• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems:5.Results of K-feldspar hydrolysis experiments

    2015-02-07 09:08:50???
    Acta Geochimica 2015年1期

    ???

    Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems:5.Results of K-feldspar hydrolysis experiments

    Peng Lu?Hiromi Konishi?Eric Oelkers?Chen Zhu

    Received:23 December 2014/Revised:26 December 2014/Accepted:26 December 2014/Published online:11 January 2015 ?Science Press,Institute of Geochemistry,CAS and Springer-Verlag Berlin Heidelberg 2015

    This paper explores how dissolution and precipitation reactions are coupled in batch reactor experimental systems at elevated temperatures.This is the ffth paper in our series of‘‘Coupled Alkali Feldspar Dissolution and Secondary Mineral Precipitation in Batch Systems.’’In the previous four papers we presented batch experiments of alkali-feldspar hydrolysis and explored the coupling of dissolution and precipitation reactions(Fu et al.in Chem Geol 91:955–964,2009;Zhu and Lu in Geochim Cosmochim Acta 73:3171–3200,2009;Zhu et al.in Geochim Cosmochim Acta 74:3963–3983,2010;Lu et al.in Appl Geochem 30:75–90,2013).Here,we present the results of additional K-rich feldspar hydrolysis experiments at 150°C.Our solution chemistry measurements have constrained feldspar dissolution rates,and our high resolution transmission electron microscopy work has identifed boehmite precipitation.Reaction path modeling of K-feldspar dissolution and boehmite precipitation simulated the coupled reactions,but only with forced changes of boehmite rate law in the middle of experimental duration.The results which are reported in this article lend further support to our hypothesis that slow secondary mineral precipitation explains part of the wellknown apparent discrepancy between lab measured and feld estimated feldspar dissolution rates(Zhu et al.in Water–rock interaction,2004).

    Kinetics·Feldspar·Geochemical modeling· Rate law·Water-rock interaction

    1 Introduction

    The coupling of dissolution reaction and precipitation reactionsmaypartlyexplainthewell-knowndiscrepancy(forthe discrepancy,see Paces 1973;Siegel and Pfannkuch,1984; Velbel 1990;Brantley 1992;Blum and Stillings 1995; DreverandClow1995;WhiteandBrantley2003;Zhu2005) between laboratory measured and feld estimated feldspar dissolutionrates(Zhuetal.2004;Zhu2005;Zhuetal.2006; Ganor et al.2007;Hereford et al.2007;Zhu 2009;Zhu et al. 2010;Lu et al.2013).In fact,the overall dissolution rate of primary feldspar depends on the relative rates of all kinetically controlled reactions in a system(Lasaga 1998).Unlike in the laboratory,feldspar dissolution in natural systems occursinthecontextofareactionnetworkwhichcontrolsthe individualheterogeneousreactions(Zhu2009).Specifcally, the slow precipitation of a secondary mineral result inaccumulation of solutes in the aqueous solution that makes the solution be close to the equilibrium with respect to the primary minerals(increased saturation state),and the diminishing thermodynamic drive near equilibrium result in much reduced rates as compared to the far from equilibrium rates(Zhu et al.2004,2010).

    Numerous other hypotheses have also proposed to explain theapparentlab-felddiscrepancy(seeZhu2005forareview). Briefy,the preferential and stagnant fow paths prevalent in feldsystemsleadtoallfeldsamplesasmixedwatersandfeld ratesasamixtureoffastandslowrates(Lietal.2008).Surface reactivity and reactive surface areas may also change significantlyduetotheopeningandcloseofetchpits(Gautieretal. 2001;Beig and Lu¨ttge 2006),secondary mineral coatings on the primary mineral surfaces(Nugent et al.1998;Hellmann etal.2003;Cubilas etal.2005;Zhu etal.2006),or formation of an amorphous layer(Daval et al.2011).

    To test our hypothesis,we have conducted a series of experiments of feldspar dissolution and secondary mineral precipitation in batch systems(Fu et al.2009;Zhu and Lu 2009;Zhuetal.2010;Luetal.2013).Sincethesereactionsare too slow to be measured at ambient temperature and circumneutral pH conditions(Ganor et al.2007),the experiments wereconductedat200°Candat300bars.Theseexperiments used perthitic feldspars,and dissolution of albite laminae dominated the experiments while K-rich feldspar laminae weresupersaturated(Fu et al.2009;Zhu and Lu 2009).In the present article we report additional experiments using K-rich feldspars.We also used high resolution transmission electron microscopy(HRTEM)tocharacterizethesecondaryminerals and to attempt to determine whether an amorphous layer has formed on feldspar surfaces.Numerical reaction path modeling simulated the feldspar hydrolysis experiments by matching modeling results with experimental data.

    2 Methods

    2.1 Starting materials

    K-rich feldspar samples were obtained from Wards Scientifc Establishments LLC and consisted of several 1–2 cm twinned crystals.The sample was ground with an agate mortar and pestle and then sieved to obtain the fraction between 50 and 100 μm.The resulting mineral powder was ultrasonically cleaned at least fve times in methanol until the methanol was clear following cleaning(Lu et al.2013). BET surface areas of each powder were measured using nitrogen and krypton prior to the experiments.The resulting surface areas are provided in Table 1.Surface areas were not measured following the experiments.The chemical compositions of these cleaned mineral samples as determined by electron microprobe are listed in Table 1 which yields the chemical formula of K0.82Na0.18Al0.98Si3.015O8which has been calculated following the method of Deer et al.(1992).

    2.2 Dissolution experiments

    Experiments were performed in a closed-system titanium rocking reactor with a volume of 400 cm3(Gautier et al. 1994;Harouiya and Oelkers 2004).The experiments were initiated by frst placing the powdered feldspar into the reactor,followed bythe fuid.Thereactors were then sealed, placed in a furnace,rocking was initiated,and heated to 150°C.Reactivefuidwassampledirregularlythrougha0.1 micron flter.Sampling thus resulted in a change between fuid/feldspar ratios.The silica concentration of the outlet solution was determined via the molybdate blue method of Koroleff(1976).Aqueous Al concentrations were determinedusingaPerkinElmerZeeman5,000atomicadsorption spectrometer.Outlet solution pH was measured at 25°C using a Metrohm?744 pH meter coupled to a Metrohm?Pt1000/B/2 electrode with a 3 M KCl outer flling solution. TheelectrodewascalibratedwithNBSstandardsatpH4.01, 6.86,andinacidstandardsolutionsatpH1.5and2.5withan average error of less than 0.05 pH units.

