• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Sensory regeneration in dorsal root avulsion

    2015-02-07 12:58:23JanHoeber

    Sensory regeneration in dorsal root avulsion

    Brachial as well as lumbosacral plexus avulsion injuries are usually caused by high kinetic traumas, such as car-pedestrian, car and motorcycle accidents or falls from great heights. Traction forces affecting the head and shoulders or extremities pull the spinal nerve sleeves away from the spinal cord and rupture the postganglionic spinal root from the cord. In so called central avulsion injuries, the spinal root is avulsed at the interface between the central and peripheral nervous system (CNS and PNS). This results not only in the disconnection of the root from the cord but also in a longitudinal spinal cord injury. The complexity of the injury leads to degeneration of the spinal root and a marked infl ammatory response of the spinal cord followed by the formation of a glial scar (Kachramanoglou et al., 2011).

    Over the years, a multitude of studies used disruptions of the dorsal root to study regeneration of sensory axons across the CNS-PNS interface. Typically, sensory axons regenerate readily through the dorsal root and dorsal rootlets but are arrested at the zone of transition between PNS and CNS. This area is usually referred to as the dorsal root transitional zone (DRTZ) or dorsal root entry zone (DREZ). The DRTZ is characterized by CNS astrocytic tissue extending into the central part of the rootlet while its periphery is formed by Schwann cell sheets of the PNS. After injury to the dorsal root, the DRTZ undergoes gliosis resulting in the extension of astrocytic tissue further into the rootlet and the formation of a glial scar (Carlstedt, 2008).

    The two commonly used models to analyze sensory axon regeneration across the DRTZ are the dorsal root crush and dorsal root rhizotomy (DRR) model. In dorsal root crush, the root is forcefully squeezed causing the disruption of nerve fi bers without interrupting the endoneurial tube. In DRR, the root is completely transected using micro-scissors. In both models, the CNS-PNS interface is left untouched during the procedure. Using the dorsal root crush model, several attempts to overcome the axonal growth inhibiting environment present at the DRTZ succeed to regenerate sensory fi bers. Enzymatic digestion of growth inhibiting chrondroitin sulfate proteoglycans (CSPGs) using bacterial chondroitinase ABC supports sensory axon ingrowth, but only when it is combined with growth promoting treatments (Steinmetz et al., 2005). Also infusion with blocking agents aiming at the downstream targets of myelin associated inhibitory protein Nogo, myelin-associated glycoprotein (MAG) and oligodendrocyte myelin glycoprotein (OMgp) lead to the regeneration of myelinated axons (Harvey et al., 2009). Other even more successful approaches use neurotrophic factors to stimulate axonal outgrowth pathways. Intrathecal delivery of nerve growth factor (NGF), neurotrophin-3 or glial derived neurotrophic factor (GDNF), systemic administration of the GDNF family member artemin or viral expression of NGF or fi broblast growth factor-2 induce extension of peptidergic and/or non-peptidergic sensory axons across the site of injury and allow regrowth of sensory axons into the dorsal horn. So far, only systemic delivery of artemin achieves topographically correct projections of both peptidergic and non-peptidergic sensory fi bers into the dorsal horn (Smith et al., 2012). Taken together, the dorsal root crush model provides an excellent platform to identify molecules that promote or inhibit sensory regeneration through the reactive DRTZ.

    DRR provides an even greater challenge for sensory regeneration due to the complete transection of the root, leaving not even the nerve sheets intact. Using the DRR model, ingrowth of sensory axons into the dorsal horn was fi rst achieved after injection of olfactory ensheathing glia into the DRTZ and dorsal horn and successive micro-suturing of the dorsal root to the cord (Ramón-Cueto and Nieto-Sampedro, 1994). Further developing this approach, olfactory ensheathing cells (OEC) applied to the cut surfaces of dorsal root and spinal cord followed by the application of the tissue adhesive fi brin glue result in the entry of sensory axons into the spinal cord. Interestingly, OECs interact with both CNS astrocytes and Schwann cells to form a growth permissive tissue bridge at the PNS-CNS interface (Li et al., 2004). Partial recovery of sensory and motor functions after DRR was shown after the application of a fi brin sealant alone and was further improved when sealant was applied together with mononuclear cells (Benitez et al., 2014). In conclusion, sensory regeneration after DRR was most successful when cell transplantation was combined with reattachment of the root.

