the high water/rock ratios of Calcite I and Calcite II,the observed isotopic signature of the various calcites cannot be reasonably explained by water/rock interactions.

    The above analysis suggests that calcite precipitation in the Langdu deposit occurred in three stages under different precipitation formation mechanisms.Calcite I,which spatially coexists with skarn minerals,is depleted in δ13C and δ18O.Theoretical models indicate that Calcite I was formed at high water/rock ratios(>50;see Fig.4),which may represent the primitive isotopic composition of the magmatic fuid.For metasomatism,one must assume decreasing temperature(contact metasomatic processes related to hydrothermal fuid and cool sedimentary rocks), which can cause Calcite I precipitation in an open system. The slightly lower δ13C values of Calcite II relative to Calcite I within the disseminated material or veinlets imply an identical isotope signature of carbon and oxygen in the fuid reservoir.The observed δ13C values can be readily explained by CO2outgassing,as the boiling phenomenon has been identifed in the coexisting quartz-hosted fuid inclusion.Since the oxygen in hydrothermal fuids generally exists as H2O,CO2outgassing and calcite precipitation will affect the carbon isotope composition insignifcantly. Theoretical models show that Calcite III was formed at lower temperatures and water/rock ratios than Calcites I and II were(Fig.4).In the case of Calcite III,where the δ13C and δ18O values were more enriched relative to Calcite I and Calcite II,water/rock interaction accompanied by a progressive decrease in temperature may have occurred at different water/rock ratios.

    Fig.4 Covariation of carbon vs oxygen isotopic compositions during water/rock interactions involving limestone with δ13C=+4‰(PDB)and δ18O=+26‰ (V-SMOW),andafuidwith δ13C=-9‰ (PDB)and δ18O=+7‰ (V-SMOW).The dissolved carbon mainly exists as CO2at temperatures ranging from 100 to 450°C.The solid and dashed curves denote the closed and open systems,respectively

    During phase separation,most of the volatile compounds(CO2,SO2,HCl)partitioned into the vapor phase, and the high-saline residual liquid may have retained most of the metal elements,including Cu,Zn,Pb,and Fe. Consequently,the fuid became supersaturated with metal ions Ca2+and Si4+.The subsequent decrease of pressure and temperature and increase of pH of the fuid resulted in the precipitation of a large amount of ore materials,which formed coarse calcite-quartz-sulfde veins.

    5 Conclusion

    The deposit was devoid of CO2-bearing fuid inclusions, and the modeled precipitation temperatures of various calcites in this study are consistent with microthermometry measurements of various fuid inclusions.Thus,the theoretically calculated CO2fraction of 0.1 mol percent is reasonable and the results obtained are credible.

    AcknowledgmentsThis study was supported by the National Science Foundation of China(NSFC)project(40372049).The authors wish to thank C.Z.Yang(Branch of Mineral Resources Investigation, Yunnan Geological Survey,China)for their helpful discussions on the geology of the Zhongdian area and for information on the Langdu deposit.

    Bottinga Y(1969)Calculated fractionation factors for carbon and hydrogen isotopic exchange in the system,calcite-carbon dioxide-graphite-methane-hydrogen-water-vapor[J].Geochim Cosmochim Acta 33:9–64

    Choi SG,Kim ST,Lee JG(2003)Stable isotope systematics of Ulsan Fe-W skarn deposit,Korea[J].J Geochem Explor 78–79:601–606

    Matsuhisa Y,Morishita Y,Sato T(1985)Oxygen and carbon isotope variations in gold-bearing hydrothermal veins in the Kushikino mining area,southern Kynshu,Japan[J].Econ Geol 80:283–293

    O’Neil JR,Clayton RN,Mayeda TK (1969)Oxygen isotope fractionation in divalent metal carbonates[J].J Chem Phy 51:5547–5558

    Peng J,Hu R(2001)Carbon and oxygen isotope systematics in Xikuangshan giant antimony deposit,central Hunan[J].Geol Rev 47:34–41(in Chinese with English abstract)

    Ray JS,Ramesha R,Pandea K,Trivedi JR,Shukla PN,Patel PP (2000)Isotope andrare earth element chemistry of carbonatite±alkaline complexes of Deccan volcanic province:implications to magmatic and alteration processes[J].J Asian Earth Sci 18:177–194

    Rye DM,Williams N(1981)Studies of the base metal sulfde deposits at McArthur River,Northern Territory,Australia:III.The stable isotope geochemistry of the H.Y.C.Ridge,and Cooley deposits [J].Econ Geol 76:1–26