    Closed-system experiments were performed using the initial solutions comprised of MilliQ?demineralized H2O and reagentgradeKClandHCltoobtainthesolutioncompositions listed in Table 2.Two experiments were performed.Experiment R contained 251.76 g of aqueous solution R and 0.5017 g K-feldspar,and experiment L contains 252.47 g of aqueous solution L and 0.5058 g Alkali-feldspar.The experimentwasstoppedbycoolingthereactorsfrom150°Coverthe course of 18 h.The powder was separated from the reactive solutionbyfltrationusinga0.45microncellouse-nitrateflter. The powder was dried overnight in an oven at 80°C.

    2.3 TEM characterization

    Atomic scale HRTEM was used to characterize the reactants as well as the products(from reactor R).HRTEM and SAED measurements were done with both a Philips EM 420 and a CM300FEG microscope.Both microscopes operated at 120 and 295 kV,respectively.

    Two sample preparation methods were used:ultrasonicate method and ultra-microtomy method.In the ultrasonicate method(Figs.1,2,3),feldspar grains were handpicked under a polarizing microscope.Selected crystals were then immersed in ethanol and ultrasonicated.A drop of the resulting suspension was placed onto lacey-carbon flm supported by a standard Cu TEM grid and air-dried.

    Ultra-microtomy was used to make cross sections of the surface of Au-coated K-feldspars.In the ultramicrotomy method(Figs.4,5,6,7,8)feldspar grains were hand-picked under a polarizing microscope.We coatedAu on the K-feldspar grains to mark the crystal surface, embedded in BEEM capsules flled with epoxy resin(EPOFIX),and aged the sample for 1 or 2 days at room temperature.If the resins were not hard enough after treatment,they were then put into an oven for several hours at 80°C.The solidifed samples(with resins)were cut by ultramicrotomy using a Sorvall MT2 microtome and a diamond knife.The resulting sections werecollectedona Cu TEMgrid ora holly carbon flm supported on a Cu grid.

    Table 1 Chemical composition of the Alkali-feldspar used in this study

    Table 2 Initial solution compositions in the present study

    Fig.1 Low magnifcation TEM image of boehmite aggregation. Boehmite crystals are 20–50 nm particles

    Fig.2 HRTEM image of boehmite particles.Some grains have aligned to make a larger cluster.There are amorphous rims which surround the boehmite crystals,suggesting that they formed directly from aqueous solution.We can infer from this image and the fact that boehmite is loosely attached to the feldspar surface and are easily removed thatthere is no structuralinheritance from feldspar to boehmite such that the boehmite is most likely formed via a dissolution-precipitation process,i.e.feldspar→aqueous components→boehmite

    2.4 Standard state thermodynamic data

    Inallcalculationsthestandardstatesforsolidsaredefnedas unit activity for pure end-member solids at the temperature andpressureofinterest.ThestandardstateforH2Oistheunit activity of pure water.For aqueous species other than H2O, the standard state is the unit activity of the species in a hypothetical one molal solution referenced to infnite dilution at the temperature and pressure of interest.Equilibrium constants(log K)for reactions were calculated from the standard state thermodynamic properties for mineral endmembers and aqueous species.The values of log K and the sources of thermodynamic properties that were used are listed in Table 4.In all cases,internally consistentthermodynamic properties were used when possible.See Zhu and Lu(2009)for a detailed discussion of the choices regarding standard thermodynamic properties.

    Fig.3 ED from an aggregation of particles.Eleven refections match the published data(JCPDS/ICDD fle#83-2384):1 020,2 120,3 031, 4 131,5 051 and 200,6 220,7 151,8 080,9 231 and 002,10 022 and 171,11 251 and 122,indicate that the crystals in Fig.2 are boehmite. The dark spots in the rings or between the rings are likely to be the contamination of feldspar fragments

    Fig.4 TEM image of an ultramicrotomy sample(with gold coating) showing the spatial relationship between gold coating and K-feldspar crystal.1 is a void,K-feldspar is labeled as 2,Gold coating layer is labeled as 3,4 is epoxy resin flm

    Fig.6 EFTEM fgure(Si map)of Fig.4.Labels 1,2,3,and 4 are the same as in Fig.4.The layer 3 is Al concentrated but Si defcient, which indicates that K-feldspar forms an Al-rich,Si-defcient mineral (boehmite)after dissolution

    3 Results and discussion

    3.1 Solution chemistry

    The evolution of fuid compositions during the experiments islisted as a function oftime in Table 3.Theconcentrations of Si in the fuid phase increased continuously with time.In experiment R,the Al concentrations increased gradually to 221 ppb at 792 h and decreased slightly to 192 ppb at the end of the experiment(1,152 h). In experiment L,the Al concentration increased gradually to 306 ppb at 792 h and decreased slightly to 192 ppb at the end of the reaction(1,152 h).

    Numerous studies involving reaction kinetics of silicate minerals have shown that pH plays a particularly important role in the rate of mineral dissolution/precipitation processes(Oelkers et al.1994;Oelkers 2001).Fluid pH in the present study was measured at ambient conditions(25°C, 1 bar)and then re-calculated to experimental conditions (150°C,Psat)by taking an explicit account of the effect of temperature and pressure on the distribution of aqueous species.Accordingly,pH(in situ)was calculated for each sample taken during each experiment(Table 3).For the experiment R,aqueous solution pH increased from 4.05 to 4.79 during the frst 10 days and then remained close to stable during 10–48 days.For experiment L,the aqueous solution pH increased from 3.79 to 5.32 during the frst 10 days,and further increased slightly to 5.71 during days 10–48 Table 4.

    Fig.7 HRTEM image of a cross section of the surface of K-feldspar. The amorphous materials have 5–10 nm width.They may be formed by electron beam damage.The darker contrast particles are gold

    Fig.8 HRTEM image of a cross section of the K-feldspar surface. The particles are gold,which are in direct contact with the lattice fringes of the K-feldspar

    Table 3 Measured concentrations of aqueous Al and Si as a function of time

    3.2 TEM results

    Secondary mineral products were identifed as boehmite (Figs.1,2,3).Boehmite occurs as an aggregation of single crystals ranging from 20 to 50 nm in size.Boehmite particles stick loosely onto the surface of feldspar and are easily taken off,suggesting both that there is no structural inheritance from feldspar to boehmite and that boehmite is most likely formed form a dissolution-precipitation process,i.e.feldspar→aqueous components→boehmite. All the ring patterns from an aggregation of the products match the published data of boehmite(JCPDS-ICDD: 83-2384)except for some spots which came from feldspar fragments or Fe oxides(Fig.3).We detected Si from an aggregation of boehmite crystals,but the Si/Al ratio in the EDX spectrum is very small,unlike in the published dataon modifed boehmite(Fig.2 in Murakami et al.(1998)). The Si peak we found might be a contamination or come from a Si(Li)detector.

