• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Changes in lumbosacral spinal nerve roots on diff usion tensor imaging in spinal stenosis

    2015-02-07 12:58:35ZhongjunHouYongHuangZiwenFanXinchunLiBingyiCao

    Zhong-jun Hou, Yong Huang Zi-wen Fan, Xin-chun Li, Bing-yi Cao

    1 Department of Radiology, the Second Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    2 Department of Orthopedics, the Second Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    3 Department of Radiology, the First Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    Changes in lumbosacral spinal nerve roots on diff usion tensor imaging in spinal stenosis

    Zhong-jun Hou1,*, Yong Huang1, Zi-wen Fan2, Xin-chun Li3, Bing-yi Cao1

    1 Department of Radiology, the Second Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    2 Department of Orthopedics, the Second Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    3 Department of Radiology, the First Affi liated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province, China

    Lumbosacral degenerative disc disease is a common cause of lower back and leg pain. Conventional T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI) scans are commonly used to image spinal cord degeneration. However, these modalities are unable to image the entire lumbosacral spinal nerve roots. Thus, in the present study, we assessed the potential of diff usion tensor imaging (DTI) for quantitative assessment of compressed lumbosacral spinal nerve roots. Subjects were 20 young healthy volunteers and 31 patients with lumbosacral stenosis. T2WI showed that the residual dural sac area was less than two-thirds that of the corresponding normal area in patients from L3to S1stenosis. On T1WI and T2WI, 74 lumbosacral spinal nerve roots from 31 patients showed compression changes. DTI showed thinning and distortion in 36 lumbosacral spinal nerve roots (49%) and abruption in 17 lumbosacral spinal nerve roots (23%). Moreover, fractional anisotropy values were reduced in the lumbosacral spinal nerve roots of patients with lumbosacral stenosis. These fi ndings suggest that DTI can objectively and quantitatively evaluate the severity of lumbosacral spinal nerve root compression.

    nerve regeneration; magnetic resonance imaging; diffusion tensor imaging; lumbosacral area; degeneration; nerve root; fractional anisotropy; neural regeneration

    Funding: This study was supported by the Science and Technology Planning Project of Guangdong Province of China in 2012, No. 2012B031800232.

    Hou ZJ, Huang Y, Fan ZW, Li XC, Cao BY (2015) Changes in lumbosacral spinal nerve roots on diffusion tensor imaging in spinal stenosis. Neural Regen Res 10(11):1860-1864.

    Introduction

    Lumbosacral degenerative disc disease is the most common cause of pain in the lower back and legs. The most common levels of disc degeneration are at L4–5and L5to S1(Quint and Wilke, 2008; Hicks et al., 2009; Saleem et al., 2013). X-ray imaging plays a limited role in evaluating functional impairment associated with spinal cord degeneration (Quint and Wilke, 2008). Furthermore, the severity of lower back pain does not match the degree of disc degeneration and facet joint pathology on radiographs (Hicks et al., 2009).

    Conventional magnetic resonance imaging (MRI), including T1-weighted imaging (T1WI) and T2-weighted imaging (T2WI), can image lumbosacral disc degeneration, but does not image the entire lumbosacral spinal nerve roots (LSNR). Three-dimensional (3D) MR radiculography is able to display the morphology of LSNR, although it has poor image rending quality (Byun et al., 2012).

    Diff usion weighted imaging (DWI) can provide valuable structural information and the apparent diff usion coeffi cient of the LSNR. DWI neuroimaging can visualize abnormalities such as nerve indentation, swelling, and transverse nerve direction through the foramen, and can quantitatively evaluate lumbar nerve entrapment in patients with foraminal stenosis. However, the resolution of the apparent diff usion coeffi -cient map is unsatisfactory and the limited directions of the gradient magnetic fi elds may aff ect the apparent diff usion coeffi cient value (Eguchi et al., 2010).

    Diff usion tensor imaging (DTI) has been used to image nerve fi ber tracts in the white matter of the central nervous system, and can also display peripheral nerve fi bers (Li et al., 2013; Jang et al., 2014). Nevertheless, the application of DTI is less common for evaluation of LSNR morphology and pathology (Filippi et al., 2010; Eguchi et al., 2011). Clinical practice requires quantitative evaluation of the degree of trauma and recovery after treatment in LSNR (Arrigo et al., 2011). In the present study, we performed conventional MRI versus DTI in the lumbosacral spine to evaluate the LSNR in both healthy volunteers and patients with spinal stenosis. The aim of this study was to examine the potential of DTI for intuitive and quantitative assessment of the compressed LSNR.

    Materials and Methods

    Subjects

    A total of 20 young healthy volunteers and 93 patients with lumbosacral stenosis were verifi ed by physical examination in the Department of Orthopedics of the Second Affi liated Hospital of Guangzhou Medical University, China. For healthy volunteers, there were 14 males (mean age 23.3 ± 1.7 years; range: 21–27 years) and six females (22.8 ± 1.9 years; range: 21–26 years) as a control group.

    Conventional MRI

    After signing informed consent, MRI scans were performed with a scanner (Signa 1.5T HDXT; General Electric, Milwaukee, WI, USA). For conventional examination, sagittal planes were oriented from the 10ththoracic vertebra to the coccyx on T1WI and T2WI, while axial T2WI scans were performed along the intervertebral spaces from L3to S1to assess intervertebral disc changes. Axial T2WI and DTI scans were then performed in horizontal orientation from the upper-middle part of the L2to the inferior margin of S1with 8-channel cardiac array coils.