    Recently, a new model to study dorsal root injury was introduced. The dorsal root avulsion (DRA) model is characterized by the surgical pulling of individual dorsal roots away from the spinal cord until the complete rupture of the root from the cord. This procedure causes the disruption of the dorsal root and contributing rootlets, the complete disruption of the DRTZ and injury to the dorsal column and horn along the spinal cord segment connected to the avulsed root (Figure 1A). DRA results in a rapid invasion of neutrophils into the dorsal horn followed by a macrophage and microglial response and extensive astrogliosis. All of these events are markedly elevated and prolonged compared to DRR and are not confi ned to the ipsilateral side. Recovery of vascularization occurs over the fi rst month following DRR but is absent after DRA. Both DRR and DRA result in a loss of spinal cord neurons, but only in DRA a second wave of neurodegeneration occurs two weeks after the injury. Taken together, DRA leads to extensive spinal cord trauma and follows a chronic progression over the fi rst month (Chew et al., 2011). Its close resemblance to the events occurring after central avulsion injuries in patients renders it the ideal model to study sensory regeneration in a clinically relevant perspective.

    We adapted the DRA model to study sensory regeneration in this unique setting. These attempts proved to be especially challenging due to the varying degree of damage to the traumatized dorsal horn, rendering it of great importance to develop ways to create root avulsions in a reproducible manner. In all cases, DRA led to a complete disruption of the DRTZ and extensive glial scarring at the site of injury. DRA was performed along the L3–5segment of the lumbar spinal cord disrupting the dorsal roots that contain the main contribution to the sciatic nerve in mice.

    Figure 1 Transplantation of human spinal cord progenitors after dorsal root avulsion injury.

    This resulted in a severe reduction of mechanical nociceptive and sensorimotor abilities of the ipsilateral hind paw without aff ecting the gait of locomotion (Hoeber et al., 2015). In contrast to previous studies that report allodynia after spinal root avulsion of the L5dorsal and ventral root and after T13+ L1dorsal root avulsion (Wieseler et al., 2010; Chew et al., 2013), avulsion of the L3–5dorsal roots did not result in mechanical hypersensitivity (Hoeber et al., 2015).

    Our next step was to identify stem cell candidates for transplantation experiments. Suitable candidates should have the potential to act on multiple aspects of the DRA injury while showing a low risk of generating tumorigenic cell types often found in stem cell transplants. In order to achieve this, human embryonic stem cells were restricted to the fate of the target tissue’s developmental lineage (Li et al., 2008). The resulting human spinal cord progenitors were grown in suspension as human neural progenitor (hNP) spheres, dense ball-shaped cell conglomerates, and directly placed at the site of injury. In previous dorsal root injury studies, therapeutic cells were usually transplanted as single cell suspension or in combination with cell-carrying matrices or membranes (Kliot et al., 1990; Li et al., 2004; Benitez et al., 2014). Surprisingly, hNP spheres placed between the site of injury and the root stump also provided a substrate to stabilize the root’s position without the need of micro-suture or tissue adhesives.

    Having found a suitable candidate that can be placed at the site of injury in a controlled manner and that facilitated the reattachment of the root stump, we set out to test the three possible outcomes of this treatment: hNP spheres could provide a substrate for sensory fi bers to cross the CNS-PNS interface similar to what has been found after OEC transplantation in rhizotomized dorsal roots (Li et al., 2004); they could form a “synaptic relay” by extending axons into the spinal cord and provide innervation targets for outgrowing sensory axons; or migrate into the dorsal horn and replace lost spinal cord neurons.

    Our fi rst observation was that animals receiving hNP spheres performed better in behavioral tests in which they showed sensorimotor defi cits before (Hoeber et al., 2015). Mechanical nociceptive sensitivity was consistently improved and after fi ve months animals regained the majority of their ability to hold on to a metal bar using their hind paw. Transganglionic tracing and immunohistochemistry revealed the ingrowth of myelinated sensory axons from the dorsal root stump, through the engrafted hNP transplant and into the dorsal horn gray matter (Figure 1B). In order to confi rm that the sensorimotor improvement was in fact caused by ingrowing sensory fi bers originating from previously avulsed roots, we performed a second surgery to transect the L3–5dorsal roots close to the dorsal root ganglion. This surgery caused the complete loss of observed improvements and led us to the conclusion that engrafted hNP spheres act as bridges between the CNS and PNS environment by providing a growth substrate for regenerating sensory fi bers.