    Table 4 Equilibrium constants used in this study

    No thick amorphous layers,such as suggested as Heinemann et al.(2003)were observed on the surface of the Alkali-feldspar crystal.There is a light,bright area in the gold coating layer(layer 3 of Fig.4)which is Al-rich (Figs.5,6).This indicates that an Al-rich mineral(probably boehmite)formed in response to feldspar dissolution. In some high-resolution images(e.g.,Fig.7),a thin amorphous layer is visible which likely formed by beam damage.In other cases(e.g.,Fig.8),lattice fringe of K-feldspar connects with gold particle directly and no amorphous layer is detected.

    3.3 Geochemical modeling

    The following assumptions were made to facilitate the modeling:(1)The amount of K-feldspar dissolution was calculated from Si release data,assuming that no secondary mineral consumes Si and K-feldspar dissolution is the only reaction that releases Si;(2)aqueous Na and K concentrations were derived from only K-feldspar dissolution;and (3)boehmite was the only secondary mineral to form.The amount of boehmite precipitated was calculated by subtracting measured Al concentrations from the total released Al due to K-feldspar dissolution,assuming stoichiometric primary phase dissolution.We plotted these predictions as open symbols in the fgures to distinguish them from measured data,which is represented by solid symbols.The calculation of the equilibrium constants of K-feldspar (K0.82Na0.16Al0.98Si3.15O8)at 150°C,Psatfrom its end members is problematic because of both solid solution and Si–Al ordering.We used experimental measured data to circumvent this.Gautier et al.(1994)obtained effective equilibrium constant for K-rich feldspar(K0.81Na0.15-Ba0.03Al1.05Si2.96O8)dissolution reaction by regressing closed-system experimental data obtained in their study (log Ksp=-16.1).We adopted this value considering the similar source of starting material.

    The saturation states of selected minerals during the experimentsweredetermined by speciation-solubilitycalculation using PHREEQC(Table 5).The calculated saturation indices(SI)indicate that throughout the experiments the aqueous solution is under-saturated with respect to K-feldsparwhile supersaturated with respectto boehmite during the entire experiment R(see Fig.10).

    Table 5 Saturation Indices calculations for minerals of interest

    The following empirical rate equation(Burch et al. 1993)was used to model the reaction path of K-feldspar dissolution:

    where r and S stand for the rate of dissolution and reactive surface area of feldspar respectively.k1and k2denote the rate constants in units of mol s-1m-2,g≡|ΔGr|/RT,and n1,m1,and m2are empirical parameters ftted from experimental data.Grstands for Gibbs free energy of the reaction of interest,R gas constant,and T the temperature in Kevin.

    Literature parameters were used whenever possible to minimize the number of ftting parameters.k1was obtained fromafar-from-equilibriumrateof10-12mol/m2/sat25°C (pH 4)with an activation energy Eaof 51.7 kJ/mol(Blum and Stillings 1995).The k1/k2ratio in Eq.(1),of 56.65 was taken from Hellmann and Tisserand(2006).Adopted values of n1,m1,and m2were 2×10-6,6,and 1.17,respectively, which are similar to those of Zhu et al.(2010)for modeling albite dissolution(5×10-6,6,and 1.17).Only a small percentage of K-feldspar was dissolved in the experiment (from 7.24×10-3to 7.09×10-3mol/kgw)so that we assumed the reactive surface areas of K-feldspar remained constantduringtheexperiments.ThemeasuredBETsurface area of 0.0955 m2/g was used for the reactive surface area. The parameters used in this simulation are listed in Table 6.

    For boehmite precipitation,we followed Be′ne′zeth et al. (2008)and used the rate law,

    Table 6 Parameters and rate laws used in the simulation

    where(H+)stands for hydrogen ion activity.Be′ne′zeth et al.(2008)conducted boehmite precipitation experiments for pH 6–9 at 100.3°C.They found that the transition state theory(TST)f(ΔGr)function ft to their data and the precipitation rate is a function of pH.Boehmite precipitation in our experiments occurred in the pH range of 4.05–4.74, at slightly more acidic conditions than those of Be′ne′zeth et al.(2008).Nagy(1995)documented V-shaped pH dependence of aluminum oxyhydroxides dissolution rates and proposed an variation of rates on pH proportional to (H+)at acidic conditions which we adopted.In the reaction path model the only ftted term in Eq.(2)was the effective rate constantwhich was assumed to be constant here because the reactive surface areas for boehmite could not be assessed independently.

    This geochemical model matched closely with the aqueous solution chemistry evolution during the frst 300 h of the experiments(Fig.9).Si concentrations increasedrapidly(0–300 h)as K-feldspar dissolved frst starting from far from equilibrium,but this increase decelerated due to the f(ΔGr)term in the rate law.The Al concentrations appear to reach a quasi-steady state as a result of the competition between K-feldspar dissolution and boehmite precipitation.The aqueous solution pH increased because both K-feldspar dissolution and boehmite precipitation consume H+.Note that the dominant Al species is Al(OH)4-during the experiments(Zhu 2009).The predicted SI over time matched well with speciation–solubility calculations for both primary mineral(K-feldspar)and secondary mineral(boehmite)(see Fig.10).

    Fig.9 Comparison of predicted solution chemistry from the reaction path model(lines)with experimental data(symbols)during the course of K-feldspar dissolution batch experiment R at 150°C and Psat

    Fig.10 Calculated change in K-feldspar and boehmite SI an evolution when compared with data from solubility calculations in experiment R

    The K-feldspar dissolution and boehmite precipitation reactions are closely coupled,which is consistent with the conclusions in Zhu et al.(2010).The ratios of K-feldspar dissolution and boehmite precipitation rates are close to unity on a mol s-1kgw-1basis although the individual rates decreased rapidly as solutes accumulate in the solution(Fig.11a).The stoichiometric rate ratio is 1:1, refecting the overall reaction,

    Two assumptions have been used in the modeling.The frst is that a constant reactive surface area,though this is inconsistent with the experiments as no boehmite seeds were used in the experiments and boehmite reactive surfaceareas have certainly grown.The second assumption was that the K-feldspar dissolution rate is independent of pH, which was not a large factor because the range of pH change is relatively small(4.05–4.74).

    Fig.11 a Simulated ratios of K-feldspar dissolution rates versus boehmite precipitation rates when expressed in unit of mol s-1kgw-1. b Boehmite precipitation rates over time.c K-feldspar dissolution rates over time for experiment R.Bulk K-feldspar dissolution rates in unit of mol kgw-1s-1were estimated from stoichiometric release rates of Si and boehmite precipitation rates from the mass balance on Al.Symbols are rates derived from experimental data and lines are reaction path modeling results

    Fig.12 Rates of K-feldspar dissolution normalized to the initial BET surface areas(in mol m-2s-1)for the experiment in experiment R. Symbols denote measured rates.The red solid line and black dashed line indicate calculations with rate law used in this study(Eq.(1)) with customized parameters and the model by Carroll and Knauss (2005).ΔGrvalues were calculated from experimental data using PHREEQC

    For the modeling after 300 h,however,Al concentration and rKfs/rBhmratios would not have matched between experimental data and model predictions if we continued to apply the boehmite precipitation expression of Eq.2. Instead,predictions roughly matched with experimental data after 300 h with a rate law expression based on the TST(Lasaga 1981b;a;Aagaard and Helgeson 1982),

    and an effective rate constant of 8×10-14mol/kgw/s. Note that the sudden changes in the modeling results of Al concentrations,SI,rKfs/rBhm,rBhmand rKfsat 300 h (Figs.9,10,and 11)are due to the change of boehmite precipitation rate law after 300 h.

