• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studying neurological disorders using induced pluripotent stem cells and optogenetics

    2015-02-07 12:58:23EuniceW.M.Chin,EyleenL.K.Goh

    Studying neurological disorders using induced pluripotent stem cells and optogenetics

    Neurological disorders are amongst the most widely studied human aliments. Yet, they are also one of the most poorly understood. Although most of these disorders are polygenic, genotype still plays an important role in their etiologies. For example, in schizophrenia and autism spectrum disorders, there is a 40–60% concordance rate in monozygotic twins, with 60–90% heritability (Burmeister et al., 2008). However, the mechanisms by which multiple genes and their genomic variations infl uence the phenotypes of the disorders remain to be understood. The complexities of the disorders are further compounded by the individual rarity of the genomic variations and their variable penetrance (Cook and Scherer, 2008). Thus, conventional disease modeling, such as gene knockout in cells or in animals, to attain the desired disease genotype may not be the most suitable platform for tackling most neurological disorders.

    With the advent of induced pluripotent stem cell (iPSC) technology, there presents a revolutionizing method for modeling complex human disorders. iPSCs are somatic cells that have been reprogrammed through the use of transcription factors to restore pluripotency (Takahashi and Yamanaka, 2006). One of the ultimate goals for iPSC technology is to obtain somatic cells of specifi c lineages via directed diff erentiation. Cells diff erentiated from iPSCs can be used to model patient-specifi c disease mechanisms in vitro, for transplantation to replace lost cells, or for drug screening. This technology is especially crucial for neuroscience research, where brain cells from human patients are not easily obtainable. Thus, human iPSC-derived neurons make an ideal model system for the study of neurological disorders and the development of neural functionality and plasticity (Johnson et al., 2007; Ladewig et al., 2008). In the event of neurodegeneration, they can act as a therapeutically relevant source of cells for replacement purposes (Sonntag et al., 2005). In order for these ends to be met, several hurdles would have to be crossed (illustrated in Figure 1). Firstly, the iPSC colonies have to be generated via reprogramming and maintained for diff erentiation into the desired neuronal subtypes. Next, the functional maturity of the derived neurons has to be verifi ed. Lastly, the ability of the iPSC-derived neurons to integrate functionally into an existing neuronal network has to be probed.

    In Takahashi and Yamanaka’s experiments, iPSCs were generated from retrovirus-mediated introduction of four transcription factors (Oct-3/4, Sox2, c-Myc, and Klf4) into mouse embryonic and adult fi broblasts (Takahashi and Yamanaka, 2006). The iPSCs exhibited morphology and growth properties similar to that of embryonic stem cells; they also expressed embryonic stem cell markers. The researchers then repeated the experiment to similar success with adult human dermal fi broblasts (Takahashi et al., 2007). Since then, other groups have jumped onto the iPSC bandwagon, either experimenting with the cocktail of transcription factors for inducing pluripotency, or tinkering with the generation of iPSCs from novel cell types, or trying to elucidate the exact mechanisms through which the transcription factors induce pluripotent stem cells. An important development in the reprogramming process is in the delivery of reprogramming factors into the somatic cells. Retroviral and lentiviral vectors have been widely used, while virus-free methods are catching on. The latter are preferred if one needs the iPSCs to be free of vector and transgene sequences. These virus-free methods include the use of episomes, RNA and protein transfection, small molecule carriers, and cell-penetrating peptides to deliver the reprogramming factors (Compagnucci et al., 2014).

    In addition to skin fi broblasts, other cell types have been used for iPSC derivation. These include keratinocytes, neural cells, mature B and T cells, hepatocytes, amniotic cells, and hair follicular cells, and cells derived from adipose tissue (Compagnucci et al., 2014). Many of these somatic cells can be sampled with minimal invasiveness to patients. This is another plus point for the use of iPSC technology to model patient-specifi c diseases. On the other hand, iPSCs derived from diff erent somatic cells may habour intrinsic potential to preferentially diff erentiate into specifi c cell lineages. Thus, further studies are needed to examine the diff erences between iPSCs derived from diff erent cell types and how the diff erent sources of somatic cells aff ect the effi ciency of pluripotency induction and subsequent directed diff erentiation.