    Engrafted hNP spheres were localized outside of the spinal cord and diff erentiated primarily into inhibitory neurons and glial cells. They did neither migrate into the dorsal horn gray matter nor extended axons from the site of engraftment into the cord, what renders it unlikely that hNP spheres could act as sensory relays or replace dorsal horn neurons lost to the avulsion injury. Instead, they intermingled with the dorsal root stump and interfered with the astrocytic scar and basal lamina at the DRA injury site. Here, they formed an open “gate” in the glial scar facing the transplant area. Regenerating sensory fibers were found to pass from the transplant area into the dorsal horn through these gates (Hoeber et al., 2015). Future experiments will have to elucidate in greater detail how hNP spheres are able to modify the spinal cord interface to become growth permissive and in this context whether also inhibitory myelin associated proteins and proteoglycans present at the site of dorsal root injury are aff ected by hNP transplantation. Alternatively, hNP spheres could secret neurotrophic factors that are able to induce growth promoting pathways in sensory neurons or provide an embryonal milieu that might be able to stabilize and protect regenerating axons from an inhibitory environment. Additional transplantation studies with human spinal cord progenitors from fetal sources or induced pluripotent stem cells (iPSC) could help to elucidate whether the regenerative eff ect observed here is confi ned to human embryonic stem cell derived neural progenitors. Sensory regeneration after hNP sphere transplantation was limited to myelinated axons. The use of hNP spheres together with already well-established guidance and growth promoting molecules identifi ed in the dorsal root crush model could achieve ingrowth of myelinated as well as unmyelinated axons. A combined approach might also help to direct regenerating sensory axons to specifi c neuronal populations in the spinal cord and would allow analyzing synergistic eff ects of multiple treatment regimens (Smith et al., 2012).

    Taken together, our study provides the fi rst evidence that sensory regeneration across the CNS-PNS interface can be achieved also in dorsal root avulsion. The mechanism behind the formation of growth permissive gates formed by hNP spheres remains elusive and topographically specifi c regeneration will most likely require combinatorial approaches that are able to guide sensory axons after entering the spinal cord.

    Our research was supported by the Swedish Research Council (Project Nos. 5420 and 20716), Stiftelsen Olle Engkvist Byggmastare and Signhild Engkvist’s Stiftelse. I also thank all co-authors that were involved in this project, namely Carl Trolle, Niclas Konig, Zhongwei Du, Alessandro Gallo, Emmanuel Hermans, H?kan Aldskogius, Peter Shortland, Su-Chun Zhang, Ronald Deumens & Elena N. Kozlova. Special thanks to Carl Trolle, Niclas Konig, H?kan Aldskogius and Elena Kozlova for valuable comments on the paper.

    Jan Hoeber*

    Uppsala University, Department of Neuroscience, Uppsala, Sweden

    *Correspondence to: Jan Hoeber, jan.hoeber@neuro.uu.se.

    Accepted: 2015-10-15

    orcid: 0000-0001-5602-0850 (Jan Hoeber)

    Benitez SU, Barbizan R, Spejo AB, Ferreira RS, Barraviera B, Góes AM, de Oliveira AL (2014) Synaptic plasticity and sensory-motor improvement following fi brin sealant dorsal root reimplantation and mononuclear cell therapy. Front Neuroanat 8:96.

    Carlstedt T (2008) Root repair review: basic science background and clinical outcome. Restor Neurol Neurosci 26:225-241.

    Chew DJ, Carlstedt T, Shortland PJ (2011) A comparative histological analysis of two models of nerve root avulsion injury in the adult rat. Neuropathol Appl Neurobiol 37:613-632.

    Chew DJ, Murrell K, Carlstedt T, Shortland PJ (2013) Segmental spinal root avulsion in the adult rat: a model to study avulsion injury induced pain. J Neurotrauma 172:120831034644001.

    Harvey PA, Lee DHS, Qian F, Weinreb PH, Frank E (2009) Blockade of Nogo receptor ligands promotes functional regeneration of sensory axons after dorsal root crush. J Neurosci 29:6285-6295.

    Hoeber J, Trolle C, Konig N, Du Z, Gallo A, Hermans E, Aldskogius H, Shortland P, Zhang SC, Deumens R, Kozlova EN (2015) Human embryonic stem cell-derived progenitors assist functional sensory axon regeneration after dorsal root avulsion injury. Sci Rep 5:10666.

    Kachramanoglou C, Li D, Andrews P, East C, Carlstedt T, Raisman G, Choi D (2011) Novel strategies in brachial plexus repair after traumatic avulsion. Br J Neurosurg 25:16-27.

    Kliot M, Smith GM, Siegal JD, Silver J (1990) Astrocyte-polymer implants promote regeneration of dorsal root fi bers into the adult mammalian spinal cord. Exp Neurol 109:57-69.