    Other forms of the rate law and its parameters have also been tested.Oelkers et al.(1994)and Oelkers(2001) account for the inhibitory effects of dissolved aluminum onfeldspar dissolution rates.These effects have been shown in experiments involving labradorite(Carroll and Knauss 2005).Carroll and Knauss(2005)adopted the Oelkers’approach on Al,and we tested Carroll and Knauss’(2005) equations in place of Eq.(1)in reaction path simulations. The results are partly shown in Fig.12.We have also tested other alternative rate laws.If we had used a BCF rate law for boehmite precipitation instead but kept all other parameters the same,the Al and pH data would not have matched.

    Fig.13 Activity–activity diagram in the K2O–Al2O3–SiO2–H2O–HCl system at 150°C and Psat.The symbols represent values calculated from experimental data via speciation–solubility modeling. The dashed lines represent quartz solubility.a For experiment R.The line denotes to reaction path modeling prediction.b For experiment L

    While the batch experimental data did not defne a unique reaction path model,it was at least narrowed down to a limited set of plausible models.The reaction path of K-feldspar hydrolysis at 150°C,Psatwas traced in the activity–activity diagram of K2O–Al2O3–SiO2–H2O–HCl system (Fig.13).The reaction proceeded within the boehmite feld for the entire experiment duration which is consistent with the observation that boehmite is the most important secondary phase.The reaction path exceeded the experimental points at the end because the model slightly over-predicted pH after 600 h.

    We attempted to model experiment L with the same approach for experiment R(data not shown).However,the model failed to predict the evolution of fuid pH probably because we did not consider muscovite as a secondary phase.Muscovite precipitation may be involved in this experiment because it is evident that most of the points are in the muscovite stability feld of activity–activity diagram (Fig.13b).However,we have insuffcient data to constrain three reactions if muscovite precipitation is considered. Note that we did not analyze Na or K concentrations.

    Overall,the results here showed the importance of coupled reactions in regulating the reaction rates.The coupling‘‘a(chǎn)rrested’’the system to a steady state that dissolution of the primary mineral proceeded at a near equilibrium region where the dissolution rates are greatly reduced as compared to the far from equilibrium rates.This regulation may explain part of the apparent feld-lab discrepancy(Zhu et al.2004).

    3.4 Conclusions and remarks

    This study presented a detailed analysis of coupled alkalifeldspar dissolution and secondary mineral precipitation at an elevated temperature.The modeling results of these experiments confrmed the conclusions that the K-feldspar dissolution and boehmite precipitation reactions are closely coupled and consistent with the conclusions in Zhu et al. (2010).The modeling results substantiated our hypothesis (Zhu et al.2004)that slow secondary mineral precipitation controls the dissolution rates of the primary phases and partly explains part of the well-known apparent discrepancy between laboratory and feld measured feldspar dissolution rates.However,our study also demonstrated the defciency in our knowledge of the reactions.Even in these simple laboratory systems,we could not completely match the modeling results with experimental data.Therefore,the proliferation of coupled reactive transport models that involve dozens of heterogeneous reactions in sandstonesystems probably should be considered only as educated guesses due to their enormous uncertainties.

    AcknowledgmentsA research grant from the State Key Laboratory of Ore Deposits at the Institute of Geochemistry,Chinese Academy of Sciences.

    Aagaard P,Helgeson HC (1982)Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions.I.Theoretical considerations.Am J Sci 282:237–285

    Beig MS,Lu¨ttge A(2006)Albite dissolution kinetics as a function of distance from equilibrium:implications for natural feldspar weathering.Geochim Cosmochim Acta 70:1402–1420

    Be′ne′zeth P,Palmer DA,Wesolowski DJ(2008)Dissolution/ precipitation kinetics of boehmite and gibbsite:application of a pH-relaxation technique to study near-equilirbium rates.Geochim Cosmochim Acta 72:2429–2453

    Blum A,Stillings L(1995)Feldspar dissolution kinetics.In:Brantley SL,White AR(eds)Chemical weathering rates of silicate minerals.MineralogicalSociety ofAmerica,Washington, pp 291–346

    Brantley SL (1992)Kinetics of dissolution and precipitationexperimental and feld results.In:Kharaka Y,Maest A(eds) Proceedings of the seventh international conference on waterrock interactions,Park City,Utah.Balkema,Rotterdam, pp 465–469

    Burch TE,Nagy KL,Lasaga AC(1993)Free energy dependence of albite dissolution kinetics at 80°C and pH 8.8.Chem Geol 105:137–162

    Carroll SA,Knauss KG(2005)Dependence of labradorite dissolution kinetics on CO2(aq),Al(aq),and temperature.Chem Geol 217: 213–225

    Cubilas P,Kohler S,Prieto M,Causserand C,Oelkers EH(2005) How do mineral coating affect dissolution rates?An experimental study of coupled CaCO3dissolution–CaCO3precipitation. Geochim Cosmochim Acta 69:5459–5476

    Daval D,Sissmann O,Menguy N,Saldi GD,Guyot F,Martinez I, Corvisier J,Garcia B,Machouk I,Knauss KG,Hellmann R (2011)Infuence of amorphous silica layer formation on the dissolution rate of olivine at 90°C and elevatedpCO2.Chem Geol 284:193–209

    Deer W,Howie R,Zussman J(1992)An introduction to the rock forming minerals,2nd edn.Longman Scientifc and Technical Group,Inc,Oceanside

    Drever JI,Clow DW(1995)Weathering rates in catchments.In: White AF,Brantley SL(eds)Chemical weathering rates of silicate minerals.Mineralogical Society of America,New York, pp 463–481

    Fu Q,Lu P,Konishi H,Dilmore R,Xu H,Seyfried WE Jr,Zhu C (2009)Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch systems:1.New experiment data at 200oC and 300 bars.Chem Geol 91:955–964

    Ganor J,Lu P,Zheng Z,Zhu C(2007)Bridging the gap between laboratory measurements and feld estimations of weathering using simple calculations.Environ Geol 53:599–610

    Gautier J-M,Oelkers EH,Schott J(1994)Experimental study of K-feldspar dissolution rates as a function of chemical affnity at 150°C and pH 9.Geochim Cosmochim Acta 58:4549–4560