    Zeng P,Wang H,Mo X,Yu X,Li W,Li T,Li H,Yang C(2004) Tectonic setting and prospects of porphyry copper deposits in Zhongdian island arc belt[J].Acta Geosci Sin 25:535–540(in Chinese with English abstract)

    Zheng YF(1990)Carbon-oxygen isotopic covariation in hydrothermal calcite during degassing of CO2:a quantitative evaluation and application to the Kushikino gold mining area in Japan. Miner[J].Miner Depos 25:246–250

    Zheng YF(2001)Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J]. Miner Depos 20:56–71(in Chinese with English abstract)

    Zheng YF,Hoefs J(1993)Carbon and oxygen isotopic covariations in hydrothermal calcites:theoretical modeling on mixing processes and application to Pb–Zn deposits in the Harz Mountains, Germany[J].Miner Depos 28:79–89

    Zhou JX,Huang ZL,Zhou MF,Li XB,Jin ZG(2013a)Constraints of C–O–S–Pb isotope compositions and Rb–Sr isotopic age on the origin of the Tianqiao carbonate-hosted Pb–Zn deposit,SW China[J].Ore Geol Rev 53:77–92

    Zhou JX,Huang ZL,Yan ZF(2013b)The origin of the Maozu carbonate-hosted Pb–Zn deposit,southwest China:constrained by C–O–S–Pb isotopic compositions and Sm–Nd isotopic age [J].J Asian Earth Sci 73:39–47

    Zhou JX,Gao JG,Chen D,Liu XK(2013c)Ore genesis of the Tianbaoshan carbonate-hosted Pb–Zn deposit,Southwest China: geologic and isotopic(C–H–O–S–Pb)evidence[J].Int Geol Rev 55:1300–1310

    Received:12 March 2014/Revised:31 March 2014/Accepted:2 April 2014/Published online:16 December 2014 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2014

    T.Ren(?)·R.Han

    Faculty of Land and Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China e-mail:rtao1982@126.com

    X.Zhang

    State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Science, Guiyang 550003,Guizhou,China

    B.Hou

    Minerals&Energy Division,Primary Industries and Resources SA,GPO Box 1671,Adelaide,SA 95000,Australia