    Li XJ, Hu BY, Jones SA, Zhang Y-S, Lavaute T, Du ZW, Zhang SC (2008) Directed diff erentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells 26:886-893.

    Li Y, Carlstedt T, Berthold CH, Raisman G (2004) Interaction of transplanted olfactory-ensheathing cells and host astrocytic processes provides a bridge for axons to regenerate across the dorsal root entry zone. Exp Neurol 188:300-308.

    Ramón-Cueto a, Nieto-Sampedro M (1994) Regeneration into the spinal cord of transected dorsal root axons is promoted by ensheathing glia transplants. Exp Neurol 127:232-244.

    Smith GM, Falone AE, Frank E (2012) Sensory axon regeneration: Rebuilding functional connections in the spinal cord. Trends Neurosci 35:156-163.

    Steinmetz MP, Horn KP, Tom VJ, Miller JH, Busch SA, Nair D, Silver DJ, Silver J (2005) Chronic enhancement of the intrinsic growth capacity of sensory neurons combined with the degradation of inhibitory proteoglycans allows functional regeneration of sensory axons through the dorsal root entry zone in the mammalian spinal cord. J Neurosci 25:8066-8076.

    Wieseler J, Ellis AL, McFadden A, Brown K, Starnes C, Maier SF, Watkins LR, Falci S (2010) Below level central pain induced by discrete dorsal spinal cord injury. J Neurotrauma 27:1697-1707.

    10.4103/1673-5374.170296 http://www.nrronline.org/

    Hoeber J (2015) Sensory regeneration in dorsal root avulsion. Neural Regen Res 10(11):1739-1740.