    The following scanning parameters were maintained for horizontal T2WI and DTI for orientation, slice thickness, number of slices, fi eld of view, and zero gap. For axial T2WI, the scanning parameters were repetition time of 3,720.0–3,880.0 ms, echo time of 80.1–89.6 ms, slice thickness of 3 mm, fi eld of view of 300 × 300 mm, matrix of 256 × 256, echo length of 16, number of slices of 50, signal excitations and acquisitions of 2, and scanning time from 2′44′′to 3′22′′. For DTI, the scanning parameters were repetition time of 10,000–10,400 ms, echo time of 71.8–72.1 ms, matrix of 128 × 128, signal excitations and acquisitions of 8, diff usion factors at b values of 0 s/mm2and 400 s/mm2, 12 directions of diff usion gradients, and scanning time from 17′30′′ to 18′12′′ in echo planar imaging.

    For post processing, images were processed using Functool 5.2.09 on the MRI host computer. First, on axial scans of intervertebral discs, the areas of the dural sacs were measured from L3to S1in both healthy volunteers and patients. At each level, the areas of the dural sacs were then measured three times and averaged.

    Patient selection

    Patients who exhibited the following symptoms were selected: intermittent claudication, numbness, and weakness that could be relieved by bed rest and bending motion or aggravated by extension of the legs. In a clinical test, patients exhibited altered sensation disturbances in the back and legs, weakening or disappearance in ankle refl ection, and atrophy in the buttocks and legs. One patient exhibited cauda equina syndrome characterized by serious low back pain, radicular pain in both legs, numbness around the anus, urine retention, and fecal incontinence. With respect to accessing standards, only those patients without a metal frame of the vertebral body and dural sac area less than two-thirds of that at the corresponding normal intervertebral spaces were included in this study (Feng et al., 2000). Thirty-one patients out of 93 exhibited this requirement. The lesion group contained 18 males (mean 51.0 ± 9.1 years; range: 33–63 years) and 13 females (62.5 ± 13.9 years; range: 39–80).

    DTI data analysis

    In post processing of DTI data, after comparing the shape and contours of the dural sac on axial T2WI and DTI and ruling out image deformation, we selected one of 12 groups of DTI with 50 images, and then reconstructed the spinal nerves and ganglia on the maximum intensity projection. DWI neuroimaging in one direction was used as the reference for DTI tractography. To mark the nerve roots at the cauda equina and the dorsal root ganglia, the fractional anisotropy (FA) values of LSNR were measured in triplicate at each site; the positions were recorded for selecting the region of interest and tracking LSNR. The ‘seed’ and ‘target’ mode were used by referring the regions of interest of the proximal and distal ends of the LSNR on 3D axial DTI images. Images of the LSNR from L3to S1on both sides were reconstructed using an FA threshold of 0.18.

    Statistical analysis

    Data were analyzed using SPSS 11.5 software (SPSS, Chicago, IL, USA). The dural sac area, between two-thirds of the normal and the narrowed lumbosacral canal, and FA values between healthy volunteers and patients in the lesion group were compared using the Student’s t-test. A P value less than 0.05 was considered statistically signifi cant.

    Results

    Dural sac area in healthy volunteers and patients with lumbosacral stenosis

    In 20 healthy volunteers, the dural sac areas of the axial lumbosacral canals were 188.7 ± 45.0 mm2, 174.6 ± 44.0 mm2, and 156.6 ± 44.5 mm2at L3–4, L4–5, and L5to S1, respectively, and 173.0 ± 46.1 mm2on average. The residual dural sac area of the lumbosacral canal was reduced in patients with lumbosacral stenosis (98.9 ± 25.6 mm2) to two-thirds of the dural sac area of normal persons (115.3 ± 30.7 mm2) (t = 4.719, P = 0.000).

    FA values of LSNR from L2to S1between healthy

    volunteers and patients with lumbosacral canal stenosis

    The mean FA value was higher in healthy volunteers (0.332 ± 0.074) than that in patients with lumbosacral canal stenosis (0.304 ± 0.085) (P = 0.000).

    Neuroimaging and tractography of LSNR

    In healthy volunteers, DWI showed symmetrical or almost symmetrical LSNR from L3to S1, which was very clear from the bifurcation of the LSNR in the cauda equina to the dorsal ganglia. The LSNR from L2to S1was observed completely on DTI tractography, which corresponded to DWI neuroimaging and normal anatomy (Figure 1) (Arslan et al., 2011). Lumbosacral degeneration was seen in 74 LSNR of patients with spinal stenosis on T1WI and T2WI. On DTI tractography, 36 LSNR (49%) were thin and distorted, while 17 LSNR (23%) were ruptured (Figures 2 and 3). Morphologically, the most evident signs were asymmetry and distortion of the LSNR. Overall, these data suggest that the compression state of the ruptured LSNR on DTI was more serious than that of thinning and distortion observed with T1WI and T2WI.

    Discussion

    Spinal degeneration and spinal stenosis

    Figure 1 Images of LSNR of a 22-year-old male healthy volunteer.

    Figure 2 Changes in the LSNR of a 56-year-old male patient with spinal stenosis.

    Figure 3 Changes in the LSNR of a 59-year-old male patient with spinal stenosis.