    Besides optimizing the procedure for iPSC generation, diff erent protocols have been conceived for the induction of specifi c cell types. There are various well-established protocols for obtaining specifi c cell types, as well as customized ones that have been fi ne-tuned by individual research groups for obtaining specifi c neuronal cell types (reviewed in Compagnucci et al., 2014). These protocols vary in several parameters, such as the types and amounts of growth factors and supplements added to direct diff erentiation, the frequency and length of time for which they are used, or the type of culture media used. It has also been reported that the presence of other cells, such as astrocytes and oligodendrocytes, can aff ect diff erentiation effi ciency and neuronal maturation. All the aforementioned factors aff ect the diff erentiation effi ciency of the iPSCs and the length of time required to attain the desired cell type. Given that diff erentiation effi ciency is sensitive to the slightest variation in culture conditions, obtaining a robust diff erentiation reproducibly is considered to be the most challenging obstacle in establishing an iPSC culture protocol.

    After obtaining an iPSC-differentiated neuron culture, the next step is to establish neuronal identity and functional maturity. Morphological analyses, RNA and protein profi ling, as well as immunostaining for neural cell markers are normally used to confi rm neuronal identity. Subsequently, electrophysiological techniques and analysis are essential to demonstrate functional identity and maturity. For instance, the ability to fi re action potentials and the presence of postsynaptic currents (PSCs) typically indicate that the newly-derived neurons have matured functionally and are capable of communicating with other neurons. The functionalproperties of iPSC-derived neurons should then be compared to the intrinsic properties of the neuronal subtypes that they aim to model or replace, to ensure the generation of relevant cell types from the iPSCs.

    To more accurately mimic the complexity of in vivo conditions when modeling neurological disorders, a co-culture system of iPSC-derived neurons and other cell types should be used. It is then possible to assess the ability of iPSC-derived neurons to physically interact with or synaptically connect to the other cell types in the system, and if these synapses are functional. There are at least four possible ways for cell-cell interactions and connections in the co-culture system. First, the iPSC-derived neurons communicate only with each other, and not with the other cell types. Second, they receive input from the other cell types, but do not send any reciprocal output. Third, the iPSC-derived neurons give input to the other cells, but do not receive any reciprocal input. Fourth, the signal transmission between the iPSC-derived neurons and the other cell types in the system can be bidirectional. Under most normal circumstances, only the iPSC-derived neurons described in the fourth instance are considered functionally integrated into the circuitry.

    The degree of functional integration of iPSC-derived neurons to their co-culture systems is still largely unknown. Conventionally, evaluation of functional synaptic integration is based on morphological parameters and receptor binding studies (T?nnesen and Kokaia, 2012). Electrophysiological characterization remains the gold standard for determining functional integration, but it can be relatively complex since identifi cation and selective activation of specifi c cell types in a co-culture system can be problematic. Extracelluar fi eld stimulations have been used to investigate synaptic integration in several studies involving grafts of stem cell-derived neurons (T?nnesen and Kokaia, 2012). However, data from such stimulations do not allow for identification of the origin of synaptic inputs recorded, due to the nonspecifi c nature of the stimulation. Another possible solution is dual whole-cell recordings, but such an approach is limited by its diffi cult technique and the low probability of synaptic coupling between recorded cells. Since the probability of the two recorded cells being contacted by a common third cell is certainly higher than locating two directly connected cells, coincidence detection of postsynaptic events may be employed to test for functional integration. Unfortunately, it can be a time-consuming endeavor due to the trial-and-error process, and there remains the issue of it being an indirect way of examining functional integration.

    Recent developments in the optogenetics fi eld have provided reasonable solutions to the conundrum of functional integration of iPSC-derived neurons with the other cells in a co-culture system. The genetic introduction of optically-gated membrane proteins into cells allows the alteration of membrane potentials with high temporal resolution. Thus, control over activity in selected cell populations can be attained (Boyden et al., 2005; Zhang et al., 2007). Therefore, it becomes relatively uncomplicated to establish functional integration between iPSC-derived neurons and other cell types, given the selective control allowed for activating or silencing diff erent cell populations independently of each other.