    Gautier JM,Oelkers EH,Schott J(2001)Are quartz dissolution rates proportional to BET surface areas?Geochim Cosmochim Acta 65:1059–1070

    Haar L,Gallagher JS,Kell GS(1984)NBS/NRC steam tables: thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units.Hemisphere Publishing Corporation,New York 320p

    Harouiya N,Oelkers EH(2004)An experimental study of the effect of aqueous fuoride on quartz and alkali-feldspar dissolution rates.Chem Geol 205:155–167

    Heinemann S,Wirth R,Dresen G(2003)TEM study of a special grain boundary in a synthetic K-feldspar bicrystal:manebach Twin.Phys Chem Miner 30:125–130

    Hellmann R,Penisson JM,Hervig RL,Thomassin JH,Abrioux MF (2003)An EFTEM/HRTEM high-resolution study of the near surface of labradorite feldspar altered at acid pH:evidence for interfacial dissolution-reprecipitation.Phys Chem Miner 30: 192–197

    Hellmann R,Tisserand D(2006)Dissolution kinetics as a function of the Gibbs free energy of reaction:an experimental study based on albite feldspar.Geochim Cosmochim Acta 70:364–383

    Hemingway BS,Robie RA,Apps JA(1991)Revised values for the thermodynamic properties of boehmite,AlO(OH),and related species and phases in the system Al-H-O.Am Mineral 76:445–457 Hereford AG,Keating E,Guthrie G,Zhu C(2007)Reactions and reaction rates in the aquifer beneath Pajarito Plateau,northcentral New Mexico.Environ Geol 52:965–977

    Ho PC,Bianchi H,Palmer DA,Wood RH(2000)Conductivity of dilute aqueous electrolyte solutions at high temperatures and pressures using a fow cell.J Solut Chem 29:217–235

    Holland TJB,Powell R(1998)An internally consistent thermodynamic data set for phases of petrological interest.J Metamorph Geol 16:309–343

    Koroleff F(1976)Determination of silicon.In:Grasshoff K(ed) Methodsofseawateranalysis.Spring Verlag,Newyork, pp 149–158

    Lasaga AC(1981a)Rate laws of chemical reactions.In:Lasaga AC, Kirkpatrick RJ(eds)Kinetics of geochemical processes.Mineralogical Society of America,Washington,pp 1–68

    Lasaga AC(1981b)Transition state theory.In:Lasaga AC,Kirkpatrick RJ(eds)Kinetics of geochemical processes.Mineralogical Society of America,Washington,pp 135–169

    Lasaga AC(1998)Kinetic theory in the earth sciences.Princeton University Press,New York

    Li L,Steefel CI,Yang L(2008)Scale dependence of mineral dissolution rates within single pores and fractures.Geochim Cosmochim Acta 72:360–377

    Lu P,Fu Q,Seyfried WE Jr,Hedges SW,Soong Y,Jones K,Zhu C (2013)Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems:2.New experiments with supercritical CO2and implications for carbon sequestration. Appl Geochem 30:75–90

    McCollom TM,Shock EL(1997)Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafoorhydrothermalsystems.Geochim Cosmochim Acta 61:4375–4391

    Murakami T,Kogure T,Kadohara H,Ohnuki T(1998)Formation of secondary minerals and its effects on anorthite dissolution.Am Mineral 83:1209–1219

    Nagy KL(1995)Dissolution and precipitation kinetics of sheet silicates.In:White AF,Brantley SL(eds)Chemical weathering rates of silicate minerals.Mineralogical Society of America, Washington,pp 173–225

    Nugent MA,Brantley SL,Pantano CG,Maurice PA(1998)The infuence of natural mineral coatings on feldspar weathering. Nature 395:588–591

    Oelkers EH(2001)General kinetic description of multioxide silicate mineral and glass dissolution.Geochim Cosmochim Acta 65:3703–3719

    Oelkers EH,Schott J,Devidal JL(1994)The effect of aluminum,pH, and chemical affnity on the rates of aluminosilicate dissolution reactions.Geochim Cosmochim Acta 58:2011–2024

    Paces T(1973)Steady-state kinetics and equilibrium between ground waterandgraniticrocks.GeochimCosmochimActa37:2641–2663

    Siegel DI,Pfannkuch HO(1984)Silicate dissolution infuence on Filson Creek chemistry,northeastern Minnesota.Geol Soc Am Bull 95:1446–1453

    Sverjensky DA,Shock EL,Helgeson HC(1997)Prediction of the thermodynamic properties of aqueous metal complexes to 5 Kb and 1000°C.Geochim Cosmochim Acta 61:1359–1412

    Tagirov B,Schott J(2001)Aluminum speciation in crustal fuids revisited.Geochim Cosmochim Acta 65:3965–3992

    Velbel MA(1990)Infuence of temperature and mineral surface characteristics on feldspar weathering rates in natural and artifcial systems:a frst approximation.Water Resour Res 26:3049–3053

    White AF,Brantley SL(2003)The effect of time on the weathering of silicate minerals:why do weathering rates in the laboratory and feld?Chem Geol 202:479–506

    Zhu C(2005)In situ feldspar dissolution rates in an aquifer.Geochim Cosmochim Acta 69:1435–1453

    ZhuC (2009)Geochemicalmodeling ofreactionpathsand geochemical reaction networks.In:Oelkers EH,Schott J(eds) Thermodynamics and kinetics of water-rock interaction.Mineralogical Society of America,Washington,pp 533–569

    Zhu C,Blum AE,Veblen DR(2004)Feldspar dissolution rates and clay precipitation in the Navajo aquifer at Black Mesa,Arizona, USA.In:Wanty RB,Seal RRI(eds)Water-rock interaction. August Aime′Balkema,Saratoga Springs,pp 895–899

    Zhu C,Lu P(2009)Alkali feldspar dissolution and secondary mineral precipitation in batch systems:3.Saturation states of product minerals and reaction paths.Geochim Cosmochim Acta 73: 3171–3200

    Zhu C,Lu P,Zheng Z,Ganor J(2010)Coupled alkali feldspar dissolution and secondary mineral precipitation in batch systems: 4.Numerical modeling of kinetic reaction paths.Geochim Cosmochim Acta 74:3963–3983

    Zhu C,Veblen DR,Blum AE,Chipera SJ(2006)Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer,Black Mesa, Arizona:electron microscopic characterization.Geochim Cosmochim Acta 70:4600–4616

    P.Lu·H.Konishi·C.Zhu(?)