    人人妻,人人澡人人爽秒播| 少妇的逼水好多| 他把我摸到了高潮在线观看| 亚洲成人久久性| 不卡av一区二区三区| 国产精品永久免费网站| 99久国产av精品| 中文字幕精品亚洲无线码一区| 国产成人精品久久二区二区91| 老汉色av国产亚洲站长工具| 亚洲精品美女久久av网站| 少妇人妻一区二区三区视频| 九九在线视频观看精品| 精品国产乱子伦一区二区三区| 99riav亚洲国产免费| 麻豆国产97在线/欧美| 欧美又色又爽又黄视频| 亚洲第一电影网av| 又粗又爽又猛毛片免费看| 国产麻豆成人av免费视频| 国产欧美日韩一区二区三| 午夜福利高清视频| 成人高潮视频无遮挡免费网站| 嫁个100分男人电影在线观看| 变态另类丝袜制服| 国产三级中文精品| 一区二区三区激情视频| 欧美国产日韩亚洲一区| 国模一区二区三区四区视频 | 日本精品一区二区三区蜜桃| 大型黄色视频在线免费观看| 国产精品国产高清国产av| 欧美一级a爱片免费观看看| 精品一区二区三区四区五区乱码| 俺也久久电影网| 国产精品日韩av在线免费观看| 男人舔奶头视频| 亚洲午夜理论影院| 男插女下体视频免费在线播放| 国产高清视频在线播放一区| 亚洲成av人片在线播放无| 国产精品久久电影中文字幕| 在线观看日韩欧美| 欧美日韩乱码在线| 18禁国产床啪视频网站| 黄色 视频免费看| 成人欧美大片| 在线免费观看不下载黄p国产 | 国产精品免费一区二区三区在线| 国产男靠女视频免费网站| 亚洲自拍偷在线| 色在线成人网| 一个人看视频在线观看www免费 | 天天躁日日操中文字幕| 麻豆国产97在线/欧美| 男女下面进入的视频免费午夜| 国产伦精品一区二区三区四那| 国产视频内射| 中国美女看黄片| 我要搜黄色片| 国产av不卡久久| 男人舔女人下体高潮全视频| 悠悠久久av| 国产视频一区二区在线看| 熟妇人妻久久中文字幕3abv| 亚洲人成网站高清观看| bbb黄色大片| 亚洲精品中文字幕一二三四区| 丰满人妻一区二区三区视频av | 伦理电影免费视频| 欧美色欧美亚洲另类二区| 男人的好看免费观看在线视频| 在线观看美女被高潮喷水网站 | 91久久精品国产一区二区成人 | 999久久久精品免费观看国产| 18禁观看日本| 黄色成人免费大全| 久久精品国产综合久久久| 小蜜桃在线观看免费完整版高清| 中文字幕最新亚洲高清| www.熟女人妻精品国产| 两个人看的免费小视频| 国产久久久一区二区三区| 国产欧美日韩一区二区精品| 久久久久久久精品吃奶| 嫩草影院精品99| 久久久水蜜桃国产精品网| 亚洲中文av在线| 久久久成人免费电影| 国产又色又爽无遮挡免费看| 91字幕亚洲| 黄色 视频免费看| 亚洲熟女毛片儿| 欧美精品啪啪一区二区三区| 老司机深夜福利视频在线观看| 中文字幕最新亚洲高清| 日日摸夜夜添夜夜添小说| 亚洲国产欧美网| 女同久久另类99精品国产91| 精品人妻1区二区| 色综合站精品国产| 丝袜人妻中文字幕| 首页视频小说图片口味搜索| 亚洲av第一区精品v没综合| 欧美在线一区亚洲| 亚洲av日韩精品久久久久久密| 国产黄色小视频在线观看| 色在线成人网| 香蕉av资源在线| 日韩 欧美 亚洲 中文字幕| 美女免费视频网站| 欧美一区二区精品小视频在线| 国产99白浆流出| 亚洲精品在线美女| 国产精品一区二区精品视频观看| 亚洲中文日韩欧美视频| 国产1区2区3区精品| 午夜精品一区二区三区免费看| 无人区码免费观看不卡| 亚洲成av人片免费观看| 啪啪无遮挡十八禁网站| 国产精品一区二区三区四区久久| 97人妻精品一区二区三区麻豆| 男女午夜视频在线观看| 久久久国产欧美日韩av| 国产精品1区2区在线观看.| 黑人操中国人逼视频| 好看av亚洲va欧美ⅴa在| 无限看片的www在线观看| 欧美一级a爱片免费观看看| 久久午夜综合久久蜜桃| 精品久久久久久久久久免费视频| 夜夜躁狠狠躁天天躁| 女警被强在线播放| 男人和女人高潮做爰伦理| 日韩av在线大香蕉| 免费看美女性在线毛片视频| 一边摸一边抽搐一进一小说| 熟女人妻精品中文字幕| 亚洲五月婷婷丁香| 午夜精品在线福利| 在线看三级毛片| 18禁黄网站禁片午夜丰满| 成年免费大片在线观看| 精品久久蜜臀av无| 日本三级黄在线观看| 最近最新中文字幕大全电影3| 久久久国产成人精品二区| 在线观看日韩欧美| 一个人免费在线观看的高清视频| 亚洲狠狠婷婷综合久久图片| 久久久久久大精品| 久久久久九九精品影院| 久久久久性生活片| 老司机福利观看| 操出白浆在线播放| 99精品久久久久人妻精品| 