    亚洲精品第二区| 一个人看视频在线观看www免费| 国产免费福利视频在线观看| 亚洲国产精品专区欧美| 免费观看无遮挡的男女| 国产精品一二三区在线看| 国产色婷婷99| 天堂中文最新版在线下载| 欧美日韩精品成人综合77777| 国产亚洲最大av| 日本一二三区视频观看| 又爽又黄a免费视频| 女人久久www免费人成看片| 国产精品偷伦视频观看了| 男女边吃奶边做爰视频| 国产人妻一区二区三区在| 国产色爽女视频免费观看| 欧美激情极品国产一区二区三区 | 六月丁香七月| 欧美 日韩 精品 国产| 欧美老熟妇乱子伦牲交| 国产亚洲5aaaaa淫片| 亚洲国产欧美人成| 国产淫片久久久久久久久| 亚洲国产毛片av蜜桃av| 寂寞人妻少妇视频99o| 七月丁香在线播放| 国内精品宾馆在线| 中文字幕久久专区| 亚洲精品乱码久久久久久按摩| 2018国产大陆天天弄谢| 精品一区二区三区视频在线| 国产色婷婷99| 亚洲精品乱码久久久久久按摩| 少妇的逼好多水| 亚洲四区av| 一个人免费看片子| 边亲边吃奶的免费视频| 日韩中文字幕视频在线看片 | 91久久精品电影网| 大码成人一级视频| 免费观看的影片在线观看| 尤物成人国产欧美一区二区三区| 亚洲电影在线观看av| 99热网站在线观看| 久久久久网色| 欧美高清成人免费视频www| 天天躁夜夜躁狠狠久久av| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 青春草视频在线免费观看| 高清欧美精品videossex| 久久久久久人妻| 欧美激情极品国产一区二区三区 | 国产91av在线免费观看| 大陆偷拍与自拍| 日韩不卡一区二区三区视频在线| 国精品久久久久久国模美| 热re99久久精品国产66热6| 亚洲精品一二三| 蜜臀久久99精品久久宅男| 一级毛片电影观看| 色视频www国产| 欧美+日韩+精品| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 妹子高潮喷水视频| 夫妻性生交免费视频一级片| 日本wwww免费看| 亚洲成人手机| av黄色大香蕉| 在线观看av片永久免费下载| 久久久久久久精品精品| 欧美成人午夜免费资源| 身体一侧抽搐| 精品久久久久久久久av| 一级黄片播放器| 在线播放无遮挡| 国产精品国产三级专区第一集| 国产精品精品国产色婷婷| 热re99久久精品国产66热6| 一个人看视频在线观看www免费| 观看av在线不卡| 在线观看免费高清a一片| 国产久久久一区二区三区| 波野结衣二区三区在线| 亚洲综合色惰| 国产精品熟女久久久久浪| 在线观看一区二区三区激情| 亚洲av国产av综合av卡| 亚洲精品久久午夜乱码| 国产v大片淫在线免费观看| 女人久久www免费人成看片| 视频区图区小说| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 久久鲁丝午夜福利片| 在线观看一区二区三区| 国产片特级美女逼逼视频| 久热这里只有精品99| 中文天堂在线官网| 狂野欧美激情性xxxx在线观看| 国产美女午夜福利| 97超碰精品成人国产| 欧美日韩在线观看h| 亚洲aⅴ乱码一区二区在线播放| 国产爽快片一区二区三区| 久久国产精品大桥未久av | 成人无遮挡网站| 国产 一区 欧美 日韩| 欧美xxⅹ黑人| 一级毛片久久久久久久久女| 午夜精品国产一区二区电影| 大话2 男鬼变身卡| 丰满乱子伦码专区| 精品99又大又爽又粗少妇毛片| .国产精品久久| 大码成人一级视频| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区 | 亚洲av中文字字幕乱码综合| 婷婷色综合大香蕉| 一区二区三区免费毛片| 亚洲丝袜综合中文字幕| 日本色播在线视频| 中文字幕精品免费在线观看视频 | 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 激情 狠狠 欧美| 欧美3d第一页| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 18禁动态无遮挡网站| 99精国产麻豆久久婷婷| 中国国产av一级| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 国产综合精华液| 中文字幕免费在线视频6| 99精国产麻豆久久婷婷| 在线观看国产h片| 蜜桃亚洲精品一区二区三区| 国产精品一区二区性色av| 激情五月婷婷亚洲| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 嫩草影院入口| 97超碰精品成人国产| 