    Senocak et al. (2009) reported that the cauda equina conduction time was signifi cantly prolonged in lumbar spinal stenosis. When the central canal area was less than 1.5 cm2, a delay of cauda equina conduction may occur. Demyelination was previously reported in the compressed cauda equina (Senocak et al., 2009). Feng et al. (2000) also reported that the cauda equina showed high signal on MRI, with normal axons by light microscope, but worm-eaten changes in the myelin sheath without evidence of changes in polyribosomes and rough endoplasmic reticulum by electron microscope in dogs with 25% canal stenosis at 12 weeks of recovery. In dogs with 50% canal stenosis, there was evidence of high signal on MRI, with varied axonal diameters, partial separation, and vacuolation by light microscope, and myelin degeneration, axonal atrophy, and metachromatic granules in Schwann cell membrane by electron microscope at 12 weeks of recovery. In dogs with 75% canal stenosis, there was evidence of high signal on MRI and disappearance of normal structures by light microscopy, and lamellar myelin disorders and axon loss by electron at 12 weeks of recovery. Taken together, compression leads to deterioration in the function and histology of the cauda equina.

    Sensitivity of FA in detecting spinal degeneration

    FA is an important indicator for describing the degree of anisotropy on DTI (Filler, 2009; Jambawalikar et al., 2010). An FA of zero represents isotropic diff usion, while an FA of 1 represents only linear diff usion. FA values in nerve fi bers of the human body range from 0.2–0.8 (Jambawalikar et al., 2010). In the present study, the mean normal FA value of the LSNR was 0.332 ± 0.074. Anatomically, from the L1to L5level, the average angle was 40° (range 37–41°) between the LSNR and the dural sac. At the S2level, the angle sharply reduces to 22 ± 4° on average, and tends to be smaller in the following spinal nerves in the sacral canal (Cohen et al., 1990).

    Previous studies have used DTI for anatomical assessment of spinal nerves. For example, spinal nerve imaging by DWI could visualize anatomical structures from the separation of the LSNR to the dorsal ganglia. FA values of the spinal nerves were also signifi cantly lower after sciatic neuropathy compared with controls. Furthermore, FA values in the sciatic nerve were correlated with disability scores and electrophysiological parameters of axonal damage at baseline and at 6 months after the initial DTI scan (Mathys et al., 2013). The changes in FA values were strongly correlated with histological changes, including axon and myelin regeneration (Takagi et al., 2009; Morisaki et al., 2011), and indicated that axon membranes played a major role in anisotropic water diff usion and that myelination could modulate the degree of anisotropy (Takagi et al., 2009). In the present study, the FA value of the LSNR was lower in areas of lumbar stenosis, in which the LSNR is compressed over a long period with demyelination and axonal degeneration (Feng et al., 2000). These fi ndings are consistent with previous studies (Takagi et al., 2009; Morisaki et al., 2011; Mathys et al., 2013).

    Signifi cance of tractography in assessing the changes in LSNR

    Lumbosacral spine MRI clearly shows the structures of the spinal canal and characteristics of the spinal nerves on T1WI and T2WI. DWI can clearly visualize the shape of the spinal nerves and the nerve ganglia in maximum intensity projection mode (Zhang et al., 2009). In the present study, we used a group of DTI images in one direction for DWI to reduce the misregistration between DTI and DWI.

    The axial scanning of the two-dimensional T2WI in our study matched that of DTI with respect to range, thickness, and orientation for comparison of the spinal structures. The separation points of the LSNR and the dorsal ganglia were visible on DWI. This allowed us to mark the slice position of the LSNR and apply it to the axial images of DTI for selecting the ‘seed’ and ‘target’ to reconstruct the LSNR. Our results confi rmed that the LSNR could be displayed clearly and symmetrically in normal volunteers from L3to S1on DTI. However, in patients with lumbosacral stenosis, LSNR had a varied appearance including thinning, distortion, and abruption. Asymmetry and distortion were the main morphological changes in LSNR.

    Study limitations

    This study compared LSNR between normal volunteers and lumbar stenosis patients using DTI. DTI has high potential for displaying the morphology and histology of the LSNR. However, image distortion can occur with DTI as a result of eddy currents, cerebrospinal fl uid motion, and physiological movement (Wang et al., 2011; Middleton et al., 2014). Simultaneously, the impact of the intervertebral discs shouldbe considered during reconstruction of the LSNR (Yang et al., 2007), while the presence of the cauda equina will aff ect observation of the LSNR (Hou et al., 2013). Indeed, the fi nding of abruption of the LSNR on tractography does not indicate disconnection of the spinal nerves, but rather loss on tractography tracing due to the lower FA (Eguchi et al., 2010). An indicator of the dural sac area may not fully refl ect the real severity of LSNR compression, as the degree of stenosis of the lateral recess plays a more important direct role, while the lateral recess on one side or both sides is diffi cult to evaluate quantitatively and repeatedly. Nevertheless, the dural sac area represents an aspect of the severity of compression in the cauda equina.

    In clinical practice, after surgery the quality of DTI in reexamination is often diminished by the metal instrument fi xed on the vertebral pedicles. In addition, scanning with DTI is time-consuming when the scanning direction is perpendicular to the spinal canal. Furthermore, the tractography fi ndings did not totally match the changes in LSNR on T1WI and T2WI, with nearly 30% false negative results. The quality of tractography and spatial resolution of the images were based mainly on the skill and experience of the operator. Thus, to assure the quality of DTI, future studies are required to reduce the scan time and improve the reconstruction mode of tractography for assessment of LSNR.

    Acknowledgments: We thank technician Shu-xin Li for his instruction and help in MRI scans in both volunteers and patients in the Department of Radiology of the Second Affiliated Hospital of Guangzhou Medical University in China.