又爽又黄无遮挡网站| 久久中文看片网| 99热只有精品国产| 精品乱码久久久久久99久播| 99久久精品热视频| 99久久精品热视频| 国产精品久久久久久精品电影| 精华霜和精华液先用哪个| 99精品欧美一区二区三区四区| 精品久久久久久,| av中文乱码字幕在线| 一区二区三区激情视频| 免费在线观看影片大全网站| 国产爱豆传媒在线观看| 最好的美女福利视频网| 亚洲国产精品999在线| 亚洲国产精品sss在线观看| 亚洲精品在线观看二区| 人人妻,人人澡人人爽秒播| 搡老岳熟女国产| 在线永久观看黄色视频| 久久久久久久久久黄片| av国产免费在线观看| 国产又色又爽无遮挡免费看| 国产精品久久久人人做人人爽| 国产精品久久久人人做人人爽| 午夜免费观看网址| 99精品欧美一区二区三区四区| 亚洲精品美女久久av网站| 女生性感内裤真人,穿戴方法视频| 久久精品综合一区二区三区| 亚洲精品粉嫩美女一区| 岛国视频午夜一区免费看| 成年女人永久免费观看视频| av视频在线观看入口| 在线观看日韩欧美| 两个人看的免费小视频| www.熟女人妻精品国产| 亚洲人成网站高清观看| 夜夜躁狠狠躁天天躁| 一区二区三区国产精品乱码| 欧美日韩国产亚洲二区| 搡老熟女国产l中国老女人| 岛国在线观看网站| 九九在线视频观看精品| 一区二区三区高清视频在线| 嫩草影视91久久| 99精品欧美一区二区三区四区| 午夜福利免费观看在线| 一边摸一边抽搐一进一小说| 久久久久国产一级毛片高清牌| 99热精品在线国产| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品综合一区在线观看| 高清在线国产一区| 人妻丰满熟妇av一区二区三区| 色综合婷婷激情| 国产亚洲精品综合一区在线观看| 日韩欧美在线乱码| 国产又黄又爽又无遮挡在线| 国产v大片淫在线免费观看| 精品日产1卡2卡| 三级毛片av免费| 欧洲精品卡2卡3卡4卡5卡区| 看黄色毛片网站| 亚洲国产精品合色在线| 悠悠久久av| 精品人妻1区二区| 久久精品夜夜夜夜夜久久蜜豆| 99精品欧美一区二区三区四区| 国产三级黄色录像| 精品国产美女av久久久久小说| 长腿黑丝高跟| а√天堂www在线а√下载| 久久性视频一级片| 欧美3d第一页| 久久久久精品国产欧美久久久| 脱女人内裤的视频| 欧美精品啪啪一区二区三区| 日韩人妻高清精品专区| av天堂在线播放| 一区福利在线观看| 日韩三级视频一区二区三区| 成在线人永久免费视频| 亚洲av第一区精品v没综合| 久久久精品欧美日韩精品| 国产精品 国内视频| 1024香蕉在线观看| 日本精品一区二区三区蜜桃| 久久久水蜜桃国产精品网| 十八禁人妻一区二区| 中国美女看黄片| 国产视频内射| 久久精品亚洲精品国产色婷小说| 成人av一区二区三区在线看| 亚洲精品国产精品久久久不卡| 午夜激情福利司机影院| 成人一区二区视频在线观看| 国内精品美女久久久久久| 国产蜜桃级精品一区二区三区| 俺也久久电影网| 天堂影院成人在线观看| 国产亚洲av高清不卡| 成人国产一区最新在线观看| 午夜视频精品福利| 国产一级毛片七仙女欲春2| 久久久久久九九精品二区国产| 成人av一区二区三区在线看| 婷婷六月久久综合丁香| 久久香蕉国产精品| 日本 欧美在线| 久久久国产成人精品二区| 久久热在线av| 麻豆一二三区av精品| 老司机深夜福利视频在线观看| 亚洲 国产 在线| av国产免费在线观看| 亚洲熟妇熟女久久| 国产精品 国内视频| 国内精品久久久久久久电影| 亚洲天堂国产精品一区在线| 久久精品国产综合久久久| 欧美三级亚洲精品| 久久国产乱子伦精品免费另类| 久久久国产精品麻豆| 后天国语完整版免费观看| 欧美另类亚洲清纯唯美| 国产熟女xx| 老汉色∧v一级毛片| 亚洲欧美日韩无卡精品| 中文字幕熟女人妻在线| 日本 欧美在线| 色综合欧美亚洲国产小说| 又黄又粗又硬又大视频| 精品乱码久久久久久99久播| 久久九九热精品免费| 久久热在线av| 成人国产一区最新在线观看| 亚洲av免费在线观看| 亚洲av免费在线观看| 又大又爽又粗| 国产人伦9x9x在线观看| 韩国av一区二区三区四区| 免费无遮挡裸体视频| www.