• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats

    2015-02-07 12:58:29XiaofengYinHuaminXuYunxiaJiangYunlaiZhiYuxiuLiuHengweiXiangKaiLiuXiaodongDingPengSun

    Xiao-feng Yin, Hua-min Xu, Yun-xia Jiang, Yun-lai Zhi, Yu-xiu Liu, Heng-wei Xiang, Kai Liu, Xiao-dong Ding,, Peng Sun,

    1 Department of Neurosurgery, the Second Af liated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China

    2 Department of Physiology, Qingdao University, Qingdao, Shandong Province, China

    3 Nursing College of Qingdao University, Qingdao, Shandong Province, China

    4 Department of Pediatric Surgery, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    5 Department of Nursing, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    6 Department of Neurosurgery, Af liated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China

    Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats

    Xiao-feng Yin1,#, Hua-min Xu2,#, Yun-xia Jiang3, Yun-lai Zhi4, Yu-xiu Liu5, Heng-wei Xiang6, Kai Liu6, Xiao-dong Ding6,*, Peng Sun6,*

    1 Department of Neurosurgery, the Second Af liated Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China

    2 Department of Physiology, Qingdao University, Qingdao, Shandong Province, China

    3 Nursing College of Qingdao University, Qingdao, Shandong Province, China

    4 Department of Pediatric Surgery, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    5 Department of Nursing, Af liated Hospital of Qingdao University, Qingdao, Shandong Province, China

    6 Department of Neurosurgery, Af liated Hospital of Medical College, Qingdao University, Qingdao, Shandong Province, China

    Persephin, together with glial cell line-derived neurotrophic factor and neurturin, has a neurotrophic ef ect and promotes the survival of motor neurons cultured in vitro. In this study, dopaminergic neurons in the substantia nigra of rats were transfected with the Persephin gene. One week later 6-hydroxydopamine was injected into the anterior medial bundle to establish a Parkinson’s disease model in the rats. Results found that the number of dopaminergic neurons in the substantia nigra increased, tyrosine hydroxylase expression was upregulated and concentrations of dopamine and its metabolites in corpus striatum were increased after pretreatment with Persephin gene. In addition, the rotating ef ect of the induced Parkinson’s disease rats was much less in the group pretreated with the Persephin gene. Persephin has a neuroprotective ef ect on the 6-hydroxydopamine-induced Parkinson’s disease through protecting dopaminergic neurons.

    nerve regeneration; Persephin; lentivirus; Parkinson’s disease; dopaminergic neurons; gene therapy; over-expression; transfection; striatum; neural regeneration

    Funding: This work was supported by the National Natural Science Foundation of China, No. 81171208 and the Natural Science Foundation of Shandong Province of China, No. Z2008C06.

    Yin XF, Xu HM, Jiang YX, Zhi YL, Liu YX, Xiang HW, Liu K, Ding XD, Sun P (2015) Lentivirus-mediated Persephin over-expression in Parkinson’s disease rats. Neural Regen Res 10(11):1814-1818.

    Introduction

    Parkinson’s disease (PD) is a multi-system degenerative disorder, involving not only the nigral dopaminergic cells but also other predisposed nerve cells, i.e., non-dopaminergic structures of the lower brainstem or in the olfactory bulb (Braak et al., 2002; Burn and Tr?ster, 2004; Katzenschlager, 2014). Progressive degeneration of substantia nigra dopaminergic neurons leads to a subsequent loss of dopaminergic terminals in the caudate-putamen and the clinical symptoms, such as akinesia, resting tremor, muscle rigidity, and postural imbalance (Lotharius and Brundin, 2002; de la Fuente-Fernández et al., 2004).

    Neurotrophic factors are important for the development and maintenance of the nervous system (Airaksinen and Saarma, 2002; Zihlmann et al., 2005; Wanigasekara and Keast, 2006). Neurturin supports the survival of ventral midbrain dopaminergic and motor neurons and induces neurite outgrowth in the spinal cord (Bespalov et al., 2011; Wang et al., 2014). Glial cell line-derived neurotrophic factor (GDNF) maintains the survival and function of midbrain dopaminergic neurons in vitro and attenuates neuronal damage induced by 6-hydroxydopamine (6-OHDA) (Zhao et al., 2014).

    The physiological functions of Persephin protein (PSPN) remain unclear at present. PSPN shares some neurotrophic ef ects previously described for GDNF and neurturin (Sidorova et al., 2010). It supports the survival of motor neurons cultured in vivo after sciatic nerve axotomy (Yang et al., 2007). However, because of the extremely low expression levels of PSPN, tissue distribution has been studied by reverse transcription-PCR only. Low PSPN mRNA expression level is found throughout the embryonic and adult central nervous system and in all peripheral tissues examined (including heart, kidney, liver, skin, and muscle) (Akerud et al., 2002).

    Previous studies showed that neural stem cells modif ed using GDNF could survive longer than unmodified neural stem cells after intracerebral transplantation in a rat model of middle cerebral artery occlusion (Kameda et al., 2007). In the present study, we investigated whether lentivirus (LV)-mediated PSPN over-expression could enhance the survival of dopaminergic neurons in the 6-OHDA-induced PD rat model.

    Materials and Methods

    6-OHDA injury and LV-PSPN intervention

    Forty healthy, clean, 8-month-old male Wistar rats, weighing 200–250 g, were provided by the Animal Center of Qingdao Food and Drug Administration (license No. D20131004; Qingdao, Shandong Province, China). All rats were housed in a temperature-controlled room, under a 12-hour day/night cycle, allowing free access to water and food. All experimental procedures were in accordance with the National Institute of Health Guide for Care and Use of Laboratory Animals and were approved by the Animal Ethics Committee of Qingdao University in China.