    One of the most widely used in the optogenetics toolbox is channelrhodopsin-2 (ChR2), a blue light (around 470 nm)-activated depolarizing cation channel protein (Boyden et al., 2005). Numerous studies have used the light-gated channel to enable stimulation of cells in complex neuronal networks, both in vitro and in vivo. ChR2-based stimulation allows for specifi city, as only cells expressing the light-gated channel would respond to the light stimulus. Such a response consists of light-induced depolarization of the neuronal membrane. The depolarization would have to reach the fi ring threshold in order to elicit an action potential. For reliable and robust action potential induction, ChR2 expression level in the cell has to be high, in order to compensate for its small single-channel conductance. As expression levels may vary between individually transfected cells, some ChR2-expressing neurons may experience only subthreshold depolarization during light stimulation. Hence, it is important to introduce ChR2 to neurons using methods that render high effi ciency in transduction and protein expression. Using variants of ChR2, such as the H134R mutant which enables enhanced photocurrents, can circumvent weak action potential fi ring due to low ChR2 expression levels.

    An integrated approach combining iPSC and optogenetics technologies is essential for interrogating functional synaptic connections in vitro (Figure 1). One such example of an in vitro optogenetics system is a triple co-culture consisting of iPSC-derived neurons, primary cortical neurons, and astrocytes diff erentiated from neural progenitor cells (Su et al., 2015). The presence of primary neurons can enhance differentiation and maturation of human iPSC-derived neurons, while the astrocytes support the growth of the neurons. The primary neurons were transduced with lentivirus that expresses ChR2 and thus, they can be optically activated. Whether the iPSC-derived neurons that are also in the co-culture form functional synapses with these primary neurons can be investigated by detecting for PSCs upon blue light stimulation (Figure 1). iPSC-differentiated neurons were shown to exhibit an increase in PSC frequency upon photostimulation of the ChR2-expressing primary neurons (Su et al., 2015). With such a system for the study of neurological disorders, any patient- or disease-specifi c iPSC-derived neurons can be used to investigate their respective disease mechanics. The disease status of any of the component cell types can be manipulated to examine their contributive eff ects to the neurological disorder in question. In addition, it would be possible to modify the components of the system in a mix-and-match manner to permit unique questions to be addressed. Furthermore, the co-culture may be a better representation of a system than lone cell types for the study of pharmacodynamic eff ects in the screening of drug compounds.

    Both the iPSC and optogenetics technologies have been established for over a decade, but their combined potential is only starting to be realized. The integrated in vitro approach combining both technologies provides the means to understand and resolve underlying mechanisms in complex neurological disorders. It is also hoped that advancements in both these technologies continue to shed light towardsthe understanding and therapeutics of complex neurological disorders.

    Figure 1 An integrated in vitro approach of induced pluripotent stem cell (iPSC) and optogenetics technologies for studying neurological disorders.

    Eunice W.M. Chin, Eyleen L.K. Goh*

    Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore (Chin EW, Goh EL)

    NUS Graduate School for Integrative Singapore, Sciences and Engineering, National University of Singapore, Singapore, Singapore (Chin EW)

    Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore (Goh EL) KK Research Center, KK Women’s and Children’s Hospital,

    Singapore, Singapore (Goh EL)

    *Correspondence to: Eyleen L.K. Goh, Ph.D., eyleen.goh@duke-nus.edu.sg.

    Accepted: 2015-08-18

    orcid: 0000-0002-8244-6959 (Eyleen L.K. Goh)

    Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263-1268.

    Burmeister M, McInnis MG, Zollner S (2008) Psychiatric genetics: progress amid controversy. Nat Rev Genet 9:527-540.

    Compagnucci C, Nizzardo M, Corti S, Zanni G, Bertini E (2014) In vitro neurogenesis: development and functional implications of iPSC technology. Cell Mol Life Sci 71:1623-1639.

    Cook EH Jr., Scherer SW (2008) Copy-number variations associated with neuropsychiatric conditions. Nature 455:919-923.

    Johnson MA, Weick JP, Pearce RA, Zhang SC (2007) Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci 27:3069-3077.

    Ladewig J, Koch P, Endl E, Meiners B, Opitz T, Couillard-Despres S, Aigner L, Brüstle O (2008) Lineage selection of functional and cryopreservable human embryonic stem cell-derived neurons. Stem Cells 26:1705-1712.

    Sonntag KC, Simantov R, Isacson O (2005) Stem cells may reshape the prospect of Parkinson’s disease therapy. Brain Res Mol Brain Res 134:34-51.