自偷自拍.com| 精品乱码久久久久久99久播| 亚洲无线在线观看| 免费观看人在逋| 后天国语完整版免费观看| 亚洲精品乱码久久久v下载方式 | 18禁黄网站禁片免费观看直播| 国产av不卡久久| 我要搜黄色片| 99久久国产精品久久久| 真人做人爱边吃奶动态| 久久精品91蜜桃| 久久婷婷人人爽人人干人人爱| 香蕉丝袜av| 精品一区二区三区视频在线 | 99久久精品国产亚洲精品| 免费在线观看日本一区| 日韩中文字幕欧美一区二区| 色噜噜av男人的天堂激情| av在线天堂中文字幕| 可以在线观看的亚洲视频| 欧美一级a爱片免费观看看| 国产视频一区二区在线看| 99re在线观看精品视频| 免费看美女性在线毛片视频| 午夜激情福利司机影院| 人妻丰满熟妇av一区二区三区| av福利片在线观看| 欧美在线黄色| 搡老妇女老女人老熟妇| 美女 人体艺术 gogo| 一级毛片女人18水好多| 小说图片视频综合网站| 亚洲欧美日韩无卡精品| 天天添夜夜摸| 国产精品美女特级片免费视频播放器 | 禁无遮挡网站| 亚洲第一电影网av| 国产乱人伦免费视频| 国产精品久久久av美女十八| 综合色av麻豆| 欧美色欧美亚洲另类二区| 熟妇人妻久久中文字幕3abv| 一进一出抽搐gif免费好疼| 国产三级黄色录像| 两人在一起打扑克的视频| 一本综合久久免费| 欧美av亚洲av综合av国产av| www.999成人在线观看| 午夜激情欧美在线| 国产成人精品久久二区二区免费| 亚洲专区中文字幕在线| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 又粗又爽又猛毛片免费看| 天天添夜夜摸| bbb黄色大片| 久久久久国产精品人妻aⅴ院| avwww免费| 久久天躁狠狠躁夜夜2o2o| 国产精品电影一区二区三区| 日韩免费av在线播放| 免费在线观看成人毛片| 色老头精品视频在线观看| 欧美一区二区国产精品久久精品| 久久伊人香网站| ponron亚洲| 91av网站免费观看| 欧美中文综合在线视频| 黄色 视频免费看| 国产精品爽爽va在线观看网站| 精品午夜福利视频在线观看一区| 国产视频一区二区在线看| 麻豆国产97在线/欧美| 亚洲avbb在线观看| 女同久久另类99精品国产91| 久久久久久大精品| 欧美一级毛片孕妇| 一二三四在线观看免费中文在| 五月玫瑰六月丁香| 在线免费观看不下载黄p国产 | 黄色片一级片一级黄色片| 国产精品亚洲美女久久久| 国产精品av视频在线免费观看| 青草久久国产| 国产成人精品久久二区二区免费| 一级a爱片免费观看的视频| 麻豆av在线久日| 亚洲在线自拍视频| 免费看a级黄色片| 最近最新中文字幕大全免费视频| 欧美国产日韩亚洲一区| 一二三四在线观看免费中文在| 日韩三级视频一区二区三区| 熟女少妇亚洲综合色aaa.| 免费无遮挡裸体视频| 丰满人妻一区二区三区视频av | 亚洲激情在线av| 亚洲成人久久爱视频| 91九色精品人成在线观看| 亚洲自拍偷在线| 亚洲黑人精品在线| 精品久久久久久久久久久久久| 日本成人三级电影网站| 亚洲精品色激情综合| 18禁黄网站禁片午夜丰满| 又黄又粗又硬又大视频| 午夜a级毛片| 国产成人影院久久av| 脱女人内裤的视频| 夜夜看夜夜爽夜夜摸| 九九热线精品视视频播放| 国产成人欧美在线观看| 婷婷精品国产亚洲av| 亚洲精品美女久久av网站| 亚洲人成电影免费在线| 国产精品99久久久久久久久| 久久99热这里只有精品18| 国模一区二区三区四区视频 | 国产精品久久久久久精品电影| 俺也久久电影网| 成人一区二区视频在线观看| 97人妻精品一区二区三区麻豆| 色精品久久人妻99蜜桃| aaaaa片日本免费| 免费看光身美女| 午夜免费观看网址| 午夜激情欧美在线| 国产免费男女视频| 国产精品香港三级国产av潘金莲| 男插女下体视频免费在线播放| 日韩欧美在线二视频| h日本视频在线播放| 麻豆国产97在线/欧美| 午夜福利成人在线免费观看| 悠悠久久av| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 动漫黄色视频在线观看| 女生性感内裤真人,穿戴方法视频| 黄色丝袜av网址大全| 巨乳人妻的诱惑在线观看| 日本一二三区视频观看| 网址你懂的国产日韩在线| 久久中文字幕人妻熟女| 久久午夜综合久久蜜桃| 亚洲va日本ⅴa欧美va伊人久久| 日本 av在线| 国产麻豆成人av免费视频| 国产午夜精品论理片| 日韩欧美一区二区三区在线观看| 91在线精品国自产拍蜜月 | 99热这里只有精品一区 | 亚洲精品美女久久久久99蜜臀| 亚洲第一电影网av| 91字幕亚洲| 男插女下体视频免费在线播放| 亚洲在线观看片| 亚洲国产精品999在线| 亚洲国产色片| 国产精品98久久久久久宅男小说| 久久中文字幕一级| 高潮久久久久久久久久久不卡| 