    Department of Geological Sciences,Indiana University,

    Bloomington,IN 47408,USA

    e-mail:chenzhu@indiana.edu

    Present Address:

    P.Lu

    EXPEC Advance Research Center,Saudi Aramco Oil Company, Dhahran 31311,Saudi Arabia

    Present Address:

    H.Konishi

    Department of Geology,Faculty of Science,Niigata University, Niigata 950-2181,Japan

    E.Oelkers

    Laboratoire de Geochimie,CNRS,38 Rue Des Trente-Six Ponts, 31400 Toulouse,France

    E.Oelkers

    Earth Sciences,University College London,Gower Street, London WC1E 6B,UK

    C.Zhu

    Department of Earth Sciences,Zhejiang University, Hangzhou 300027,China

    精品人妻视频免费看| 又爽又黄无遮挡网站| 国产色爽女视频免费观看| 国产精品一区二区三区四区免费观看| 在线观看av片永久免费下载| 亚洲内射少妇av| 一本久久中文字幕| 国产色爽女视频免费观看| 三级男女做爰猛烈吃奶摸视频| 黄片无遮挡物在线观看| 99九九线精品视频在线观看视频| 干丝袜人妻中文字幕| 国产探花在线观看一区二区| 亚洲国产高清在线一区二区三| 亚洲欧美成人综合另类久久久 | 好男人在线观看高清免费视频| 99久久成人亚洲精品观看| 国产毛片a区久久久久| 亚洲欧美日韩无卡精品| 91在线精品国自产拍蜜月| 夜夜夜夜夜久久久久| 少妇的逼水好多| 1000部很黄的大片| 亚洲18禁久久av| 插阴视频在线观看视频| 观看免费一级毛片| 成人毛片60女人毛片免费| 美女黄网站色视频| 麻豆成人午夜福利视频| 中文字幕av在线有码专区| 99久久久亚洲精品蜜臀av| 亚洲精品色激情综合| 一本久久中文字幕| 成人欧美大片| 午夜福利在线在线| 狠狠狠狠99中文字幕| 久久久国产成人精品二区| 波多野结衣巨乳人妻| 一级黄色大片毛片| 只有这里有精品99| 日本免费a在线| 亚洲国产精品成人综合色| 麻豆精品久久久久久蜜桃| 久久久久久久久中文| 精品人妻偷拍中文字幕| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 尾随美女入室| 26uuu在线亚洲综合色| 91在线精品国自产拍蜜月| 99久国产av精品| 日本熟妇午夜| 亚洲综合色惰| 欧美色视频一区免费| 国内精品久久久久精免费| 亚洲电影在线观看av| 亚洲精品色激情综合| 男人和女人高潮做爰伦理| 国产高清三级在线| 两个人的视频大全免费| 听说在线观看完整版免费高清| 久久精品夜色国产| 两性午夜刺激爽爽歪歪视频在线观看| 搡女人真爽免费视频火全软件| 色播亚洲综合网| 欧美极品一区二区三区四区| 中文亚洲av片在线观看爽| 我的女老师完整版在线观看| 日韩亚洲欧美综合| 美女被艹到高潮喷水动态| 一进一出抽搐gif免费好疼| 九色成人免费人妻av| 成人无遮挡网站| 秋霞在线观看毛片| 中文字幕久久专区| 天堂中文最新版在线下载 | 国产一区亚洲一区在线观看| 成人性生交大片免费视频hd| 久久久久免费精品人妻一区二区| 国内揄拍国产精品人妻在线| 亚洲av免费高清在线观看| 欧美最黄视频在线播放免费| 国产真实伦视频高清在线观看| 亚洲av第一区精品v没综合| 极品教师在线视频| 国产亚洲精品久久久久久毛片| 美女黄网站色视频| 成人性生交大片免费视频hd| 久久精品国产亚洲av涩爱 | h日本视频在线播放| 最好的美女福利视频网| 欧美在线一区亚洲| 日本在线视频免费播放| 1000部很黄的大片| 久久精品综合一区二区三区| 国产69精品久久久久777片| 亚洲在久久综合| 婷婷色综合大香蕉| 免费观看的影片在线观看| 日本一本二区三区精品| 在线观看av片永久免费下载| 国产一区二区三区av在线 | 神马国产精品三级电影在线观看| 亚洲国产欧美在线一区| 嫩草影院新地址| 精品人妻熟女av久视频| av在线老鸭窝| 欧美人与善性xxx| 国产av在哪里看| 久久久久久久久大av| 91在线精品国自产拍蜜月| 秋霞在线观看毛片| 色视频www国产| 六月丁香七月| 午夜激情福利司机影院| 天堂影院成人在线观看| 国产成人一区二区在线| 亚洲一区二区三区色噜噜| 久久九九热精品免费| 亚洲av不卡在线观看| 波多野结衣巨乳人妻| 国内精品美女久久久久久| 国产一区二区亚洲精品在线观看| 国产单亲对白刺激| 色哟哟哟哟哟哟| 亚洲精品国产成人久久av| 成人二区视频| 寂寞人妻少妇视频99o| 久久精品综合一区二区三区| 亚洲国产精品久久男人天堂| 国产精品综合久久久久久久免费| 最近视频中文字幕2019在线8| 国产一级毛片在线| 欧美日韩一区二区视频在线观看视频在线 | 亚洲精品粉嫩美女一区| 91精品国产九色| 在线a可以看的网站| 又粗又硬又长又爽又黄的视频 | 色哟哟哟哟哟哟| or卡值多少钱| 级片在线观看| 欧美日本亚洲视频在线播放| 日韩欧美精品免费久久| 在线国产一区二区在线| 色综合亚洲欧美另类图片| 国产淫片久久久久久久久| 国产精品不卡视频一区二区| www.