    Su CT, Yoon SI, Marcy G, Chin EW, Augustine GJ, Goh EL (2015) An optogenetic approach for assessing formation of neuronal connections in a co-culture system. J Vis Exp 96:e52408.

    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fi broblast cultures by defi ned factors. Cell 126:663-676.

    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fi broblasts by defi ned factors. Cell 131:861-872.

    T?nnesen J, Kokaia M (2012) Chapter 6 - Electrophysiological investigations of synaptic connectivity between host and graft neurons. In: Progress in Brain Research (Dunnett SB, Bj?rklund A, eds), pp97-112. Elsevier.

    Zhang F, Wang LP, Brauner M, Liewald JF, Kay K, Watzke N, Wood PG, Bamberg E, Nagel G, Gottschalk A, Deisseroth K (2007) Multimodal fast optical interrogation of neural circuitry. Nature 446:633-639.

    10.4103/1673-5374.169607 http://www.nrronline.org/

    Chin EW, Goh EL (2015) Studying neurological disorders using induced pluripotent stem cells and optogenetics. Neural Regen Res 10(11):1720-1722.

    99久久无色码亚洲精品果冻| 国语自产精品视频在线第100页| 人人妻,人人澡人人爽秒播| 日韩欧美三级三区| 禁无遮挡网站| 两个人看的免费小视频| 亚洲午夜精品一区,二区,三区| 国产精品影院久久| 国产一区二区三区在线臀色熟女| 欧美日韩一级在线毛片| 夜夜躁狠狠躁天天躁| 精品不卡国产一区二区三区| 国产精品久久久久久精品电影| 一夜夜www| 国内精品久久久久久久电影| 黄色毛片三级朝国网站| 999久久久国产精品视频| 欧美黑人欧美精品刺激| 青草久久国产| 熟女少妇亚洲综合色aaa.| 国产伦一二天堂av在线观看| 日本五十路高清| 国产精品日韩av在线免费观看| 亚洲精品久久国产高清桃花| 人妻久久中文字幕网| 亚洲成av人片在线播放无| ponron亚洲| 国产高清视频在线观看网站| 免费看十八禁软件| 国产精品一区二区免费欧美| 不卡一级毛片| 亚洲国产欧美人成| 非洲黑人性xxxx精品又粗又长| 两个人看的免费小视频| 久久久久久人人人人人| 亚洲精品美女久久av网站| 99久久无色码亚洲精品果冻| 亚洲天堂国产精品一区在线| 三级国产精品欧美在线观看 | 国模一区二区三区四区视频 | 国产精品免费视频内射| 日韩欧美三级三区| 国产麻豆成人av免费视频| 精品国内亚洲2022精品成人| 欧美+亚洲+日韩+国产| 天堂√8在线中文| 亚洲av熟女| 精品久久蜜臀av无| 国语自产精品视频在线第100页| 一区福利在线观看| 最近最新免费中文字幕在线| 欧美国产日韩亚洲一区| 熟女电影av网| 亚洲国产欧洲综合997久久,| 国产麻豆成人av免费视频| 亚洲av中文字字幕乱码综合| 村上凉子中文字幕在线| 国产成人精品久久二区二区91| 91麻豆av在线| 国产精品乱码一区二三区的特点| 中文字幕人成人乱码亚洲影| 