    Rats adapted to the experiment conditions for 1 week before the experiment and were randomly divided into four groups. Normal group: rats were free of any treatment; 6-OHDA group: rats were injected with 6-OHDA (Sigma, St. Louis, MO, USA; dissolved to normal saline containing 0.2% ascorbic acid, 4 mg/mL) into the anterior medial bundle of the right forebrain. The coordinates of the two injection sites were: (1) 4.4 mm posterior to the bregma, 1.2 mm lateral to the median line and 7.8 mm below the dura mater; (2) 4.0 mm posterior to the bregma, 0.8 mm lateral to the median line and 8.0 mm below the dura mater. The injection volume was 2.25 μL and 2.7 μL, respectively (He et al., 2014). 6-OHDA + LV-null group: rats were f rst injected with 1 μL of LV only (titer 1 × 108, Shanghai Genechem, Shanghai, China) on the right substantia nigra (coordinates: 5.3 mm posterior to the bregma, 1.9 mm lateral to the median line and 7.5 mm below the skull), and then injected with 6-OHDA as above 1 week later; 6-OHDA + LV-PSPN group: rats were f rst injected with LV-PSPN lentivirus (titer 1 × 108, Shanghai Genechem) on the right substantia nigra, and then injected with 6-OHDA as above 1 week later (He et al., 2014).

    Behavioral testing

    After 21 days of 6-OHDA injection, subcutaneous injections with 0.05 mg/kg apomorphine (Sigma; dissolved to normal saline containing 0.2% ascorbic acid) were applied to the napes of the rats to induce the rotating behaviors of rats. The number of rotations within 30 minutes was recorded.

    Immunof uorescence test

    At 21 days after the 6-OHDA injection, rats were anesthetized with 8% chloral hydrate via intraperitoneal injection. A needle was inserted into the aortic ventricle of rats, and 400 mL of 37°C normal saline was infused rapidly until the liver turned white, then 4% pre-cooled paraformaldehyde was infused until the whole body of the rat became stif . The brains were harvested and f xed in 4% paraformaldehyde for 4 hours and then hydrated in a 4°C 20% sucrose phosphate solution until the brains sank to the bottom of the centrifugation tube. Then the brains were hydrated in a 4°C 30% sucrose phosphate solution until the brains sank to the bottom of the centrifugation tube. Tissues were cut into coronal frozen sections at 20 μm thickness for immunof uorescence staining. The sections were placed in 24-well culture plates and incubated with 400 μL of mouse anti-rat TH monoclonal antibody (1:2,000; Sigma). The culture plates were then transferred to 4°C refrigerators overnight, and rinsed with PBS three times, for 10 minutes each. Then the sections were incubated with DyLight 488-labeled donkey anti-mouse IgG (1:500; Sigma) for 1 hour at room temperature, and rinsed with PBS three times, for 10 minutes each. Finally, the sections were mounted with 70% glycerol and observed under the microscope (ZEISS, Oberkochen, Germany).

    Western blot assay

    Figure 1 Lentivirus-mediated Persephin (LV-PSPN) over-expressed PSPN in dopaminergic neurons of rat substantia nigra.

    After the rats were anesthetized with 8% chloral hydrate via intraperitoneal injection and killed, their brains were harvested. The substantia nigra was separated and weighed in the Eppendorf tube, then the tissue was ground using 100 μL of 4 mg lysis buf er and centrifuged for 30 minutes at 14,000 × g at 4°C. The supernatant was collected and denatured with 4× loading buf er for 5 minutes at 95 °C. Forty μg totalprotein was used for protein electrophoresis and transferred onto membranes. The membranes were blocked for 2 hours and incubated with mouse anti-rat TH monoclonal antibody (1:2,000; Sigma) and mouse anti-rat PSPN monoclonal antibody (1:200; Invitrogen, Karlsruhe, Germany) at 4°C overnight. After three washes in TBST, samples were incubated with donkey anti-mouse IgG (1:2,000; Abcam, Cambridge, MA, USA) for 1 hour. Immunoreactivity was visualized using ECL western blot assay and optical density was analyzed using a UVP Image System (Upland, CA, USA).

    High-performance liquid chromatography (HPLC)

    At 8 weeks post-transplantation, striatal concentrations of DA, Dihydroxy phenyl acetic acid (DOPAC) and homovanillic acid (HVA) were measured by HPLC with an electrochemical detector (ZEISS). Rats were decapitated at 4°C under sterile conditions. The brain tissue was rinsed with icecold PBS, precisely weighed, and homogenized in an ice-cold perchloric acid and EDTA solution (0.4 M HClO4, 0.5 mM Na2-EDTA, 0.01% L-cysteine) to yield a 10% (w/v) homogenate at 0 °C. The homogenates were centrifuged at 14,000 × g at 4°C for 15 minutes. After centrifugation, the supernatants were removed, and 0.5 volume of potassium salt solution (20 mmol/L potassium citrate, 300 mmol/L KH2PO4, 2 mmol/L Na2-EDTA) was added at 0°C for 15 minutes. The precipitates were then centrifuged at 14,000 × g at 0–4°C for 15 minutes. After centrifugation, the supernatants were frozen at –80°C or immediately applied to the HPLC system (ZEISS). Dialysis samples were assayed for DA, DOPAC and HVA by HPLC with electrochemical detection. The samples were placed in the 717 Plus Autosampler (Waters, Milford, MA, USA) connected to the 2465ECD (Waters) equipped with a C18 reverse-phase column (4.6 × 75 mm, 3.5 μm; Waters). The samples were eluted by mobile phase (100 mM Na-citrate, 0.1 mM EDTA, 75 mM Na2HPO4, 2 mM NaCl, 1 mM C-7 at pH 3.9, 10% methanol) at a f ow rate of 0.6 mL/min. DA, DOPAC and HVA levels were calculated by extrapolating the peak area from a standard curve (ranging from 1 nM to 100 nM of mixed DA, DOPAC and HVA). The identification of peaks was carried out by comparison with standards. The amounts of DA in each sample were quantif ed by comparing the peak area of the samples with those of the standards.