色视频.com| 欧美色视频一区免费| 91精品一卡2卡3卡4卡| 日本色播在线视频| av女优亚洲男人天堂| 91精品一卡2卡3卡4卡| 久久精品久久久久久噜噜老黄 | 日韩视频在线欧美| 少妇人妻一区二区三区视频| 午夜精品在线福利| 国内精品一区二区在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 色尼玛亚洲综合影院| 成人特级黄色片久久久久久久| 国产一区二区在线观看日韩| 一区二区三区四区激情视频 | or卡值多少钱| 观看免费一级毛片| 午夜福利在线在线| 中国美女看黄片| 免费人成在线观看视频色| 欧美日韩在线观看h| 美女内射精品一级片tv| 日韩在线高清观看一区二区三区| 久久99热这里只有精品18| 在线免费十八禁| 色5月婷婷丁香| 菩萨蛮人人尽说江南好唐韦庄 | 晚上一个人看的免费电影| 国产熟女欧美一区二区| 综合色丁香网| 99精品在免费线老司机午夜| 国产精品av视频在线免费观看| av女优亚洲男人天堂| 亚洲在久久综合| 亚州av有码| a级毛色黄片| 一级黄色大片毛片| 日本免费a在线| av在线老鸭窝| 少妇丰满av| 国产真实乱freesex| 搞女人的毛片| 少妇的逼好多水| 成人二区视频| 久久热精品热| 性色avwww在线观看| 国产成人午夜福利电影在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内少妇人妻偷人精品xxx网站| 午夜亚洲福利在线播放| 成人综合一区亚洲| 草草在线视频免费看| 亚洲欧美日韩高清专用| 亚洲av二区三区四区| 97在线视频观看| 校园春色视频在线观看| 2022亚洲国产成人精品| 日韩亚洲欧美综合| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 欧美高清性xxxxhd video| ponron亚洲| av卡一久久| 久久这里有精品视频免费| 亚洲精品成人久久久久久| 日本欧美国产在线视频| 一个人看的www免费观看视频| 精品午夜福利在线看| 欧美成人精品欧美一级黄| 亚洲一区高清亚洲精品| 91久久精品电影网| 免费观看的影片在线观看| 亚洲在久久综合| 久久人人爽人人爽人人片va| 又爽又黄a免费视频| 波多野结衣高清无吗| 亚洲高清免费不卡视频| 少妇熟女aⅴ在线视频| 国产亚洲91精品色在线| 午夜久久久久精精品| 99国产极品粉嫩在线观看| 亚洲va在线va天堂va国产| 国产成人一区二区在线| 亚洲国产欧洲综合997久久,| 午夜久久久久精精品| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 变态另类成人亚洲欧美熟女| 日韩成人av中文字幕在线观看| 亚洲在线自拍视频| 国产成人91sexporn| 日本撒尿小便嘘嘘汇集6| 久久精品91蜜桃| av在线播放精品| 波多野结衣巨乳人妻| 日日撸夜夜添| 九九爱精品视频在线观看| 欧美又色又爽又黄视频| 国产老妇伦熟女老妇高清| 国产白丝娇喘喷水9色精品| 欧美性猛交黑人性爽| 最近最新中文字幕大全电影3| 久久欧美精品欧美久久欧美| 国产精品一区www在线观看| av天堂中文字幕网| 亚洲欧美日韩卡通动漫| 欧美激情国产日韩精品一区| 乱人视频在线观看| 美女被艹到高潮喷水动态| 99热网站在线观看| 免费黄网站久久成人精品| 午夜福利在线在线| 热99re8久久精品国产| 美女脱内裤让男人舔精品视频 | kizo精华| 97在线视频观看| 国产 一区 欧美 日韩| 3wmmmm亚洲av在线观看| 久久久国产成人精品二区| 日韩欧美 国产精品| 亚洲精品影视一区二区三区av| 欧美日韩国产亚洲二区| 舔av片在线| 国产成人a区在线观看| 精品国产三级普通话版| 人妻系列 视频| 永久网站在线| 高清毛片免费观看视频网站| 一级黄色大片毛片| 精品久久久久久久末码| 久久久久久久久久久免费av| 亚洲av熟女| 国产成人午夜福利电影在线观看| 国产精品日韩av在线免费观看| 一本精品99久久精品77| 久久婷婷人人爽人人干人人爱| 色视频www国产| 黄色日韩在线| 爱豆传媒免费全集在线观看| 久久人人爽人人片av| 人人妻人人看人人澡| 久久欧美精品欧美久久欧美| 久久国内精品自在自线图片| 欧美日韩综合久久久久久| 青青草视频在线视频观看| av专区在线播放| 99久久中文字幕三级久久日本| 欧美丝袜亚洲另类| 国产免费一级a男人的天堂| 欧美成人一区二区免费高清观看| 成人高潮视频无遮挡免费网站| 亚洲无线在线观看| 人人妻人人看人人澡| 哪里可以看免费的av片| 亚洲天堂国产精品一区在线| 精品一区二区免费观看| 亚洲国产精品国产精品| 丰满的人妻完整版| 国产精品永久免费网站| 久久这里只有精品中国| 国产精品久久电影中文字幕| 最新中文字幕久久久久| 亚洲人成网站在线播| 国产真实伦视频高清在线观看| 99热6这里只有精品| 国产精品一区二区性色av| 亚洲va在线va天堂va国产| 网址你懂的国产日韩在线| 日韩成人av中文字幕在线观看| 91精品一卡2卡3卡4卡| 男女边吃奶边做爰视频| 成人欧美大片| 一级毛片电影观看 | 国产精品电影一区二区三区| 国产一区二区在线观看日韩| 一级av片app| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| 亚洲无线观看免费| 一级毛片久久久久久久久女| 国产成人一区二区在线| 天美传媒精品一区二区| 亚洲欧美成人精品一区二区| 国产一区二区三区在线臀色熟女| 久久久久免费精品人妻一区二区| 国产视频首页在线观看| 可以在线观看毛片的网站| 中文精品一卡2卡3卡4更新| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 成年av动漫网址| 97人妻精品一区二区三区麻豆| 青春草国产在线视频 | 麻豆国产av国片精品| av.在线天堂| 性色avwww在线观看| 成人亚洲欧美一区二区av| 亚洲国产精品成人综合色| 久久久久国产网址| av卡一久久| 国产黄片美女视频| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 欧美成人a在线观看| 伦理电影大哥的女人| 国产黄片视频在线免费观看| 亚洲欧美日韩东京热| 亚洲av一区综合| 成人永久免费在线观看视频| 日韩成人av中文字幕在线观看| 国产伦一二天堂av在线观看| 国产高清有码在线观看视频| 亚洲av二区三区四区| 欧美成人a在线观看| 国产黄片美女视频| 国产成人影院久久av| 在线观看免费视频日本深夜| 国产亚洲精品久久久com| 久久精品91蜜桃| 久久国内精品自在自线图片| 99久久久亚洲精品蜜臀av| 麻豆成人午夜福利视频| 亚洲精品自拍成人| 青春草国产在线视频 | 久久精品夜色国产| 亚洲乱码一区二区免费版| 久久精品国产亚洲网站| 亚洲欧美精品专区久久| 如何舔出高潮| 久久久成人免费电影| 亚洲国产精品久久男人天堂| 丰满人妻一区二区三区视频av| 国产在视频线在精品| 国产成人91sexporn| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 国产综合懂色| 亚洲自偷自拍三级| 