免费人成视频x8x8入口观看| 中文在线观看免费www的网站 | 狂野欧美白嫩少妇大欣赏| 久久 成人 亚洲| 亚洲专区中文字幕在线| 久久人妻福利社区极品人妻图片| 亚洲一区高清亚洲精品| 国产黄片美女视频| 国产高清视频在线观看网站| 别揉我奶头~嗯~啊~动态视频| 脱女人内裤的视频| 久久久国产欧美日韩av| 亚洲狠狠婷婷综合久久图片| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站 | 老汉色∧v一级毛片| 一二三四社区在线视频社区8| tocl精华| 国产激情欧美一区二区| 色在线成人网| av超薄肉色丝袜交足视频| www.熟女人妻精品国产| 中文亚洲av片在线观看爽| 国产精品,欧美在线| 日韩高清综合在线| 欧美最黄视频在线播放免费| 男人舔奶头视频| 亚洲人成77777在线视频| 久久九九热精品免费| 精品一区二区三区av网在线观看| 成人国产一区最新在线观看| 日韩欧美免费精品| www.精华液| 三级男女做爰猛烈吃奶摸视频| 久久精品国产清高在天天线| 18禁黄网站禁片午夜丰满| 亚洲av片天天在线观看| 亚洲国产精品999在线| 精品国产乱码久久久久久男人| www国产在线视频色| 特级一级黄色大片| 黄片小视频在线播放| 91国产中文字幕| 精品国产乱子伦一区二区三区| 一区二区三区高清视频在线| 欧美日韩乱码在线| 中文在线观看免费www的网站 | 少妇的丰满在线观看| 不卡av一区二区三区| 国产三级在线视频| 亚洲国产欧美一区二区综合| 国产精品野战在线观看| 日韩欧美精品v在线| 亚洲七黄色美女视频| 国产激情久久老熟女| 日本熟妇午夜| 婷婷六月久久综合丁香| 99riav亚洲国产免费| 久久久精品大字幕| 色在线成人网| 久久性视频一级片| 色尼玛亚洲综合影院| 亚洲中文字幕日韩| 国产精品av久久久久免费| 狂野欧美激情性xxxx| 国内精品一区二区在线观看| 亚洲熟妇中文字幕五十中出| 久久这里只有精品19| 成人精品一区二区免费| 欧美成人午夜精品| 男女下面进入的视频免费午夜| 一夜夜www| 亚洲第一电影网av| 日韩免费av在线播放| 亚洲狠狠婷婷综合久久图片| 97超级碰碰碰精品色视频在线观看| 少妇熟女aⅴ在线视频| 久久精品国产亚洲av香蕉五月| 日韩高清综合在线| 亚洲一区二区三区不卡视频| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 怎么达到女性高潮| 久久精品91蜜桃| 国产午夜精品久久久久久| 免费人成视频x8x8入口观看| 久久久久久久久免费视频了| 国产男靠女视频免费网站| 国产成人精品无人区| 亚洲国产精品久久男人天堂| 妹子高潮喷水视频| 色综合站精品国产| 日本三级黄在线观看| 日本黄大片高清| 亚洲狠狠婷婷综合久久图片| 成人18禁在线播放| 国产三级在线视频| 在线观看免费日韩欧美大片| 欧美 亚洲 国产 日韩一| 91麻豆精品激情在线观看国产| 国产熟女午夜一区二区三区| 欧美不卡视频在线免费观看 | 无限看片的www在线观看| 国产主播在线观看一区二区| 久久香蕉激情| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇中文字幕五十中出| 亚洲男人的天堂狠狠| 国产99白浆流出| 精品久久久久久久毛片微露脸| 午夜福利成人在线免费观看| 日本黄色视频三级网站网址| 国内毛片毛片毛片毛片毛片| 精品久久久久久久久久免费视频| www日本黄色视频网| 青草久久国产| 免费无遮挡裸体视频| 老汉色av国产亚洲站长工具| 国产69精品久久久久777片 | 黄色视频不卡| 国内久久婷婷六月综合欲色啪| 少妇粗大呻吟视频| 日本 欧美在线| 窝窝影院91人妻| www日本黄色视频网| 久久九九热精品免费| 国产熟女xx| 国产欧美日韩一区二区三| 国产精品美女特级片免费视频播放器 | 欧美不卡视频在线免费观看 | 日韩国内少妇激情av| 国产欧美日韩一区二区三| 久久久精品国产亚洲av高清涩受| 中文亚洲av片在线观看爽| 国产精品自产拍在线观看55亚洲| 亚洲人成网站高清观看| 色噜噜av男人的天堂激情| 别揉我奶头~嗯~啊~动态视频| 欧美精品啪啪一区二区三区| 