    Statistical analysis

    Statistical analysis was conducted using GraphPad Prism 6.0 software (GraphPad Software Inc., LaJolla, CA, USA). The data are expressed as the mean ± SD and analyzed by one-way or two-way analysis of variance. Statistical signif cance was determined as P < 0.05.

    Results

    LV-PSPN over-expressed PSPN in dopaminergic neurons

    Seventy-two hours after dopaminergic neurons were transfected with LV-PSPN, 95% of green fluorescent protein (GFP)-positive dopaminergic neurons were observed. Western blot assay results showed that dopaminergic neurons expressed endogenous PSPN and that LV-null infection did not af ect the expression of PSPN, whereas LV-PSPN signif -cantly induced high expression of PSPN (Figure 1A). Immunof uorescence staining showed that dopaminergic neurons mostly expressed the TH and PSPN (Figure 1B). Therefore, LV-PSPN could ef ectively infect dopaminergic neurons and increase the protein expression of PSPN.

    Neuroprotection by PSPN on 6-OHDA-lesioned dopaminergic neurons

    Rats in the 6-OHDA group and 6-OHDA + LV-null group had about 15% residual substantia nigra TH cells, which was signif cantly lower than the normal group (P < 0.05); rats in the 6-OHDA + LV-PSPN group had approximately 50% residual substantia nigra TH cells, which was higher than the 6-OHDA group and the 6-OHDA + LV-null group (P < 0.05; Figure 2).

    Transplantation of LV-PSPN-transfected neural stem cells increased the striatal dopamine expression in 6-OHDA-induced injury rats

    Dopamine levels in the striatum were determined by HPLC. Mean dopamine level in the striatum of rats in the 6-OHDA group and 6-OHDA + LV-null group was lower than that of the normal group (P < 0.05). Dopamine level in the striatum of rats showed no signif cant dif erence between the 6-OHDA group and 6-OHDA + LV-null group (P > 0.05). After pretreatment with LV-PSPN, the dopamine level was increased by 179% compared with the two other groups (P < 0.05; Figure 3).

    Transplantation of LV-PSPN-transfected neural stem cells improved the behavior of 6-OHDA-induced injury rats

    The apomorphine-induced rotational behaviors of rats in all groups are shown in Figure 4. The average rotational rate of the normal group hardly changed from the baseline (0 rotation/30 minutes). In contrast, the rotational rates of rats in the 6-OHDA + LV-null group and the 6-OHDA group averaged more than 300 rotations per 30 minutes, signif -cantly greater than before treatment (P < 0.05). The average rotational rates of rats implanted with 6-OHDA + LV-PSPN were half those in the other two 6-OHDA groups (P < 0.05).

    Discussion

    Neurotrophic factors have been demonstrated to exert potent ef ects on neurons, such as the promotion of survival, neurite branching, synaptogenesis, modulation of electrophysiological properties and synaptic plasticity (Kuhlmann et al., 2006; Wang et al., 2013; Zhang et al., 2014). GDNF, a distantly related member of the transforming growth factor-beta superfamily and a potent neurotrophic factor, can af ect neuronal dif erentiation, development, growth and survival in the central nervous system and has neuroprotective ef ects against a variety of neuronal insults (Conover et al., 1993; Tang et al., 2014). However, the ef ects of GDNF are transient, and need repeated administration into brain parenchyma or intraventricular space (Parker et al., 2014). In addition, as a large protein, GDNF has dif culty in crossing the bloodbrain barrier (Barichello et al., 2014). This limits the clinical application of GDNF. Direct intravenous administration ofa clinical applicable gene in rats subjected to middle cerebral artery occlusion increased clinical applicability levels, reduced infarct volume at the affected hemisphere, and improved behavioral performance (Bensadoun et al., 2000). Moreover, transplantation of GDNF gene-modif ed stem cells promotes dif erentiation into neurof lament-positive cells and has better therapeutic ef ects in intracerebral hemorrhage models in rats than the transplantation of empty virus-transfected stem cells (DeWitt et al., 2014; Du et al., 2014). Therefore, GDNF may have some therapeutic potential for central nervous system diseases.

    In the past decade, gene therapy has painted the prospect of better PD treatments (Arimura et al., 2014). If the genes of neuroprotective factors are delivered to the striatum, the progressive loss of dopaminergic neurons should be interrupted. PSPN, a recently cloned member of the transforming growth factor-β superfamily and GDNF subfamily, is distributed throughout the nervous system at extremely low levels. Therefore, we used PSPN as the therapeutic gene to provide a protective ef ect against progressive degeneration of dopaminergic neurons.

    The f ndings of this study show a promising application of PSPN in gene therapy to treat PD. In this study, we observed that PSPN could prevent the severe reduction in dopaminergic cell count in substantia nigra and striatal dopamine content in the striatum caused by 6-OHDA treatment. This study also indicates that intracellular transduction of the PSPN gene can reduce the rotational behavior in a rat model of PD to some extent. This indicates that PSPN can directly protect nigra dopaminergic neurons against the toxicity of 6-OHDA by countering its ef ects.

    Author contributions: PS and XDD conceived and designed this study. XFY and YXJ performed the experiments. YXL and HWX analyzed the data. KL and YLZ provided reagents/ materials/analysis tools. HMX wrote the paper. All authors approved the f nal version of this paper.