    Author contributions: ZJH, YH, ZWF and XCL participated in study design. ZJH, XCL and BYC did literature search. ZJH, YH and BYC performed experiments. ZJH, YH and ZWF collected data. ZJH and ZWF analyzed the data. ZJH wrote the paper. ZJH and XCL reviewed the paper. All authors approved the fi nal version of the paper.

    Confl icts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded, stringently reviewed by international expert reviewers.

    Arrigo RT, Kalanithi P, Boakye M (2011) Is cauda equina syndrome being treated within the recommended time frame? Neurosurgery 68:1520-1526.

    Arslan M, C?mert A, A?ar H, ?zdemir M, Elhan A, Tekdemir ?, Tubbs S, Attar A, U?ur H (2011) Lumbosacral intrathecal nerve roots: an anatomical study. Acta Neurochir (Wien) 153:1435-1442.

    Byun WM, Ahn SH, Ahn MW (2012) Value of 3D MR lumbosacral radiculography in the diagnosis of symptomatic chemical radiculitis. Am J Neuroradiol 33:529-534.

    Cohen MS, Wall EJ, Brown RA, Rydevik B, Garfi n SR (1990) 1990 AcroMed Award in basic science. Cauda equina anatomy. II: Extrathecal nerve roots and dorsal root ganglia. Spine (Phila Pa 1976) 15:1248-1251.

    Eguchi Y, Ohtori S, Orita S, Kamoda H, Arai G, Ishikawa T, Miyagi M, Inoue G, Suzuki M, Masuda Y, Andou H, Takaso M, Aoki Y, Toyone T, Watanabe A, Takahashi K (2011) Quantitative evaluation and visualization of lumbar foraminal nerve root entrapment by using diff usion tensor imaging: preliminary results. Am J Neuroradiol 32:1824-1829.

    Eguchi Y, Ohtori S, Yamashita M, Yamauchi K, Suzuki M, Orita S, Kamoda H, Arai G, Ishikawa T, Miyagi M, Ochiai N, Kishida S, Masuda Y, Ochi S, Kikawa T, Takaso M, Aoki Y, Toyone T, Suzuki T, Takahashi K (2010) Clinical applications of diff usion magnetic resonance imaging of the lumbar foraminal nerve root entrapment. Eur Spine J 19:1874-1882.

    Feng JG, Han YT, Wang F (2000) Comparative observation of MRI and histology of delayed graded compression of the dog cauda equina. Zhonghua Fangshe Xue Zazhi 34:208-211.

    Filippi C, Andrews T, Gonyea J, Linnell G, Cauley K (2010) Magnetic resonance diff usion tensor imaging and tractography of the lower spinal cord: application to diastematomyelia and tethered cord. Eur Radiol 20:2194-2199.

    Filler A (2009) Magnetic resonance neurography and diff usion tensor imaging: origins, history, and clinical impact of the fi rst 50,000 cases with an assessment of effi cacy and utility in a prospective 5000-patient study group. Neurosurgery 65:A29-43.

    Hicks GE, Morone N, Weiner DK (2009) Degenerative lumbar disc and facet disease in older adults: prevalence and clinical correlates. Spine 34:1301-1306.

    Hou ZJ, Huang Y, Fan ZW, Cao BY (2013) The research of diffusion tensor imaging of magnetic resonance imaging in normal cauda equina. Yixue Yingxiang Xue Zazhi 23:371-375.

    Jambawalikar S, Baum J, Button T, Li H, Geronimo V, Gould E (2010) Diffusion tensor imaging of peripheral nerves. Skeletal Radiol 39:1073-1079.

    Jang SH, Chang PH, Kim YK, Seo JP (2014) Anatomical location of the frontopontine fi bers in the internal capsule in the human brain: a diff usion tensor tractography study. Neuroreport 25:117-121.

    Li X, Chen J, Hong G, Sun C, Wu X, Peng MJ, Zeng G (2013) In vivo DTI longitudinal measurements of acute sciatic nerve traction injury and the association with pathological and functional changes. Eur J Radiol 82:e707-e714.

    Mathys C, Aissa J, Zu H?rste GM, Reichelt DC, Antoch G, Turowski B, Hartung HP, Sheikh KA, Lehmann HC (2013) Peripheral neuropathy: assessment of proximal nerve integrity by diff usion tensor imaging. Muscle Nerve 48:889-896.

    Middleton DM, Mohamed FB, Barakat N, Hunter LN, Shellikeri S, Finsterbusch J, Faro SH, Shah P, Samdani AF, Mulcahey MJ (2014) An investigation of motion correction algorithms for pediatric spinal cord DTI in healthy subjects and patients with spinal cord injury. Magn Reson Imaging 32:433-439.

    Morisaki S, Kawai Y, Umeda M, Nishi M, Oda R, Fujiwara H, Yamada K, Higuchi T, Tanaka C, Kawata M, Kubo T (2011) In vivo assessment of peripheral nerve regeneration by diff usion tensor imaging. J Magn Reson Imaging 33:535-542.

    Quint U, Wilke HJ (2008) Grading of degenerative disk disease and functional impairment: imaging versus patho-anatomical fi ndings. Eur Spine J 17:1705-1713.

    Saleem S, Aslam HM, Rehmani MAK, Raees A, Alvi AA, Ashraf J (2013) Lumbar disc degenerative disease: disc degeneration symptoms and magnetic resonance image fi ndings. Asian Spine J 7:322-334.