久久久精品欧美日韩精品| 亚洲第一电影网av| 搡老岳熟女国产| 真人一进一出gif抽搐免费| 欧美乱色亚洲激情| 宅男免费午夜| 婷婷丁香在线五月| 97碰自拍视频| 制服诱惑二区| 国产黄片美女视频| 叶爱在线成人免费视频播放| 久久 成人 亚洲| 亚洲美女视频黄频| 女人被狂操c到高潮| 全区人妻精品视频| 国产精品精品国产色婷婷| 色尼玛亚洲综合影院| 国产精品久久久久久亚洲av鲁大| 久久性视频一级片| 国产精品免费视频内射| 性色av乱码一区二区三区2| 亚洲天堂国产精品一区在线| av在线播放免费不卡| 别揉我奶头~嗯~啊~动态视频| 欧美不卡视频在线免费观看 | 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 精品久久久久久久久久久久久| 久久欧美精品欧美久久欧美| 久久午夜亚洲精品久久| 欧美精品亚洲一区二区| 在线观看美女被高潮喷水网站 | 91麻豆精品激情在线观看国产| xxxwww97欧美| 午夜福利高清视频| 男人舔女人下体高潮全视频| 两个人视频免费观看高清| 亚洲 欧美一区二区三区| 国产不卡一卡二| 欧美人与性动交α欧美精品济南到| 欧美激情久久久久久爽电影| 极品教师在线免费播放| 日韩欧美国产在线观看| 久久久国产欧美日韩av| 精品熟女少妇八av免费久了| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 成人欧美大片| 亚洲男人天堂网一区| 老司机福利观看| 午夜福利高清视频| 一本一本综合久久| 国产精品98久久久久久宅男小说| 精品免费久久久久久久清纯| 亚洲av中文字字幕乱码综合| 变态另类丝袜制服| 久久热在线av| 一区福利在线观看| 亚洲欧美精品综合久久99| 日韩免费av在线播放| 午夜福利在线观看吧| 真人做人爱边吃奶动态| 91大片在线观看| 三级国产精品欧美在线观看 | 成人亚洲精品av一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲色图 男人天堂 中文字幕| 老熟妇乱子伦视频在线观看| а√天堂www在线а√下载| 国内精品久久久久精免费| 无遮挡黄片免费观看| av视频在线观看入口| 成人三级做爰电影| 国产1区2区3区精品| 人妻夜夜爽99麻豆av| 久久中文看片网| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 中文亚洲av片在线观看爽| 亚洲熟妇熟女久久| 俺也久久电影网| 国产99久久九九免费精品| 男人舔奶头视频| 丝袜美腿诱惑在线| 特大巨黑吊av在线直播| 婷婷精品国产亚洲av| 免费电影在线观看免费观看| 欧美成狂野欧美在线观看| 中文在线观看免费www的网站 | 十八禁人妻一区二区| 淫妇啪啪啪对白视频| 欧美精品啪啪一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 别揉我奶头~嗯~啊~动态视频| 亚洲一区中文字幕在线| 51午夜福利影视在线观看| 日韩欧美在线乱码| 视频区欧美日本亚洲| 淫妇啪啪啪对白视频| 在线永久观看黄色视频| 高清在线国产一区| 两个人免费观看高清视频| 老司机午夜福利在线观看视频| 男人舔奶头视频| 亚洲一卡2卡3卡4卡5卡精品中文| 妹子高潮喷水视频| 青草久久国产| 在线观看www视频免费| 色精品久久人妻99蜜桃| 婷婷精品国产亚洲av| 国产高清有码在线观看视频 | 床上黄色一级片| 久久午夜综合久久蜜桃| 国产精品久久久人人做人人爽| 亚洲第一欧美日韩一区二区三区| 久久久国产欧美日韩av| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 老司机午夜十八禁免费视频| 午夜福利在线在线| 欧美色欧美亚洲另类二区| 久久久久久九九精品二区国产 | 日本五十路高清| 免费在线观看黄色视频的| 精品一区二区三区视频在线观看免费| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 久久天躁狠狠躁夜夜2o2o| 岛国在线观看网站| cao死你这个sao货| 亚洲色图av天堂| av视频在线观看入口| 