少妇被粗大猛烈的视频| 免费观看的影片在线观看| 国产伦精品一区二区三区四那| 自拍偷自拍亚洲精品老妇| av卡一久久| 尤物成人国产欧美一区二区三区| 亚洲精品自拍成人| 18禁在线无遮挡免费观看视频| 免费少妇av软件| freevideosex欧美| 亚洲国产最新在线播放| 国产伦理片在线播放av一区| 亚洲精品色激情综合| 99热全是精品| 夫妻性生交免费视频一级片| 亚洲av电影在线观看一区二区三区| 久热久热在线精品观看| 高清黄色对白视频在线免费看 | 欧美丝袜亚洲另类| 人人妻人人澡人人爽人人夜夜| 亚洲av福利一区| 少妇熟女欧美另类| 色网站视频免费| 97在线视频观看| 免费看av在线观看网站| 国产精品一区二区性色av| 国产精品女同一区二区软件| 黄色欧美视频在线观看| 免费人妻精品一区二区三区视频| 高清欧美精品videossex| 国产精品不卡视频一区二区| 我的女老师完整版在线观看| 久久久久性生活片| 欧美日韩一区二区视频在线观看视频在线| 一级毛片久久久久久久久女| 男女无遮挡免费网站观看| 街头女战士在线观看网站| 午夜老司机福利剧场| 午夜免费观看性视频| 日本色播在线视频| 欧美xxxx性猛交bbbb| 伦精品一区二区三区| 日日撸夜夜添| 香蕉精品网在线| 欧美日韩一区二区视频在线观看视频在线| 日本爱情动作片www.在线观看| 中文在线观看免费www的网站| 久久热精品热| 国产免费一区二区三区四区乱码| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 亚洲精品中文字幕在线视频 | freevideosex欧美| 插阴视频在线观看视频| 高清视频免费观看一区二区| 日韩av免费高清视频| 欧美日韩亚洲高清精品| 国产高潮美女av| 久久99热这里只频精品6学生| 久久久久久久亚洲中文字幕| 久久久久精品久久久久真实原创| 少妇熟女欧美另类| 亚洲精品aⅴ在线观看| 高清不卡的av网站| 国产成人午夜福利电影在线观看| 国产成人91sexporn| 亚洲欧美日韩另类电影网站 | 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 国产精品秋霞免费鲁丝片| 久久精品夜色国产| av.在线天堂| 午夜免费鲁丝| 精品一品国产午夜福利视频| 十分钟在线观看高清视频www | videos熟女内射| 国产黄频视频在线观看| 水蜜桃什么品种好| 寂寞人妻少妇视频99o| av在线播放精品| 男女无遮挡免费网站观看| 免费观看a级毛片全部| 日本欧美国产在线视频| 欧美激情极品国产一区二区三区 | 国产在线免费精品| 亚洲av电影在线观看一区二区三区| 在线观看人妻少妇| 亚洲美女视频黄频| 亚洲精品第二区| 国产av码专区亚洲av| 久久影院123| 99热这里只有是精品50| 色婷婷av一区二区三区视频| 国产精品久久久久久精品古装| 午夜福利网站1000一区二区三区| 婷婷色综合www| 久久鲁丝午夜福利片| 免费av中文字幕在线| 亚洲精品乱码久久久v下载方式| 婷婷色麻豆天堂久久| 亚洲精品国产av成人精品| 十八禁网站网址无遮挡 | 国产人妻一区二区三区在| 国产精品一区二区在线观看99| 黑人猛操日本美女一级片| 久久精品国产a三级三级三级| 午夜福利在线在线| 国产 精品1| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区| 亚洲国产毛片av蜜桃av| 久久久久久伊人网av| 性色av一级| 欧美精品一区二区大全| 老司机影院成人| 国产精品.久久久| 伦理电影免费视频| 国产成人精品一,二区| 精品国产三级普通话版| 国产一级毛片在线| 亚洲精品久久久久久婷婷小说| 日本欧美国产在线视频| 日本免费在线观看一区| 国产免费一区二区三区四区乱码| 久久鲁丝午夜福利片| 国产亚洲最大av| 在线观看一区二区三区激情| 十分钟在线观看高清视频www | 欧美97在线视频| 在线观看一区二区三区| 特大巨黑吊av在线直播| 国产精品福利在线免费观看| 麻豆乱淫一区二区| 天天躁夜夜躁狠狠久久av| 我要看黄色一级片免费的| 人妻制服诱惑在线中文字幕| 人人妻人人添人人爽欧美一区卜 | 国产一区亚洲一区在线观看| 在线观看人妻少妇| 国产成人免费观看mmmm| 久久久久久久久久久丰满| 亚洲天堂av无毛| 国产中年淑女户外野战色| 三级国产精品欧美在线观看| 日本一二三区视频观看| 夜夜看夜夜爽夜夜摸| 欧美zozozo另类| 国产毛片在线视频| 偷拍熟女少妇极品色| 国产淫语在线视频| 一边亲一边摸免费视频| 免费人成在线观看视频色| 十分钟在线观看高清视频www | 久久精品熟女亚洲av麻豆精品| 