    Conf icts of interest: None declared.

    Plagiarism check: This paper was screened twice using Cross-Check to verify originality before publication.

    Peer review: This paper was double-blinded, stringently reviewed by international expert reviewers.

    Airaksinen MS, Saarma M (2002) The GDNF family: signalling, biological functions and therapeutic value. Nat Rev Neurosci 3:383-394.

    Akerud P, Holm PC, Castelo-Branco G, Sousa K, Rodriguez FJ, Arenas E (2002) Persephin-overexpressing neural stem cells regulate the function of nigral dopaminergic neurons and prevent their degeneration in a model of Parkinson’s disease. Mol Cell Neurosci 21:205-222.

    Arimura S, Okada T, Tezuka T, Chiyo T, Kasahara Y, Yoshimura T, Motomura M, Yoshida N, Beeson D, Takeda S, Yamanashi Y (2014) Neuromuscular disease. DOK7 gene therapy benef ts mouse models of diseases characterized by defects in the neuromuscular junction. Science 345:1505-1508.

    Barichello T, N Gon?alves JC, Generoso JS, Simoes LR, Tashiro MH, Goularte JA, Vuolo F, Rodrigues DH, Vilela MC, Petronilho F, Teixeira AL, Quevedo J (2014) Protection of blood brain barrier integrity and modulation of inflammatory mediators during treatment of pneumococcal meningitis with daptomycin or ceftriaxone. Curr Neurovasc Res.

    Bensadoun JC, Deglon N, Tseng JL, Ridet JL, Zurn AD, Aebischer P (2000) Lentiviral vectors as a gene delivery system in the mouse midbrain: cellular and behavioral improvements in a 6-OHDA model of Parkinson’s disease using GDNF. Exp Neurol 164:15-24.

    Bespalov MM, Sidorova YA, Tumova S, Ahonen-Bishopp A, Magalh?es AC, Kulesskiy E, Paveliev M, Rivera C, Rauvala H, Saarma M (2011) Heparan sulfate proteoglycan syndecan-3 is a novel receptor for GDNF, neurturin, and artemin. J Cell Biol 192:153-169.

    Braak H, Del Tredici K, Bratzke H, Hamm-Clement J, Sandmann-Keil D, Rüb U (2002) Staging of the intracerebral inclusion body pathology associated with idiopathic Parkinson’s disease (preclinical and clinical stages). J Neurol 249 Suppl 3:III/1-5.

    Burn DJ, Tr?ster AI (2004) Neuropsychiatric complications of medical and surgical therapies for Parkinson’s disease. J Geriatr Psychiatry Neurol 17:172-180.

    Conover JC, Ip NY, Poueymirou WT, Bates B, Goldfarb MP, DeChiara TM, Yancopoulos GD (1993) Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells. Development 119:559-565.

    de la Fuente-Fernández R, Sossi V, Huang Z, Furtado S, Lu JQ, Calne DB, Ruth TJ, Stoessl AJ (2004) Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 127:2747-2754.

    DeWitt J, Pappas A, Nishi R (2014) Ciliary neurotrophic factor reduces the proliferation and promotes the differentiation of TH- MYCN transformed sympathoadrenal progenitors. Dev Neurosci 36:422-431.

    Du J, Gao XQ, Deng L, Chang NB, Xiong HL, Zheng Y (2014) Transfection of the glial cell line-derived neurotrophic factor gene promotes neuronal dif erentiation. Neural Regen Res 9:33-40.

    He Z, Jiang Y, Xu H, Jiang H, Jia W, Sun P, Xie J (2014) High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behav Brain Res 263:108-114.

    Kameda M, Shingo T, Takahashi K, Muraoka K, Kurozumi K, Yasuhara T, Maruo T, Tsuboi T, Uozumi T, Matsui T, Miyoshi Y, Hamada H, Date I (2007) Adult neural stem and progenitor cells modif ed to secrete GDNF can protect, migrate and integrate after intracerebral transplantation in rats with transient forebrain ischemia. Eur J Neurosci 26:1462-1478.

    Katzenschlager R (2014) Parkinson’s disease: recent advances. J Neurol 261:1031-1036.

    Kuhlmann T, Remington L, Cognet I, Bourbonniere L, Zehntner S, Guilhot F, Herman A, Guay-Giroux A, Antel JP, Owens T, Gauchat JF (2006) Continued administration of ciliary neurotrophic factor protects mice from inf ammatory pathology in experimental autoimmune encephalomyelitis. Am J Pathol 169:584-598.

    Lotharius J, Brundin P (2002) Pathogenesis of Parkinson’s disease: dopamine, vesicles and alpha-synuclein. Nat Rev Neurosci 3:932-942.

    Parker N, Falk H, Singh D, Fidaleo A, Smith B, Lopez MS, Shokat KM, Wright WW (2014) Responses to glial cell line-derived neurotrophic factor change in mice as spermatogonial stem cells form progenitor spermatogonia which replicate and give rise to more dif erentiated progeny. Biol Reprod 91:92.

    Sidorova YA, M?tlik K, Paveliev M, Lindahl M, Piranen E, Milbrandt J, Arum?e U, Saarma M, Bespalov MM (2010) Persephin signaling through GFRα1: the potential for the treatment of Parkinson’s disease. Mol Cell Neurosci 44:223-232.

    Tang S, Liao X, Shi B, Qu Y, Huang Z, Lin Q, Guo X, Pei F (2014) The ef ects of controlled release of neurotrophin-3 from PCLA scaf olds on the survival and neuronal dif erentiation of transplanted neural stem cells in a rat spinal cord injury model. PLoS One 9:e107517.