又黄又粗又硬又大视频| 一个人免费在线观看电影 | 婷婷精品国产亚洲av在线| 亚洲人成电影免费在线| 久久久久久九九精品二区国产 | 人妻丰满熟妇av一区二区三区| 久久婷婷人人爽人人干人人爱| 欧美日韩亚洲国产一区二区在线观看| 午夜a级毛片| 91麻豆av在线| 亚洲片人在线观看| 亚洲国产精品久久男人天堂| 他把我摸到了高潮在线观看| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 看免费av毛片| av有码第一页| 国产99久久九九免费精品| 长腿黑丝高跟| 国产精品野战在线观看| 久久久久久国产a免费观看| 日日夜夜操网爽| 天堂√8在线中文| 啦啦啦观看免费观看视频高清| 国产高清视频在线观看网站| 亚洲精品av麻豆狂野| 国产精品,欧美在线| 高清在线国产一区| 99热只有精品国产| 成人一区二区视频在线观看| 国产精品九九99| 午夜精品一区二区三区免费看| 国产成年人精品一区二区| 99热这里只有是精品50| 亚洲精品美女久久久久99蜜臀| 精品第一国产精品| 亚洲熟妇熟女久久| 天堂av国产一区二区熟女人妻 | 久久午夜综合久久蜜桃| 欧美黄色片欧美黄色片| 日韩大尺度精品在线看网址| 黄色视频不卡| 在线国产一区二区在线| 亚洲九九香蕉| 国产伦在线观看视频一区| 俄罗斯特黄特色一大片| 99国产精品一区二区三区| 91av网站免费观看| 欧美性长视频在线观看| av超薄肉色丝袜交足视频| 久久久久国产精品人妻aⅴ院| 狠狠狠狠99中文字幕| 成人高潮视频无遮挡免费网站| av视频在线观看入口| 岛国在线观看网站| 国产精品 国内视频| 色老头精品视频在线观看| 99久久无色码亚洲精品果冻| 亚洲人成网站在线播放欧美日韩| 最近在线观看免费完整版| 两个人的视频大全免费| 三级毛片av免费| av中文乱码字幕在线| 久久久国产成人精品二区| 少妇人妻一区二区三区视频| √禁漫天堂资源中文www| 国产免费av片在线观看野外av| 亚洲国产精品久久男人天堂| 亚洲av美国av| 日日摸夜夜添夜夜添小说| 国产精品日韩av在线免费观看| 亚洲国产欧美网| 少妇裸体淫交视频免费看高清 | 露出奶头的视频| 亚洲成av人片在线播放无| 免费看美女性在线毛片视频| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 午夜福利高清视频| 欧美3d第一页| 婷婷六月久久综合丁香| 高潮久久久久久久久久久不卡| 国产av不卡久久| 亚洲中文日韩欧美视频| 51午夜福利影视在线观看| 欧美日韩精品网址| 久久久久九九精品影院| 午夜视频精品福利| 在线看三级毛片| 精华霜和精华液先用哪个| 99热这里只有精品一区 | 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 啪啪无遮挡十八禁网站| 久久久久久免费高清国产稀缺| 欧美日韩一级在线毛片| 午夜福利18| www国产在线视频色| 一区福利在线观看| 精品一区二区三区av网在线观看| 一个人免费在线观看的高清视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲国产欧美一区二区综合| 妹子高潮喷水视频| 黄色片一级片一级黄色片| 久久人人精品亚洲av| 熟女少妇亚洲综合色aaa.| 亚洲激情在线av| 午夜精品一区二区三区免费看| 欧美日韩中文字幕国产精品一区二区三区| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区蜜桃av| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲国产精品久久男人天堂| 日韩欧美三级三区| 在线国产一区二区在线| 99国产精品一区二区蜜桃av| 国产99白浆流出| 99热6这里只有精品| 亚洲成人精品中文字幕电影| 午夜成年电影在线免费观看| 免费高清视频大片| 在线观看舔阴道视频| 51午夜福利影视在线观看| 在线a可以看的网站| 麻豆成人午夜福利视频| 久久人人精品亚洲av| 国产成人啪精品午夜网站| 99热只有精品国产| 久久精品国产综合久久久| 岛国在线免费视频观看| 