    Senocak ?, Hürel DM, Sener U, Ugurel B, ?ztura I, Ertekin C (2009) Motor conduction time along the cauda equina in patients with lumbar spinal stenosis. Spine 34:1410-1414.

    Takagi T, Nakamura M, Yamada M, Hikishima K, Momoshima S, Fujiyoshi K, Shibata S, Okano HJ, Toyama Y, Okano H (2009) Visualization of peripheral nerve degeneration and regeneration: monitoring with diff usion tensor tractography. Neuroimage 44:884-892.

    Wang ZJ, Seo Y, Chia JM, Rollins NK (2011) A quality assurance protocol for diff usion tensor imaging using the head phantom from American College of Radiology. Med Phys 38:4415-4421.

    Yang HT, Wang RF, Wang J, Gao XL, Li FT, Zhang HD, Xia LM, Wang CY (2007) Clinical application of MR diff usion tensor imaging in lumbar disc annulus fi brosis. Zhonghua Fangshe Xue Zazhi 41:1100-1103.

    Zhang Z, Song L, Meng Q, Li Z, Pan B, Yang Z, Pei Z (2009) Morphological analysis in patients with sciatica: a magnetic resonance imaging study using three-dimensional high-resolution diff usion-weighted magnetic resonance neurography techniques. Spine (Phila Pa 1976) 34:E245-250.

    Copyedited by Dean J, Raye W, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    *Correspondence to: Zhong-jun Hou, 13694208683@163.com.

    orcid: 0000-0002-5916-7206 (Zhong-jun Hou)