    Wang K, Demir IE, D’Haese JG, Tieftrunk E, Kujundzic K, Schorn S, Xing B, Kehl T, Friess H, Ceyhan GO (2014) The neurotrophic factor neurturin contributes toward an aggressive cancer cell phenotype, neuropathic pain and neuronal plasticity in pancreatic cancer. Carcinogenesis 35:103-113.

    Wang S, Fang J, Ma J, Wang Y, Liang S, Zhou D, Sun G (2013) Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson’s disease rats. Neural Regen Res 8:540-549.

    Wanigasekara Y, Keast JR (2006) Nerve growth factor, glial cell line-derived neurotrophic factor and neurturin prevent semaphorin 3A-mediated growth cone collapse in adult sensory neurons. Neuroscience 142:369-379.

    Figure 2 PSPN increased TH expression in dopaminergic neurons of rat substantia nigra.

    Figure 3 The levels of dopamine (DA), 3-4-dihydroxy-phenylacetic acid (DOPAC) and homovanillic acid (HVA) in Parkinson’s disease rats after transfection.

    Figure 4 The apomorphine-induced rotational behaviors of 6-OHDA-induced Parkinson’s disease rats after transplantation of LV-PSPN-transfected neural stem cells.

    Yang J, Runeberg-Roos P, Leppanen VM, Saarma M (2007) The mouse soluble GFR[alpha]4 receptor activates RET independently of its ligand persephin. Oncogene 26:3892-3898.

    Zhang HY, Song N, Jiang H, Bi MX, Xie JX (2014) Brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor inhibit ferrous iron inf ux via divalent metal transporter 1 and iron regulatory protein 1 regulation in ventral mesencephalic neurons. Biochim Biophys Acta 1843:2967-2975.

    Zhao Y, Haney MJ, Gupta R, Bohnsack JP, He Z, Kabanov AV, Batrakova EV (2014) GDNF-transfected macrophages produce potent neuroprotective ef ects in Parkinson’s disease mouse model. PLoS One 9:e106867.

    Zihlmann KB, Ducray AD, Schaller B, Huber AW, Krebs SH, Andres RH, Seiler RW, Meyer M, Widmer HR (2005) The GDNF family members neurturin, artemin and persephin promote the morphological dif erentiation of cultured ventral mesencephalic dopaminergic neurons. Brain Res Bull 68:42-53.

    Copyedited by Norman C, Dawes EA, Yang Y, Li CH, Song LP, Zhao M

    *Correspondence to: Peng Sun, M.D. or Xiao-dong Ding, M.D., sunpengqd@163.com or 15154258721@163.com.

    # These authors contributed equally to this work.

    orcid: 0000-0001-5202-3819 (Peng Sun) 0000-0002-7872-0919 (Xiao-dong Ding)