国产不卡一卡二| 免费在线观看亚洲国产| 午夜两性在线视频| 亚洲av电影在线进入| 99久久成人亚洲精品观看| 人妻夜夜爽99麻豆av| 免费看十八禁软件| 欧美绝顶高潮抽搐喷水| 久久精品综合一区二区三区| 级片在线观看| 亚洲成人久久性| 九九热线精品视视频播放| 亚洲在线观看片| 99精品欧美一区二区三区四区| 成人性生交大片免费视频hd| 国产精品99久久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 久久久久久久久免费视频了| ponron亚洲| 最近最新免费中文字幕在线| 国产成+人综合+亚洲专区| 久久精品综合一区二区三区| 午夜成年电影在线免费观看| 亚洲 国产 在线| 中国美女看黄片| 在线十欧美十亚洲十日本专区| 国内精品美女久久久久久| 日韩av在线大香蕉| 亚洲天堂国产精品一区在线| 久久精品aⅴ一区二区三区四区| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 成年人黄色毛片网站| 亚洲av片天天在线观看| 久久精品夜夜夜夜夜久久蜜豆| 美女高潮的动态| 色哟哟哟哟哟哟| 一本久久中文字幕| 在线十欧美十亚洲十日本专区| 欧美日韩中文字幕国产精品一区二区三区| 国产又黄又爽又无遮挡在线| 久久精品国产亚洲av香蕉五月| 亚洲电影在线观看av| 深夜精品福利| 99热6这里只有精品| 久久久久国产精品人妻aⅴ院| 美女高潮喷水抽搐中文字幕| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 久久婷婷人人爽人人干人人爱| 国内精品久久久久久久电影| 麻豆久久精品国产亚洲av| 国产精品日韩av在线免费观看| 精品99又大又爽又粗少妇毛片 | 精品无人区乱码1区二区| 真人做人爱边吃奶动态| 国产又色又爽无遮挡免费看| 可以在线观看的亚洲视频| 网址你懂的国产日韩在线| 偷拍熟女少妇极品色| 波多野结衣巨乳人妻| 色吧在线观看| 国产高清videossex| 97人妻精品一区二区三区麻豆| 久久草成人影院| 国产男靠女视频免费网站| 国产真实乱freesex| 亚洲色图av天堂| 露出奶头的视频| 亚洲欧洲精品一区二区精品久久久| 男人舔奶头视频| 成人无遮挡网站| 国产精品99久久久久久久久| 国产精品自产拍在线观看55亚洲| 色尼玛亚洲综合影院| 日本与韩国留学比较| 久9热在线精品视频| 三级男女做爰猛烈吃奶摸视频| 欧美性猛交黑人性爽| 两个人看的免费小视频| 色噜噜av男人的天堂激情| 1024手机看黄色片| 波多野结衣巨乳人妻| 中文字幕人妻丝袜一区二区| 天堂影院成人在线观看| 国产三级在线视频| 非洲黑人性xxxx精品又粗又长| 一区二区三区高清视频在线| 日韩av在线大香蕉| 波多野结衣巨乳人妻| 女生性感内裤真人,穿戴方法视频| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 黄色片一级片一级黄色片| 日本免费一区二区三区高清不卡| 99久久国产精品久久久| 999久久久国产精品视频| 午夜精品在线福利| 999精品在线视频| 天堂√8在线中文| 久久久久久久久中文| 90打野战视频偷拍视频| 亚洲av成人一区二区三| 淫秽高清视频在线观看| 麻豆一二三区av精品| 色综合站精品国产| 中文字幕最新亚洲高清| 男女做爰动态图高潮gif福利片| 成人三级做爰电影| 久久精品夜夜夜夜夜久久蜜豆| 免费在线观看亚洲国产| 日本与韩国留学比较| 桃色一区二区三区在线观看| 18禁黄网站禁片免费观看直播| www.精华液| 91麻豆精品激情在线观看国产| 欧美3d第一页| 精品国产三级普通话版| 久久久色成人| 亚洲真实伦在线观看| 国产欧美日韩一区二区精品| 久久精品人妻少妇| 日韩av在线大香蕉| 身体一侧抽搐| 免费观看的影片在线观看| 亚洲中文字幕日韩| 给我免费播放毛片高清在线观看| 小说图片视频综合网站| 99久久无色码亚洲精品果冻| 变态另类成人亚洲欧美熟女| 91av网站免费观看| 亚洲午夜理论影院| 99热只有精品国产| 级片在线观看| 亚洲国产欧洲综合997久久,| 精品久久久久久久久久免费视频| 亚洲国产看品久久| 成人亚洲精品av一区二区| 午夜福利18| 免费在线观看成人毛片| 日韩欧美精品v在线| 国产成人啪精品午夜网站| 亚洲,欧美精品.| 成人一区二区视频在线观看| 香蕉丝袜av| 中文亚洲av片在线观看爽| 亚洲欧美激情综合另类| 久久99热这里只有精品18|