成人一区二区视频在线观看| 综合色av麻豆| 亚洲在久久综合| 欧美激情在线99| 国产黄片美女视频| 99久久精品国产国产毛片| 亚洲第一区二区三区不卡| 禁无遮挡网站| 日韩欧美 国产精品| 国产麻豆成人av免费视频| 亚洲精品亚洲一区二区| 国产精品一二三区在线看| 少妇人妻一区二区三区视频| 免费黄网站久久成人精品| 日本免费a在线| 天天一区二区日本电影三级| 亚洲五月天丁香| 三级经典国产精品| 国产亚洲精品久久久com| 国产免费一级a男人的天堂| 日韩 亚洲 欧美在线| 成人毛片60女人毛片免费| 国产成人aa在线观看| 国产极品天堂在线| 国产v大片淫在线免费观看| 26uuu在线亚洲综合色| 色尼玛亚洲综合影院| 久久中文看片网| 99热这里只有是精品50| 久久久久久国产a免费观看| 亚洲人成网站在线观看播放| 一级毛片久久久久久久久女| 网址你懂的国产日韩在线| 18禁裸乳无遮挡免费网站照片| 寂寞人妻少妇视频99o| 精品人妻熟女av久视频| 欧美日韩在线观看h| 中文字幕制服av| 久久婷婷人人爽人人干人人爱| 乱码一卡2卡4卡精品| 国产亚洲91精品色在线| 久久亚洲国产成人精品v| 欧美日韩乱码在线| 国产精品1区2区在线观看.| 美女内射精品一级片tv| 我的老师免费观看完整版| 热99re8久久精品国产| 黄片无遮挡物在线观看| 99久久人妻综合| 国产精品国产三级国产av玫瑰| 联通29元200g的流量卡| 欧美性猛交╳xxx乱大交人| 久久精品国产亚洲av涩爱 | 国产爱豆传媒在线观看| 色视频www国产| 久久精品久久久久久噜噜老黄 | 日本黄大片高清| 美女 人体艺术 gogo| 亚洲精品日韩av片在线观看| 在线播放国产精品三级| 色哟哟·www| 成人永久免费在线观看视频| videossex国产| 日本在线视频免费播放| 亚洲欧美精品专区久久| 午夜激情欧美在线| 日韩人妻高清精品专区| 日韩欧美三级三区| 国产精品一区www在线观看| 国产精品久久久久久久电影| 一本久久中文字幕| 国产亚洲精品久久久久久毛片| 性色avwww在线观看| 国产亚洲精品久久久久久毛片| 亚洲va在线va天堂va国产| 在线a可以看的网站| 亚洲国产精品成人综合色| 不卡视频在线观看欧美| 一个人免费在线观看电影| 日本熟妇午夜| 亚洲av熟女| 国产精品一区二区在线观看99 | 国产精品永久免费网站| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 看非洲黑人一级黄片| 亚洲国产精品久久男人天堂| 久久久久久伊人网av| av在线老鸭窝| 亚洲国产欧洲综合997久久,| 99热精品在线国产| 久久久久久久午夜电影| kizo精华| 国产精品精品国产色婷婷| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 成人一区二区视频在线观看| 亚洲无线在线观看| 91狼人影院| 精品免费久久久久久久清纯| 搞女人的毛片| 日本免费a在线| 伦精品一区二区三区| 舔av片在线| 在线国产一区二区在线| 少妇裸体淫交视频免费看高清| 三级男女做爰猛烈吃奶摸视频| 午夜爱爱视频在线播放| 18禁黄网站禁片免费观看直播| 国产综合懂色| 国产精品精品国产色婷婷| 免费av不卡在线播放| 熟女人妻精品中文字幕| 国内揄拍国产精品人妻在线| 美女被艹到高潮喷水动态| 日日干狠狠操夜夜爽| 国产极品精品免费视频能看的| 久久99热6这里只有精品| 日韩欧美一区二区三区在线观看| 免费一级毛片在线播放高清视频| 日日摸夜夜添夜夜爱| 国产免费一级a男人的天堂| 女人被狂操c到高潮| 国产精品免费一区二区三区在线| av在线亚洲专区| 在线观看午夜福利视频| 日产精品乱码卡一卡2卡三| 国产精品永久免费网站| a级毛片a级免费在线| .国产精品久久| av女优亚洲男人天堂| 婷婷色综合大香蕉| 啦啦啦韩国在线观看视频| 天美传媒精品一区二区| 色综合色国产| 在线观看午夜福利视频| 国产精品综合久久久久久久免费| 校园春色视频在线观看| 亚洲精品色激情综合| 国产探花在线观看一区二区| 欧美性猛交黑人性爽| 一个人看的www免费观看视频| 可以在线观看的亚洲视频| 久久精品夜夜夜夜夜久久蜜豆| av专区在线播放| 一个人观看的视频www高清免费观看| 男的添女的下面高潮视频| 老司机福利观看| 九色成人免费人妻av| 婷婷亚洲欧美| 久久精品夜色国产| 免费av毛片视频| 国产精品人妻久久久久久| 午夜福利在线观看吧| 国产精品久久久久久亚洲av鲁大| 99久久人妻综合| 激情 狠狠 欧美| 高清午夜精品一区二区三区 | 久久99热这里只有精品18| 亚洲人成网站在线观看播放| 中国美女看黄片| 久久99精品国语久久久| 老女人水多毛片| 亚洲av一区综合| 亚洲一区二区三区色噜噜| 老司机福利观看| 亚洲欧洲日产国产| 在线a可以看的网站| 久久99热6这里只有精品| 美女黄网站色视频| 日本熟妇午夜| 可以在线观看的亚洲视频| 99久久精品热视频| 91狼人影院| 一本一本综合久久| 男女下面进入的视频免费午夜| 欧美变态另类bdsm刘玥| 亚洲精品久久国产高清桃花| 国产午夜精品久久久久久一区二区三区| 观看免费一级毛片| 狠狠狠狠99中文字幕| 22中文网久久字幕| 别揉我奶头 嗯啊视频| 听说在线观看完整版免费高清| 亚洲电影在线观看av| 晚上一个人看的免费电影| 亚洲国产欧美人成| 国产精品1区2区在线观看.| 国产视频内射| 长腿黑丝高跟| 三级经典国产精品| 国产精品一二三区在线看| 亚洲国产欧洲综合997久久,| 国产精品.久久久| 久久精品国产亚洲网站| 国产精品人妻久久久影院| 大香蕉久久网| 人妻系列 视频| 国产男人的电影天堂91| 国产毛片a区久久久久| 在线免费观看不下载黄p国产| 丰满人妻一区二区三区视频av| 少妇熟女aⅴ在线视频| 久久精品夜色国产| 99热只有精品国产| 婷婷亚洲欧美| 人妻系列 视频| 又粗又硬又长又爽又黄的视频 | 一夜夜www| 国产乱人视频| 丝袜喷水一区| 卡戴珊不雅视频在线播放| 久久欧美精品欧美久久欧美| 亚洲在线自拍视频| 天天躁日日操中文字幕| 亚洲成人精品中文字幕电影| av专区在线播放| 一本久久中文字幕| 色噜噜av男人的天堂激情| 欧美日本视频| 国产精品嫩草影院av在线观看| 久久这里只有精品中国| 欧美+日韩+精品| 一进一出抽搐动态| 97超视频在线观看视频| 免费无遮挡裸体视频| 欧美3d第一页| 色综合站精品国产| 你懂的网址亚洲精品在线观看 |