    10.4103/1673-5374.170317 http://www.nrronline.org/

    Accepted: 2015-09-10

    www.色视频.com| 日韩在线高清观看一区二区三区| 99久久人妻综合| 狂野欧美白嫩少妇大欣赏| 亚洲欧美清纯卡通| 天天躁日日操中文字幕| 校园人妻丝袜中文字幕| 美女xxoo啪啪120秒动态图| 激情 狠狠 欧美| 少妇的逼好多水| 亚洲伊人久久精品综合| 丝袜喷水一区| 免费看av在线观看网站| 少妇 在线观看| 国产淫片久久久久久久久| 老司机影院成人| 一级毛片我不卡| 天天躁日日操中文字幕| 性插视频无遮挡在线免费观看| 国产高清有码在线观看视频| 深爱激情五月婷婷| 中国国产av一级| 熟妇人妻不卡中文字幕| 国产人妻一区二区三区在| 国产精品人妻久久久影院| 国产欧美另类精品又又久久亚洲欧美| 免费大片黄手机在线观看| 波多野结衣巨乳人妻| 男女无遮挡免费网站观看| 国产成人精品一,二区| 最近最新中文字幕大全电影3| 国产爽快片一区二区三区| 蜜桃亚洲精品一区二区三区| 婷婷色av中文字幕| 婷婷色av中文字幕| 日韩 亚洲 欧美在线| 亚洲欧美中文字幕日韩二区| 国产淫片久久久久久久久| 在线 av 中文字幕| 少妇 在线观看| 99热6这里只有精品| 日韩一区二区三区影片| 秋霞在线观看毛片| 少妇人妻精品综合一区二区| 久久精品国产亚洲网站| 水蜜桃什么品种好| 男人爽女人下面视频在线观看| 人妻少妇偷人精品九色| 亚洲成人久久爱视频| 亚洲精品第二区| 在线免费观看不下载黄p国产| 国产美女午夜福利| 色视频www国产| 成年免费大片在线观看| 国产视频内射| 欧美 日韩 精品 国产| 蜜桃久久精品国产亚洲av| 午夜精品国产一区二区电影 | 国产成人aa在线观看| 久久精品夜色国产| 少妇熟女欧美另类| 三级国产精品片| 免费在线观看成人毛片| 亚洲国产精品成人久久小说| 久久精品国产亚洲网站| 亚洲国产成人一精品久久久| 2018国产大陆天天弄谢| 高清毛片免费看| 丝瓜视频免费看黄片| 观看免费一级毛片| 国产精品国产av在线观看| 久久久久国产网址| 国产女主播在线喷水免费视频网站| 2021天堂中文幕一二区在线观| 国产成人91sexporn| 国产男女内射视频| 女人十人毛片免费观看3o分钟| 一本久久精品| 最近2019中文字幕mv第一页| 国产v大片淫在线免费观看| 国产色爽女视频免费观看| a级一级毛片免费在线观看| 日韩国内少妇激情av| 大陆偷拍与自拍| 国产极品天堂在线| 搡女人真爽免费视频火全软件| 久久影院123| 午夜激情久久久久久久| 久久久久久久久久久丰满| 欧美亚洲 丝袜 人妻 在线| 久久鲁丝午夜福利片| 制服丝袜香蕉在线| 久久久午夜欧美精品| 少妇被粗大猛烈的视频| 亚洲av.av天堂| 97在线视频观看| 少妇裸体淫交视频免费看高清| 在线观看免费高清a一片| 婷婷色综合www| 少妇熟女欧美另类| 狠狠精品人妻久久久久久综合| av在线app专区| 日韩av在线免费看完整版不卡| 蜜臀久久99精品久久宅男| 五月伊人婷婷丁香| 国产精品国产三级国产av玫瑰| 国产精品精品国产色婷婷| 美女内射精品一级片tv| 日本欧美国产在线视频| 国产视频内射| 国产久久久一区二区三区| 免费黄频网站在线观看国产| 免费黄频网站在线观看国产| 人妻 亚洲 视频| 欧美老熟妇乱子伦牲交| 国产黄片美女视频| 亚洲国产高清在线一区二区三| 纵有疾风起免费观看全集完整版| 成人毛片60女人毛片免费| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 亚洲美女视频黄频| 在线观看三级黄色| 又粗又硬又长又爽又黄的视频| 美女xxoo啪啪120秒动态图| 免费观看性生交大片5| 18禁裸乳无遮挡免费网站照片| 国产人妻一区二区三区在| 日本黄色片子视频| 亚洲人成网站在线播| 丝袜喷水一区| 精品视频人人做人人爽| 中文资源天堂在线| 久久久久久久久久久免费av| 国产高潮美女av| 国产精品偷伦视频观看了| 亚洲怡红院男人天堂| 国产黄a三级三级三级人| 观看美女的网站| 一区二区三区乱码不卡18| 麻豆精品久久久久久蜜桃| 中文字幕制服av| 老女人水多毛片| 亚洲精华国产精华液的使用体验| 免费看光身美女| 成年女人看的毛片在线观看| 国产精品国产三级专区第一集| 久久久久久久久大av| 成人漫画全彩无遮挡| 下体分泌物呈黄色| 国产在线一区二区三区精| 国产成人freesex在线| 男女边摸边吃奶| 日韩大片免费观看网站| 国产黄片视频在线免费观看| 亚洲国产色片| 五月天丁香电影| 麻豆成人午夜福利视频| 亚洲成人久久爱视频| 亚洲av免费高清在线观看| 内地一区二区视频在线| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 欧美精品人与动牲交sv欧美| 又大又黄又爽视频免费| 日韩大片免费观看网站| 亚洲国产欧美在线一区| a级毛片免费高清观看在线播放| av又黄又爽大尺度在线免费看| 久久97久久精品| 麻豆成人午夜福利视频| 中文字幕免费在线视频6| 99热这里只有是精品50| 99re6热这里在线精品视频| 九九在线视频观看精品| 哪个播放器可以免费观看大片| xxx大片免费视频| 69av精品久久久久久| 99热6这里只有精品| 成人综合一区亚洲| 全区人妻精品视频| 少妇人妻 视频| 深爱激情五月婷婷| 中文乱码字字幕精品一区二区三区| 99热这里只有精品一区| 国产成人午夜福利电影在线观看| 在线天堂最新版资源| 成人国产麻豆网| 久久精品久久精品一区二区三区| 欧美3d第一页| 欧美潮喷喷水| 国产有黄有色有爽视频| 亚洲天堂av无毛| 听说在线观看完整版免费高清| 国产精品熟女久久久久浪| 极品教师在线视频| 国产又色又爽无遮挡免| 女人久久www免费人成看片| 国产有黄有色有爽视频| eeuss影院久久| 一级毛片电影观看| 国产 精品1| 免费黄频网站在线观看国产| 三级经典国产精品| 男人舔奶头视频| 久久精品久久久久久噜噜老黄| 