精品一区二区免费观看| 熟妇人妻不卡中文字幕| 欧美bdsm另类| 亚洲人成网站在线播| 中文欧美无线码| 国产精品一区www在线观看| 欧美日韩一区二区视频在线观看视频在线| 精品久久久精品久久久| 大陆偷拍与自拍| 国产免费视频播放在线视频| 伦理电影大哥的女人| 深爱激情五月婷婷| 欧美变态另类bdsm刘玥| 黑人猛操日本美女一级片| 精品久久久噜噜| 菩萨蛮人人尽说江南好唐韦庄| 美女视频免费永久观看网站| 一区在线观看完整版| 青春草国产在线视频| 久久久亚洲精品成人影院| 一本一本综合久久| 人人妻人人澡人人爽人人夜夜| 国产av国产精品国产| 久久久久久久久久成人| 青青草视频在线视频观看| 国产又色又爽无遮挡免| 国产视频首页在线观看| 亚洲欧美成人精品一区二区| 成人影院久久| 国产精品人妻久久久久久| 男女边吃奶边做爰视频| 国产精品国产av在线观看| 色哟哟·www| 涩涩av久久男人的天堂| 免费不卡的大黄色大毛片视频在线观看| 国产久久久一区二区三区| 日韩伦理黄色片| 女的被弄到高潮叫床怎么办| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 精品久久久久久久久亚洲| 国产精品久久久久久精品古装| 只有这里有精品99| 成人二区视频| 国产一区二区在线观看日韩| 欧美高清性xxxxhd video| 最黄视频免费看| 亚洲成人一二三区av| 亚洲真实伦在线观看| 韩国av在线不卡| 中文字幕av成人在线电影| 简卡轻食公司| 亚洲av中文av极速乱| 少妇人妻精品综合一区二区| 婷婷色麻豆天堂久久| 97精品久久久久久久久久精品| 中国美白少妇内射xxxbb| 2018国产大陆天天弄谢| av视频免费观看在线观看| 色哟哟·www| 精品一品国产午夜福利视频| 亚洲精品国产色婷婷电影| 亚洲av中文字字幕乱码综合| 成人影院久久| 人人妻人人看人人澡| a级毛片免费高清观看在线播放| a级一级毛片免费在线观看| 精品久久久久久久久av| 18+在线观看网站| 亚洲精品国产色婷婷电影| 午夜免费男女啪啪视频观看| 超碰av人人做人人爽久久| 欧美人与善性xxx| 校园人妻丝袜中文字幕| 女人久久www免费人成看片| 91精品国产国语对白视频| 久久久久久久久久久免费av| 一级毛片我不卡| 九九在线视频观看精品| 2021少妇久久久久久久久久久| 欧美xxⅹ黑人| 国产黄色视频一区二区在线观看| av在线观看视频网站免费| 日本黄色片子视频| 日本午夜av视频| 欧美日韩亚洲高清精品| 久久久成人免费电影| av线在线观看网站| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 亚洲av福利一区| 成人一区二区视频在线观看| 亚洲精品国产色婷婷电影| 在线播放无遮挡| 综合色丁香网| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 免费观看av网站的网址| 欧美精品亚洲一区二区| 国产精品福利在线免费观看| 欧美极品一区二区三区四区| 亚洲国产精品专区欧美| 精品一区二区三卡| 国产高清国产精品国产三级 | 日韩欧美精品免费久久| 天堂中文最新版在线下载| 精品一区二区三区视频在线| 汤姆久久久久久久影院中文字幕| 男人狂女人下面高潮的视频| 亚洲国产av新网站| 黄色欧美视频在线观看| 伦理电影免费视频| 免费看光身美女| 日日摸夜夜添夜夜爱| 成人免费观看视频高清| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 狂野欧美激情性bbbbbb| 少妇人妻一区二区三区视频| 久久精品国产a三级三级三级| av免费在线看不卡| 国产伦精品一区二区三区四那| 久久久久人妻精品一区果冻| 不卡视频在线观看欧美| 丰满少妇做爰视频| 中文天堂在线官网| 欧美3d第一页| 久久99热这里只有精品18| videos熟女内射| 久久人人爽人人爽人人片va| 亚洲国产精品999| 国产黄片视频在线免费观看| 夫妻性生交免费视频一级片| 麻豆成人午夜福利视频| 久久精品人妻少妇| 极品教师在线视频| 美女国产视频在线观看| 午夜免费观看性视频| 亚洲国产精品一区三区| 亚洲中文av在线| 国模一区二区三区四区视频| 交换朋友夫妻互换小说| 成人二区视频| 高清日韩中文字幕在线| 80岁老熟妇乱子伦牲交| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 久久久久精品性色| 深夜a级毛片| 国产爽快片一区二区三区| 亚洲一级一片aⅴ在线观看| 在线观看免费视频网站a站| 成人漫画全彩无遮挡| 黄色配什么色好看| 毛片女人毛片| 