    10.4103/1673-5374.170309 http://www.nrronline.org/

    Accepted: 2015-09-14

    亚洲成人久久性| 高清黄色对白视频在线免费看| 久久国产精品影院| 免费日韩欧美在线观看| 丁香六月欧美| 午夜91福利影院| 最近最新中文字幕大全电影3 | 欧美精品啪啪一区二区三区| 日韩免费高清中文字幕av| 激情在线观看视频在线高清| 精品人妻1区二区| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 中亚洲国语对白在线视频| 性欧美人与动物交配| 国产精品野战在线观看 | 中文字幕另类日韩欧美亚洲嫩草| 在线观看日韩欧美| 成人影院久久| 欧美一级毛片孕妇| 久久人人爽av亚洲精品天堂| 亚洲欧美日韩另类电影网站| 国产成人系列免费观看| 国产成人精品久久二区二区91| 亚洲色图 男人天堂 中文字幕| 婷婷丁香在线五月| 亚洲色图av天堂| 亚洲全国av大片| 少妇被粗大的猛进出69影院| 日韩人妻精品一区2区三区| 免费在线观看亚洲国产| 国产激情久久老熟女| 老司机深夜福利视频在线观看| 无限看片的www在线观看| 纯流量卡能插随身wifi吗| 国产又色又爽无遮挡免费看| 亚洲国产欧美一区二区综合| 国产精品永久免费网站| 亚洲中文字幕日韩| 一二三四社区在线视频社区8| 一个人观看的视频www高清免费观看 | 欧美成人午夜精品| 免费在线观看完整版高清| 久久精品91无色码中文字幕| 午夜成年电影在线免费观看| 亚洲欧美精品综合一区二区三区| 日韩成人在线观看一区二区三区| 国产精品九九99| 中文欧美无线码| 久久国产精品人妻蜜桃| 欧美日韩亚洲高清精品| 嫩草影院精品99| 精品国产一区二区久久| 丰满人妻熟妇乱又伦精品不卡| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 天堂中文最新版在线下载| 日本一区二区免费在线视频| 91九色精品人成在线观看| 神马国产精品三级电影在线观看 | 夜夜躁狠狠躁天天躁| 亚洲熟女毛片儿| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 伦理电影免费视频| 亚洲欧美激情在线| 国产黄a三级三级三级人| 后天国语完整版免费观看| 搡老乐熟女国产| 又紧又爽又黄一区二区| 88av欧美| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看| 一本综合久久免费| 涩涩av久久男人的天堂| 成人亚洲精品一区在线观看| 女警被强在线播放| 999久久久精品免费观看国产| 国产三级在线视频| 99在线人妻在线中文字幕| 真人一进一出gif抽搐免费| 18禁黄网站禁片午夜丰满| 国产人伦9x9x在线观看| 男人舔女人的私密视频| 国产有黄有色有爽视频| 精品午夜福利视频在线观看一区| 女性被躁到高潮视频| 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 女人被狂操c到高潮| 老司机深夜福利视频在线观看| 中文亚洲av片在线观看爽| 黄片小视频在线播放| 成人手机av| xxx96com| 91字幕亚洲| 一个人免费在线观看的高清视频| 免费不卡黄色视频| 国产精品99久久99久久久不卡| 国产在线观看jvid| 大型av网站在线播放| 香蕉国产在线看| 国产99白浆流出| 男人舔女人的私密视频| 国产精品影院久久| 精品人妻在线不人妻| 纯流量卡能插随身wifi吗| 身体一侧抽搐| 欧美日韩av久久| 久久久久久久精品吃奶| 国产一区二区在线av高清观看| 亚洲av电影在线进入| 免费搜索国产男女视频| 欧美精品一区二区免费开放| 人人妻人人澡人人看| 久久久国产成人精品二区 | 国产精品99久久99久久久不卡| 动漫黄色视频在线观看| 午夜免费成人在线视频| 在线观看免费视频网站a站| 欧美激情极品国产一区二区三区| 亚洲色图 男人天堂 中文字幕| 免费在线观看日本一区| 村上凉子中文字幕在线| 大香蕉久久成人网| 黄色毛片三级朝国网站| 国产亚洲精品第一综合不卡| 电影成人av| 欧美大码av| 99久久久亚洲精品蜜臀av| videosex国产| 性少妇av在线| 夜夜看夜夜爽夜夜摸 | 成人亚洲精品av一区二区 | 欧美色视频一区免费| 黄色毛片三级朝国网站| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 欧美日韩国产mv在线观看视频| 亚洲成人精品中文字幕电影 | 看黄色毛片网站| 91成人精品电影| 亚洲av第一区精品v没综合| 亚洲国产中文字幕在线视频| 一进一出好大好爽视频| 91国产中文字幕| 搡老乐熟女国产| 麻豆成人av在线观看| 长腿黑丝高跟| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 久久久久久大精品| √禁漫天堂资源中文www| 97人妻天天添夜夜摸| 国产精品免费一区二区三区在线| 国产极品粉嫩免费观看在线| 香蕉久久夜色| av在线播放免费不卡| 超色免费av| 天堂影院成人在线观看| 91成人精品电影| 国产精品久久久久久人妻精品电影| 国产av一区在线观看免费| 色哟哟哟哟哟哟| 午夜福利在线免费观看网站| 丰满人妻熟妇乱又伦精品不卡| 夜夜看夜夜爽夜夜摸 | 丰满人妻熟妇乱又伦精品不卡| 欧美国产精品va在线观看不卡| 亚洲第一av免费看| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 黄网站色视频无遮挡免费观看| 亚洲av成人av| 色综合欧美亚洲国产小说| 黑人巨大精品欧美一区二区mp4| 免费在线观看完整版高清| 亚洲人成伊人成综合网2020| 水蜜桃什么品种好| 天天添夜夜摸| 日韩大尺度精品在线看网址 | 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| 97人妻天天添夜夜摸| 99在线人妻在线中文字幕| 久久久久国产一级毛片高清牌| 亚洲专区国产一区二区| 黄色视频,在线免费观看| 国内久久婷婷六月综合欲色啪| 精品国产超薄肉色丝袜足j| 一个人免费在线观看的高清视频| 久久精品国产99精品国产亚洲性色 | 99久久国产精品久久久| 国产av又大| aaaaa片日本免费| bbb黄色大片| xxx96com| 动漫黄色视频在线观看| 久久精品国产清高在天天线| 91国产中文字幕| www.