欧美性感艳星| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 夜夜看夜夜爽夜夜摸| 久久久久精品久久久久真实原创| 一级毛片久久久久久久久女| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 欧美日本视频| 肉色欧美久久久久久久蜜桃 | 亚洲欧洲国产日韩| 久久久久久国产a免费观看| 春色校园在线视频观看| 男女那种视频在线观看| 国产午夜福利久久久久久| 欧美精品国产亚洲| 国产人妻一区二区三区在| 99热这里只有是精品50| av天堂中文字幕网| 亚洲天堂av无毛| 一级毛片久久久久久久久女| 久久精品夜色国产| 成人美女网站在线观看视频| av天堂中文字幕网| 国产精品av视频在线免费观看| 色视频在线一区二区三区| 亚洲图色成人| 国产精品国产三级专区第一集| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线观看播放| 亚洲欧洲国产日韩| 啦啦啦啦在线视频资源| 午夜福利高清视频| 嫩草影院入口| 国产伦理片在线播放av一区| xxx大片免费视频| 国产精品久久久久久久久免| 日韩av不卡免费在线播放| 亚洲精品影视一区二区三区av| 人妻 亚洲 视频| 五月伊人婷婷丁香| 建设人人有责人人尽责人人享有的 | 欧美zozozo另类| 国产探花在线观看一区二区| 成人国产av品久久久| 国产高潮美女av| 午夜福利视频精品| 亚洲在久久综合| 九色成人免费人妻av| 国产爽快片一区二区三区| 亚洲精品亚洲一区二区| 成年人午夜在线观看视频| 伦理电影大哥的女人| 丰满乱子伦码专区| 联通29元200g的流量卡| 丰满人妻一区二区三区视频av| 又爽又黄无遮挡网站| 永久免费av网站大全| 午夜福利视频精品| 欧美激情国产日韩精品一区| 精品一区在线观看国产| 精品视频人人做人人爽| 黑人高潮一二区| 欧美日韩亚洲高清精品| 男人舔奶头视频| 日本一二三区视频观看| 黄色日韩在线| 亚洲欧美日韩卡通动漫| 91狼人影院| 大码成人一级视频| av在线app专区| 少妇人妻一区二区三区视频| 国产人妻一区二区三区在| 欧美区成人在线视频| 欧美一区二区亚洲| 免费看不卡的av| 免费不卡的大黄色大毛片视频在线观看| 亚洲精品中文字幕在线视频 | 人妻 亚洲 视频| 高清日韩中文字幕在线| 美女视频免费永久观看网站| 日产精品乱码卡一卡2卡三| 麻豆成人午夜福利视频| 国产熟女欧美一区二区| 卡戴珊不雅视频在线播放| 亚洲欧美成人精品一区二区| 九色成人免费人妻av| 国产日韩欧美亚洲二区| 国产精品av视频在线免费观看| 国产69精品久久久久777片| 国产女主播在线喷水免费视频网站| 精品久久久久久久末码| 少妇高潮的动态图| 国产黄片视频在线免费观看| 人人妻人人爽人人添夜夜欢视频 | 天天躁夜夜躁狠狠久久av| 国语对白做爰xxxⅹ性视频网站| 成人高潮视频无遮挡免费网站| 亚洲欧洲日产国产| 国产探花在线观看一区二区| 在线观看三级黄色| 99热这里只有是精品50| 各种免费的搞黄视频| 精品99又大又爽又粗少妇毛片| 自拍偷自拍亚洲精品老妇| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 少妇猛男粗大的猛烈进出视频 | 一区二区三区免费毛片| 久热这里只有精品99| 九九久久精品国产亚洲av麻豆| 亚洲精品中文字幕在线视频 | av在线亚洲专区| 国产一区二区亚洲精品在线观看| 成年女人在线观看亚洲视频 | 国产精品不卡视频一区二区| 成人特级av手机在线观看| 黄色欧美视频在线观看| xxx大片免费视频| 国产日韩欧美亚洲二区| 久久久久久久久大av| 午夜精品国产一区二区电影 | 亚洲成人久久爱视频| 欧美xxⅹ黑人| 热99国产精品久久久久久7| 成人亚洲欧美一区二区av| 日本av手机在线免费观看| 日韩在线高清观看一区二区三区| 国产精品爽爽va在线观看网站| 大又大粗又爽又黄少妇毛片口| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 一边亲一边摸免费视频| 亚洲精品456在线播放app| 22中文网久久字幕| 日韩 亚洲 欧美在线| 1000部很黄的大片| 人妻少妇偷人精品九色| 国产乱人视频| 久久精品国产亚洲网站| 黄片无遮挡物在线观看| 干丝袜人妻中文字幕| 午夜福利在线在线| 久久99热6这里只有精品| 2022亚洲国产成人精品| 欧美3d第一页| 看非洲黑人一级黄片| 国产v大片淫在线免费观看| 精品人妻视频免费看| 亚洲成人一二三区av| 久久99蜜桃精品久久| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 少妇熟女欧美另类| 街头女战士在线观看网站| 久久人人爽人人片av| 日日啪夜夜撸| 女人被狂操c到高潮| 黄片无遮挡物在线观看| 亚洲国产成人一精品久久久| 99久久精品热视频| 老师上课跳d突然被开到最大视频| 久久久成人免费电影| 伊人久久国产一区二区| 各种免费的搞黄视频| 国产成人a区在线观看| 色吧在线观看| 天堂网av新在线| 中文精品一卡2卡3卡4更新| 国产精品麻豆人妻色哟哟久久| 国产成人免费观看mmmm| 在线观看一区二区三区激情| 国产男女内射视频| 亚洲精品一二三| 亚洲av电影在线观看一区二区三区 | 日日撸夜夜添| 在线观看一区二区三区激情| 国产精品三级大全| 另类亚洲欧美激情| 欧美日韩视频高清一区二区三区二| 特级一级黄色大片| 在线观看免费高清a一片| 一个人看的www免费观看视频| 美女内射精品一级片tv| 天堂中文最新版在线下载 | 在线a可以看的网站| 精品久久久久久久末码| 国产成人精品久久久久久| 久久久久网色| 亚洲精品日韩在线中文字幕| 成人二区视频| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲av天美| 免费av毛片视频| 国产高清三级在线| 丰满人妻一区二区三区视频av| 国产日韩欧美在线精品| 免费电影在线观看免费观看| 欧美性感艳星| 免费少妇av软件| 久久99精品国语久久久| 