一区二区三区精品91| 国产91av在线免费观看| 国产成人精品久久久久久| 亚洲精品日本国产第一区| 汤姆久久久久久久影院中文字幕| 99热这里只有精品一区| 国产亚洲91精品色在线| 亚洲性久久影院| 天天躁日日操中文字幕| 国产免费福利视频在线观看| 建设人人有责人人尽责人人享有的 | 自拍偷自拍亚洲精品老妇| 成年av动漫网址| 少妇人妻久久综合中文| 联通29元200g的流量卡| 校园人妻丝袜中文字幕| 夜夜看夜夜爽夜夜摸| 少妇人妻精品综合一区二区| 久久精品久久久久久噜噜老黄| 国产色爽女视频免费观看| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 国产亚洲精品久久久com| 这个男人来自地球电影免费观看 | 日本黄色片子视频| 99热网站在线观看| 久久久欧美国产精品| 免费观看无遮挡的男女| av在线蜜桃| 日本黄色片子视频| 亚洲av.av天堂| 午夜视频国产福利| 日日摸夜夜添夜夜爱| 亚洲欧美一区二区三区黑人 | 久久精品国产亚洲av涩爱| 嫩草影院入口| 精品人妻偷拍中文字幕| 欧美成人精品欧美一级黄| 亚洲av.av天堂| 亚洲人成网站在线观看播放| 免费观看无遮挡的男女| 纵有疾风起免费观看全集完整版| 美女视频免费永久观看网站| 国产欧美另类精品又又久久亚洲欧美| 国产伦理片在线播放av一区| 最后的刺客免费高清国语| 22中文网久久字幕| 精品99又大又爽又粗少妇毛片| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区| 美女cb高潮喷水在线观看| 男女啪啪激烈高潮av片| 国产爽快片一区二区三区| 国产亚洲欧美精品永久| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 黄片无遮挡物在线观看| 亚洲国产毛片av蜜桃av| 午夜免费鲁丝| 大话2 男鬼变身卡| 国产精品久久久久久久久免| 国产男人的电影天堂91| 久久久久久久久久成人| 日本欧美国产在线视频| 日本色播在线视频| 亚洲三级黄色毛片| 女人十人毛片免费观看3o分钟| 亚洲第一区二区三区不卡| 性色av一级| 一本色道久久久久久精品综合| 日日摸夜夜添夜夜添av毛片| 亚洲欧美清纯卡通| 欧美日韩在线观看h| 又黄又爽又刺激的免费视频.| 美女xxoo啪啪120秒动态图| 熟女电影av网| 美女高潮的动态| 久久久久久伊人网av| 在线播放无遮挡| 18禁裸乳无遮挡免费网站照片| 日产精品乱码卡一卡2卡三| 亚洲精品一区蜜桃| 国产精品爽爽va在线观看网站| 免费av不卡在线播放| 熟女人妻精品中文字幕| 日韩精品有码人妻一区| 另类亚洲欧美激情| 精品久久久精品久久久| 国产午夜精品久久久久久一区二区三区| 97在线人人人人妻| 深爱激情五月婷婷| 亚洲欧美精品自产自拍| 久久久久久久大尺度免费视频| 九色成人免费人妻av| 国产精品.久久久| 亚洲人与动物交配视频| 色婷婷av一区二区三区视频| 国产伦理片在线播放av一区| 高清欧美精品videossex| 亚洲熟女精品中文字幕| 精品视频人人做人人爽| 国产成人a∨麻豆精品| 婷婷色麻豆天堂久久| videos熟女内射| 国产综合精华液| av在线蜜桃| 国产爽快片一区二区三区| a级毛片免费高清观看在线播放| 久久久久久久久久人人人人人人| 久久人人爽人人片av| 高清日韩中文字幕在线| 内射极品少妇av片p| 在现免费观看毛片| 久久久久精品久久久久真实原创| 国产午夜精品一二区理论片| 性色avwww在线观看| 日本与韩国留学比较| 精品久久久噜噜| 91久久精品国产一区二区成人| 日韩一本色道免费dvd| 国产日韩欧美亚洲二区| 丰满迷人的少妇在线观看| 大陆偷拍与自拍| 色视频www国产| 国产成人精品婷婷| 亚洲经典国产精华液单| 99热这里只有是精品在线观看| 五月玫瑰六月丁香| 国产精品.久久久| 日韩一区二区三区影片| 国产精品人妻久久久影院| 人妻一区二区av| 春色校园在线视频观看| 日本av免费视频播放| av黄色大香蕉| 国产精品免费大片| 人妻 亚洲 视频| 亚洲色图综合在线观看| 精品熟女少妇av免费看| 国产欧美日韩一区二区三区在线 | 国产精品人妻久久久影院| 国产伦在线观看视频一区| 成年人午夜在线观看视频| 视频区图区小说| 亚洲无线观看免费| 亚洲国产色片| 久久久久久久久大av| 日韩,欧美,国产一区二区三区| 少妇人妻精品综合一区二区| 亚州av有码| 三级经典国产精品| 久久99热6这里只有精品| 国产国拍精品亚洲av在线观看| 久久国产精品大桥未久av | 人妻制服诱惑在线中文字幕| 亚洲欧美日韩另类电影网站 | 尤物成人国产欧美一区二区三区|