熟女人妻精品国产| 亚洲中文日韩欧美视频| 夜夜看夜夜爽夜夜摸 | 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 一区在线观看完整版| 桃色一区二区三区在线观看| 在线观看免费高清a一片| 在线观看www视频免费| av中文乱码字幕在线| 国产午夜精品久久久久久| 久9热在线精品视频| 搡老乐熟女国产| 美女国产高潮福利片在线看| 91字幕亚洲| 啦啦啦 在线观看视频| 日韩高清综合在线| 老司机福利观看| 欧美日韩精品网址| 少妇裸体淫交视频免费看高清 | av网站免费在线观看视频| 色精品久久人妻99蜜桃| 国产片内射在线| 免费观看精品视频网站| 国产亚洲av高清不卡| 欧美亚洲日本最大视频资源| 亚洲 欧美 日韩 在线 免费| 手机成人av网站| 亚洲成国产人片在线观看| 久久久久久久久免费视频了| 三级毛片av免费| 午夜精品久久久久久毛片777| 午夜免费激情av| 免费av中文字幕在线| 人人澡人人妻人| 岛国在线观看网站| avwww免费| 久久久久久久精品吃奶| 久久久国产成人精品二区 | 精品卡一卡二卡四卡免费| 久热爱精品视频在线9| 国产91精品成人一区二区三区| 国产成人精品久久二区二区91| 久久精品国产99精品国产亚洲性色 | 国产1区2区3区精品| 一a级毛片在线观看| 欧美日韩一级在线毛片| 精品一区二区三区视频在线观看免费 | 国产精品秋霞免费鲁丝片| 老熟妇乱子伦视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产1区2区3区精品| 一进一出好大好爽视频| 国产亚洲欧美精品永久| 大型黄色视频在线免费观看| 夜夜爽天天搞| 在线十欧美十亚洲十日本专区| 国产精品一区二区三区四区久久 | 精品免费久久久久久久清纯| 久久精品国产综合久久久| 亚洲久久久国产精品| 狂野欧美激情性xxxx| 麻豆久久精品国产亚洲av | 麻豆成人av在线观看| 午夜亚洲福利在线播放| 日本wwww免费看| 亚洲va日本ⅴa欧美va伊人久久| 一二三四社区在线视频社区8| 精品久久蜜臀av无| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 超碰97精品在线观看| 母亲3免费完整高清在线观看| 日日爽夜夜爽网站| 午夜福利欧美成人| 欧美中文日本在线观看视频| av天堂在线播放| 亚洲色图 男人天堂 中文字幕| 精品久久久精品久久久| 一个人免费在线观看的高清视频| xxxhd国产人妻xxx| 亚洲精品一二三| 久久草成人影院| 18禁观看日本| 一级,二级,三级黄色视频| 丝袜美足系列| 亚洲成人国产一区在线观看| 国产高清videossex| av中文乱码字幕在线| 99精品久久久久人妻精品| 国产亚洲精品久久久久久毛片| 99精品欧美一区二区三区四区| 香蕉国产在线看| 欧美成人性av电影在线观看| 久久久久久久午夜电影 | 国产日韩一区二区三区精品不卡| 国产亚洲av高清不卡| 19禁男女啪啪无遮挡网站| www国产在线视频色| 色播在线永久视频| 欧美成人午夜精品| 国产不卡一卡二| 精品久久久久久久毛片微露脸| a级毛片在线看网站| 亚洲人成伊人成综合网2020| 天堂影院成人在线观看| 久久久久国产精品人妻aⅴ院| 久久婷婷成人综合色麻豆| 久热这里只有精品99| 亚洲av电影在线进入| 国产熟女午夜一区二区三区| 法律面前人人平等表现在哪些方面| 亚洲中文日韩欧美视频| 国产一区二区三区视频了| 日韩欧美一区二区三区在线观看| 亚洲中文av在线| 日韩高清综合在线| 亚洲精品国产一区二区精华液| 国产1区2区3区精品| 不卡一级毛片| 在线永久观看黄色视频| 国产成人精品久久二区二区91| 国产国语露脸激情在线看| 国内久久婷婷六月综合欲色啪| 女人爽到高潮嗷嗷叫在线视频| 精品国产亚洲在线| 一进一出好大好爽视频| 亚洲黑人精品在线| 可以免费在线观看a视频的电影网站| 夜夜躁狠狠躁天天躁| 午夜两性在线视频| avwww免费| 欧美成人性av电影在线观看| 成人国语在线视频| 黄色毛片三级朝国网站| 国产亚洲精品久久久久久毛片| 亚洲国产精品999在线| 亚洲av电影在线进入| 99香蕉大伊视频| 久久久久久久久免费视频了| 久久香蕉精品热| 免费av毛片视频| 久久性视频一级片| 久久精品亚洲精品国产色婷小说| 欧美一区二区精品小视频在线| 国产精品久久久人人做人人爽| 亚洲熟妇中文字幕五十中出 | 亚洲avbb在线观看| 搡老熟女国产l中国老女人| 国产精品一区二区精品视频观看| 侵犯人妻中文字幕一二三四区| 亚洲熟女毛片儿| 午夜福利一区二区在线看| 51午夜福利影视在线观看| 亚洲人成电影免费在线| 欧美最黄视频在线播放免费 | 久久天堂一区二区三区四区| 免费在线观看黄色视频的| 国产伦一二天堂av在线观看| 黄网站色视频无遮挡免费观看| 欧美日本中文国产一区发布| 首页视频小说图片口味搜索| 国产一区二区三区视频了| 狠狠狠狠99中文字幕| 精品国产乱子伦一区二区三区| 韩国精品一区二区三区| 久久久久九九精品影院| 一本大道久久a久久精品| 一区二区日韩欧美中文字幕| 18禁黄网站禁片午夜丰满| 中文亚洲av片在线观看爽| 性色av乱码一区二区三区2| 免费观看精品视频网站| 日韩欧美一区视频在线观看| 亚洲人成电影免费在线| 久热爱精品视频在线9| 在线天堂中文资源库| 亚洲男人的天堂狠狠| 91字幕亚洲| 黄片大片在线免费观看| 又黄又粗又硬又大视频| 一二三四社区在线视频社区8| 国产成人欧美在线观看| 国产精品综合久久久久久久免费 | 国产亚洲欧美在线一区二区| 日本三级黄在线观看| 91成人精品电影| 69av精品久久久久久| 淫妇啪啪啪对白视频| 日本欧美视频一区| 久久亚洲真实| 亚洲午夜理论影院| 亚洲第一青青草原| 狂野欧美激情性xxxx| 久久久久久人人人人人| 十八禁人妻一区二区| 美女国产高潮福利片在线看| 免费在线观看完整版高清| 精品久久久久久成人av| 国产野战对白在线观看| 日韩有码中文字幕| 在线观看免费视频日本深夜| 午夜两性在线视频| 成人免费观看视频高清| 大码成人一级视频| 12—13女人毛片做爰片一| 在线观看午夜福利视频| www日本在线高清视频| 黑丝袜美女国产一区| 久久热在线av| 日本 av在线| 夜夜夜夜夜久久久久| 欧美日韩黄片免| 啪啪无遮挡十八禁网站| 日韩免费高清中文字幕av| 