特大巨黑吊av在线直播| 精品人妻视频免费看| 国产精品一二三区在线看| 亚洲av日韩在线播放| 精品一区二区三区视频在线| 日本免费在线观看一区| 国产淫片久久久久久久久| 夜夜看夜夜爽夜夜摸| 精品一区二区三区视频在线| 麻豆久久精品国产亚洲av| 乱系列少妇在线播放| h日本视频在线播放| 好男人视频免费观看在线| 亚洲国产高清在线一区二区三| 亚洲高清免费不卡视频| 日本黄大片高清| 亚洲va在线va天堂va国产| 日本免费在线观看一区| 丝袜脚勾引网站| 国内精品美女久久久久久| 国产成人aa在线观看| 纵有疾风起免费观看全集完整版| 国产视频内射| 午夜日本视频在线| 如何舔出高潮| 久久久久久久久大av| 高清在线视频一区二区三区| 国产男人的电影天堂91| 成人综合一区亚洲| 18禁在线播放成人免费| 看黄色毛片网站| 偷拍熟女少妇极品色| 午夜免费观看性视频| 美女xxoo啪啪120秒动态图| 国产免费又黄又爽又色| 一边亲一边摸免费视频| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 五月开心婷婷网| 偷拍熟女少妇极品色| 精品酒店卫生间| 久久99热这里只频精品6学生| 国产黄片美女视频| av国产久精品久网站免费入址| 精品熟女少妇av免费看| 国产精品熟女久久久久浪| 国产永久视频网站| 国产精品一区www在线观看| 免费高清在线观看视频在线观看| 麻豆乱淫一区二区| 日韩av不卡免费在线播放| 水蜜桃什么品种好| 免费高清在线观看视频在线观看| 国产亚洲一区二区精品| 99久久精品热视频| 亚洲av在线观看美女高潮| 欧美丝袜亚洲另类| 国产永久视频网站| 亚洲成人久久爱视频| 深夜a级毛片| 国产精品一二三区在线看| 亚洲av国产av综合av卡| 国产爽快片一区二区三区| 少妇人妻 视频| 黄色欧美视频在线观看| 亚洲内射少妇av| 特级一级黄色大片| 女人十人毛片免费观看3o分钟| 全区人妻精品视频| 五月天丁香电影| 久久99蜜桃精品久久| 韩国高清视频一区二区三区| 少妇人妻久久综合中文| 97在线人人人人妻| 亚洲怡红院男人天堂| 男女无遮挡免费网站观看| 国产国拍精品亚洲av在线观看| 国产成人一区二区在线| 日韩成人av中文字幕在线观看| 国产老妇女一区| 丰满少妇做爰视频| 在线观看av片永久免费下载| 狂野欧美激情性bbbbbb| 免费播放大片免费观看视频在线观看| 国产在线一区二区三区精| 26uuu在线亚洲综合色| 国产色爽女视频免费观看| 丰满人妻一区二区三区视频av| 小蜜桃在线观看免费完整版高清| 我要看日韩黄色一级片| 人人妻人人澡人人爽人人夜夜| 欧美xxxx黑人xx丫x性爽| 国产永久视频网站| 韩国av在线不卡| 日本黄大片高清| 亚洲欧美一区二区三区国产| 久久久久精品久久久久真实原创| 特大巨黑吊av在线直播| 欧美亚洲 丝袜 人妻 在线| 日本三级黄在线观看| 国产精品久久久久久精品电影| 国产 一区 欧美 日韩| 哪个播放器可以免费观看大片| 极品教师在线视频| 国产精品av视频在线免费观看| 亚洲丝袜综合中文字幕| 舔av片在线| 老司机影院毛片| 18禁裸乳无遮挡免费网站照片| 国产黄色免费在线视频| 超碰97精品在线观看| 高清日韩中文字幕在线| 真实男女啪啪啪动态图| 日韩大片免费观看网站| 亚洲性久久影院| 黄色怎么调成土黄色| 人体艺术视频欧美日本| 日本一二三区视频观看| 国产真实伦视频高清在线观看| 国产美女午夜福利| 欧美老熟妇乱子伦牲交| 久久久久九九精品影院| 国产午夜精品久久久久久一区二区三区| 久久精品国产鲁丝片午夜精品| 国产精品人妻久久久影院| 中文字幕久久专区| 一区二区三区四区激情视频| 国产伦在线观看视频一区| 日本一二三区视频观看| 久久热精品热| 别揉我奶头 嗯啊视频| 色吧在线观看| 高清视频免费观看一区二区| 欧美zozozo另类| 国内少妇人妻偷人精品xxx网站| 乱系列少妇在线播放| 又大又黄又爽视频免费| 国产高清三级在线| 日本爱情动作片www.在线观看| 精品酒店卫生间| 国产成人aa在线观看| 亚洲精品,欧美精品| 国产色爽女视频免费观看| 日韩av免费高清视频| 五月开心婷婷网| 最近手机中文字幕大全| 日韩欧美精品v在线| 中文字幕免费在线视频6| 久久精品综合一区二区三区| 成年版毛片免费区| 亚洲va在线va天堂va国产| 亚洲成人精品中文字幕电影| 老师上课跳d突然被开到最大视频| 我要看日韩黄色一级片| 亚洲经典国产精华液单| 人妻系列 视频| 国产伦精品一区二区三区视频9| 丝袜喷水一区| 91在线精品国自产拍蜜月| 在线a可以看的网站| 黄色视频在线播放观看不卡| 国产精品成人在线| 成人综合一区亚洲| 日本猛色少妇xxxxx猛交久久| 五月开心婷婷网| 99热6这里只有精品| 黄片wwwwww| 国产欧美日韩精品一区二区| 青青草视频在线视频观看| 我的老师免费观看完整版| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| 日韩精品有码人妻一区| 午夜免费男女啪啪视频观看| 欧美日韩视频高清一区二区三区二| 人妻夜夜爽99麻豆av| 成年av动漫网址| 亚洲精品色激情综合| 国产精品一区二区三区四区免费观看| 97热精品久久久久久| 人妻夜夜爽99麻豆av| 国产久久久一区二区三区| 国产av不卡久久| 波野结衣二区三区在线| 青春草国产在线视频| 精华霜和精华液先用哪个| 小蜜桃在线观看免费完整版高清| 久久久久九九精品影院| 看非洲黑人一级黄片| 国产日韩欧美亚洲二区| 久久精品久久精品一区二区三区| 91午夜精品亚洲一区二区三区| 欧美成人精品欧美一级黄| av一本久久久久| 午夜福利在线观看免费完整高清在| av女优亚洲男人天堂| 亚洲综合色惰| 亚洲在线观看片| 丝袜美腿在线中文| 亚洲成人av在线免费| 色视频www国产| 大码成人一级视频| 一个人看视频在线观看www免费| 日韩 亚洲 欧美在线| 制服丝袜香蕉在线| 亚洲精品456在线播放app| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧美成人精品一区二区|