亚洲精品在线美女| 非洲黑人性xxxx精品又粗又长| av国产免费在线观看| 国产人伦9x9x在线观看| 久久久久久国产a免费观看| 老司机深夜福利视频在线观看| 1024视频免费在线观看| 亚洲全国av大片| www国产在线视频色| 久久天堂一区二区三区四区| 日日夜夜操网爽| 日本免费a在线| 一二三四在线观看免费中文在| 国产熟女午夜一区二区三区| 美女大奶头视频| 91大片在线观看| 久久久国产精品麻豆| 岛国在线观看网站| 好男人在线观看高清免费视频| 最好的美女福利视频网| 在线播放国产精品三级| 亚洲国产欧美人成| www日本在线高清视频| 日本一二三区视频观看| 婷婷精品国产亚洲av在线| 99热这里只有精品一区 | 一夜夜www| 亚洲成人免费电影在线观看| 亚洲人成伊人成综合网2020| 一区福利在线观看| 可以在线观看毛片的网站| 91av网站免费观看| 久久精品91蜜桃| xxxwww97欧美| 1024香蕉在线观看| 日韩欧美在线乱码| 国模一区二区三区四区视频 | 天天添夜夜摸| 国产精品98久久久久久宅男小说| 国产精品美女特级片免费视频播放器 | 久久精品国产亚洲av香蕉五月| 日日夜夜操网爽| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站| 丰满人妻一区二区三区视频av | 成年免费大片在线观看| 精品国产美女av久久久久小说| 丁香六月欧美| 男女视频在线观看网站免费 | 欧美丝袜亚洲另类 | 两性夫妻黄色片| 亚洲美女黄片视频| 两个人看的免费小视频| 少妇裸体淫交视频免费看高清 | 日本 欧美在线| 亚洲 国产 在线| 精品久久久久久成人av| 亚洲中文av在线| 婷婷亚洲欧美| 操出白浆在线播放| 婷婷六月久久综合丁香| 午夜日韩欧美国产| 日韩高清综合在线| 亚洲乱码一区二区免费版| 正在播放国产对白刺激| 国产亚洲欧美在线一区二区| 亚洲色图av天堂| 一进一出抽搐动态| 久久亚洲精品不卡| 波多野结衣巨乳人妻| cao死你这个sao货| 伊人久久大香线蕉亚洲五| 日本三级黄在线观看| 久久精品国产亚洲av高清一级| 亚洲电影在线观看av| 又爽又黄无遮挡网站| 国产成年人精品一区二区| 亚洲自偷自拍图片 自拍| 一本一本综合久久| 亚洲国产看品久久| 丁香六月欧美| 久久精品91无色码中文字幕| 午夜免费成人在线视频| 制服人妻中文乱码| 性色av乱码一区二区三区2| 色哟哟哟哟哟哟| 亚洲欧美精品综合久久99| 19禁男女啪啪无遮挡网站| 国产乱人伦免费视频| 国产成人av教育| 亚洲激情在线av| 国产亚洲精品一区二区www| 男人的好看免费观看在线视频 | 制服人妻中文乱码| 少妇裸体淫交视频免费看高清 | 日韩大码丰满熟妇| 国产野战对白在线观看| 国产又黄又爽又无遮挡在线| 亚洲九九香蕉| 我的老师免费观看完整版| 亚洲avbb在线观看| 久久久久久国产a免费观看| 一级黄色大片毛片| 国产日本99.免费观看| 88av欧美| 激情在线观看视频在线高清| 18禁黄网站禁片午夜丰满| 欧美午夜高清在线| 亚洲一区二区三区不卡视频| 最近在线观看免费完整版| 亚洲精品久久成人aⅴ小说| 亚洲av成人一区二区三| 桃红色精品国产亚洲av| 美女午夜性视频免费| 日日夜夜操网爽| 久久天躁狠狠躁夜夜2o2o| 亚洲乱码一区二区免费版| 啦啦啦观看免费观看视频高清| 免费搜索国产男女视频| 91字幕亚洲| 中文字幕最新亚洲高清| 搡老妇女老女人老熟妇| 亚洲专区中文字幕在线| 欧美大码av| 国产高清有码在线观看视频 | 好男人在线观看高清免费视频| 久久精品夜夜夜夜夜久久蜜豆 | 国产一区二区在线av高清观看| 激情在线观看视频在线高清| 很黄的视频免费| 丰满人妻一区二区三区视频av | 法律面前人人平等表现在哪些方面| 亚洲狠狠婷婷综合久久图片| 国产一区二区三区视频了| 日韩欧美在线二视频| 香蕉丝袜av| 久久久久久九九精品二区国产 | 久久久精品欧美日韩精品| 国产午夜福利久久久久久| 欧美中文综合在线视频| 国产精品av久久久久免费| 每晚都被弄得嗷嗷叫到高潮| 成人18禁在线播放| 欧美日韩乱码在线| 久久精品人妻少妇| 日本三级黄在线观看| 少妇裸体淫交视频免费看高清 |