中文字幕人妻丝袜一区二区| av天堂久久9| 精品一区二区三卡| 在线av久久热| 自线自在国产av| 夜夜爽天天搞| 国产成+人综合+亚洲专区| 一二三四社区在线视频社区8| 亚洲第一欧美日韩一区二区三区| 久久精品91蜜桃| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看 | 免费观看人在逋| 9191精品国产免费久久| 久久久久久久午夜电影 | 久久国产精品男人的天堂亚洲| 国产成人一区二区三区免费视频网站| 久久精品91蜜桃| 成人手机av| 国产视频一区二区在线看| 亚洲一区二区三区欧美精品| 757午夜福利合集在线观看| 日日干狠狠操夜夜爽| 中文字幕精品免费在线观看视频| av中文乱码字幕在线| 在线看a的网站| 久久久久久久久免费视频了| 亚洲国产精品999在线| 波多野结衣一区麻豆| 亚洲精品一卡2卡三卡4卡5卡| 久久精品人人爽人人爽视色| 亚洲精品国产一区二区精华液| 亚洲精品在线观看二区| www国产在线视频色| 男女做爰动态图高潮gif福利片 | 精品卡一卡二卡四卡免费| videosex国产| 成人永久免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| av国产精品久久久久影院| 搡老岳熟女国产| 别揉我奶头~嗯~啊~动态视频| 国产成人av激情在线播放| 国产xxxxx性猛交| 久久久国产成人免费| 国产亚洲精品一区二区www| 久热这里只有精品99| 亚洲国产欧美一区二区综合| www国产在线视频色| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 久久午夜综合久久蜜桃| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 淫妇啪啪啪对白视频| 一级a爱片免费观看的视频| 国产精品成人在线| 色播在线永久视频| 1024香蕉在线观看| 女人精品久久久久毛片| 亚洲午夜精品一区,二区,三区| 在线免费观看的www视频| 桃色一区二区三区在线观看| 一区二区三区激情视频| 黄频高清免费视频| 久久青草综合色| 日韩免费av在线播放| 亚洲五月天丁香| 在线国产一区二区在线| 亚洲激情在线av| 国产97色在线日韩免费| 亚洲精品国产区一区二| 高清黄色对白视频在线免费看| 中文字幕最新亚洲高清| 亚洲av成人不卡在线观看播放网| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 超碰97精品在线观看| 国产成人精品无人区| 一级毛片女人18水好多| 国产又爽黄色视频| 一区在线观看完整版| 中文字幕av电影在线播放| 妹子高潮喷水视频| 国产精品爽爽va在线观看网站 | 国产精品野战在线观看 | 日本wwww免费看| 日本黄色视频三级网站网址| 久久99一区二区三区| 最新美女视频免费是黄的| 美女大奶头视频| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| 在线天堂中文资源库| 黄色丝袜av网址大全| 国产在线观看jvid| bbb黄色大片| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 久久国产精品人妻蜜桃| 久久国产精品男人的天堂亚洲| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| 国产亚洲欧美在线一区二区| 久久热在线av| 精品人妻在线不人妻| 亚洲人成伊人成综合网2020| 国产一区二区三区视频了| 国产精品久久视频播放| 热99国产精品久久久久久7| 国产欧美日韩精品亚洲av| svipshipincom国产片| 亚洲精品一二三| 国产aⅴ精品一区二区三区波| 国产不卡一卡二| √禁漫天堂资源中文www| av中文乱码字幕在线| 这个男人来自地球电影免费观看| 亚洲专区国产一区二区| 免费女性裸体啪啪无遮挡网站| 欧美最黄视频在线播放免费 | 免费在线观看黄色视频的| 国产男靠女视频免费网站| 中出人妻视频一区二区| 一区福利在线观看| 国产aⅴ精品一区二区三区波| 宅男免费午夜| 亚洲色图综合在线观看| 国产黄a三级三级三级人| 在线国产一区二区在线| 中文字幕另类日韩欧美亚洲嫩草| 精品久久久精品久久久| 日本五十路高清| 国产国语露脸激情在线看| 一进一出抽搐gif免费好疼 | 亚洲av成人不卡在线观看播放网| 国产成人一区二区三区免费视频网站| 三上悠亚av全集在线观看| 一进一出抽搐动态| 色在线成人网| 国产精品 欧美亚洲| 男女床上黄色一级片免费看| 国产aⅴ精品一区二区三区波| 免费av毛片视频| 午夜免费鲁丝| 国产91精品成人一区二区三区| 多毛熟女@视频| 在线观看一区二区三区激情| 很黄的视频免费| 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 亚洲国产看品久久| √禁漫天堂资源中文www| 久久精品aⅴ一区二区三区四区| 国产成人啪精品午夜网站| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| 丰满的人妻完整版| 午夜免费鲁丝| 欧美激情极品国产一区二区三区| 黄色毛片三级朝国网站| 久久久久久大精品| 欧美 亚洲 国产 日韩一| 亚洲精品中文字幕一二三四区| 女性被躁到高潮视频| 久久久久久久久久久久大奶| 久热爱精品视频在线9| 国产av又大| 99国产极品粉嫩在线观看| 精品久久蜜臀av无| 日韩欧美一区二区三区在线观看| 国产精品野战在线观看 | 亚洲人成网站在线播放欧美日韩| 久久久精品国产亚洲av高清涩受| av视频免费观看在线观看| 亚洲国产欧美网| 两性夫妻黄色片| 在线观看一区二区三区| 一级毛片高清免费大全| 嫁个100分男人电影在线观看| 久久久国产欧美日韩av| 精品一区二区三区av网在线观看| 亚洲精品中文字幕一二三四区| 每晚都被弄得嗷嗷叫到高潮| 丰满人妻熟妇乱又伦精品不卡| 免费高清在线观看日韩| 午夜两性在线视频| 成人三级做爰电影| 国产成人精品在线电影| 在线观看免费视频日本深夜| 大码成人一级视频| 久久香蕉国产精品| 日韩中文字幕欧美一区二区| 一级片'在线观看视频| 国产一区二区三区在线臀色熟女 | 久久这里只有精品19| 免费在线观看完整版高清| 手机成人av网站| 最新在线观看一区二区三区| 国产一区二区在线av高清观看|