• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Use of sensory substitution devices as a model system for investigating cross-modal neuroplasticity in humans

    2015-02-07 12:58:23AmyC.Nau,MatthewC.Murphy,KevinC.Chan

    Use of sensory substitution devices as a model system for investigating cross-modal neuroplasticity in humans

    Blindness provides an unparalleled opportunity to study plasticity of the nervous system in humans. Seminal work in this area examined the often dramatic modifi cations to the visual cortex that result when visual input is completely absent from birth or very early in life (Kupers and Ptito, 2014). More recent studies explored what happens to the visual pathways in the context of acquired blindness. This is particularly relevant as the majority of diseases that cause vision loss occur in the elderly. Our lab and others have demonstrated compromised visual pathway integrity in those with peri-natal and acquired blindness (Schoth et al., 2006; Chan et al., 2012; Li et al., 2013; Lee et al., 2014; Dietrich et al., 2015; Ho et al., 2015; Reislev et al., 2015). Additional studies have begun to examine the changes occurring with certain disease states: patients suff ering from retinitis pigmentosa, optic neuritis, and glaucoma, all so far demonstrate deterioration of the white matter tract architecture as a function of disease severity (Garaci et al., 2009; Gabilondo et al., 2014; Ohno et al., 2015). This evidence indicates that the visual system as a whole is profoundly susceptible to degeneration even with small amounts of vision loss. On the surface, these investigations appear to have negative implications for vision restoration eff orts. Yet, parallel studies which examine the phenomenon of cross-modal plasticity suggest that a remodeling of the central nervous system is possible, such that areas of the brain which have been deprived of normal aff erent input are able to reconstitute themselves to be receptive to alternative sensory channels (Merabet and Pascual-Leone, 2010; Kupers and Ptito, 2014). The literature includes several examples of investigations which show that the visual cortex will react to tactile and auditory stimuli in the blind but will be less readily recruited in sighted patients (Merabet and Pascual-Leone, 2010). Moreover, cross-modal interactions have been demonstrated well beyond the traditional “critical period” and into late adulthood, albeit perhaps in a less robust fashion (Sadato et al., 2002; Bedny et al., 2012; Collignon et al., 2013). The notion that the adult brain is still capable of signifi cant structural and functional remodeling after vision loss provides opportunities to restore vision through mechanical or biological means.

    Sensory substitution is a non-invasive method for restoring a sense of the environment. The fi rst sensory substitution device was the white cane which is still widely used by the blind community. Braille is another example of tactile sensory substitution, and software programs such as JAWS substitute are auditory based. More modern attempts at sensory substitution aim to translate visual, camera-based stimuli into a non-visual tactile or auditory stimuli. Sensory substitution in this context was described by Bach-y-Rita in the 1960’s (Bach-y-Rita et al., 1969) and has gained traction in the last few years as a potentially legitimate means of providing functionality to the blind that is “beyond the reach of the cane’. The most recent devices continue to exploit tactile and auditory aff erent channels. The BrainPort (Wicab, Inc.) and the AuxDeco (EyePlus-Plus, Inc.) are tactile based sensory substitution devices using the tongue and forehead, respectively. The vOICe (Metamodal, Inc.), and the spinoff software program known as EyeMusic (Abboud et al., 2014) both translate visual stimuli into soundscapes. The EyeC-ane (Maidenbaum et al., 2014b) attempts to improve the functionality of the white cane to include positional information. Sensory substitution devices can be relatively diffi cult to master and the current resolution provided may remain relatively limited. Nevertheless, sensory substitution devices have been shown to result in improvements over baseline in a number of outcomes metrics (Lee et al., 2014; Maidenbaum et al., 2014a; Nau et al., 2015). Researchers are working on improving this nascent technology to be more user-friendly as well as developing the rehabilitation protocols necessary to properly retrain the brain to accept more complex alternative sensory input.

    Beyond the potential for improving the mobility and independence for the blind, sensory substitution devices also provide an excellent tool to study cross-modal plasticity of the visual system in living humans. The primary advantage is their relatively inexpensive and non-invasive nature, which allows for large numbers of subjects with diff erent etiologies and durations of blindness to be followed. Modern sensory substitution devices are trying to enable activities of daily living such as object recognition, navigation beyond the reach of the white cane and non-text sign identifi cation (Lee et al., 2014; Maidenbaum et al., 2014a; Nau et al., 2015). These attributes are starting to allow researchers to study the cross-modal interactions of the brain in tasks that can more accurately represent daily activities than early studies which were relegated to testing very rudimentary stimuli. Moreover, sensory substitution devices exploit multiple afferent streams including tactile (hand, tongue, back) and auditory channels. This unique attribute can provide information about normal interactions between sensory subsystems and how they can be remodeled in the setting of blindness. In addition, it is possible to compare plasticity in the same subject over time, or compare training eff ects between age groups, disease severity and etiology of vision loss. It is possible that the way a brain reacts to using a sensory substitution device could be a biomarker for success with other, more invasive vision restoration technologies such as retinal implants (Sadato et al., 2002). Using sensory substitution devices as a model system for studying the mechanisms and eff ects of cross-modal interactions can improve our understanding of the plasticity of the nervous system that may be generalizable to conditions other than blindness.

    In the past few years, positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have been used in combination with sensory substitution devices to investigate the mechanisms of cross-modal neuroplasticity in the blind. Early PET studies by our group and others showed that the visual cortex is metabolically active in the blind during sensory substitution tasks (Lee et al., 2014), and that the strength of this activity may be dependent on task diffi culty, the duration of blindness, or the etiology of visual impairment (Kawashima et al., 1995; Gougoux et al., 2005). However, PET off ers relatively low spatial resolution and is expensive to administer. In addition, PET studies require injection of radioactive isotopes, and limited tasks are allowed in any given experimental session. In contrast, fMRI, especially blood-oxygenation-level-dependent (BOLD) fMRI utilizes the intrinsic properties of paramagnetic deoxyhemoglobin in the brain and the hemodynamic response triggered by neuronal activities for non-invasive functional imaging. It provides a cheaper and safer alternative neuroimaging tool that allows multiple or repeated tasks for examining brain activities in the same subject under diff erent experimental conditions in the same scanning session and across time. Our recent fMRI studies using the BrainPort and The vOICe helped reveal the nature of brain responses under diff erent types of sensory substitution tasks.

    Figure 1 BOLD functional MRI of multimodal sensory substitution.

    As shown in Figure 1, when a typical checkerboard visual stimulus was presented to the eyes of normally sighted subjects, a positive BOLD response to the visual cortex was observed. This occurred primarily because of a corresponding increase in brain activity and oxygen-rich blood contents entering the visual brain region. Similarly, when BrainPort (tactile-vision) and The vOICe (sound-vision) sensory substitution tasks were administered to the sighted subjects and both peri-natally blind and acquired blind subjects in the fMRI scanner, positive BOLD responses were found in the somatosensory cortex and auditory cortex, respectively in both sighted and blind subject groups. This was expected because the somatosensory cortex mediates tactile stimuli on the tongue, and the auditory cortex mediates sound information. In the visual cortex, a negative BOLD response was found in the sighted subjects with the use of either BrainPort or The vOICe, suggestive of relatively decreased blood fl ow to this area. The negative BOLD response in the visual cortex of sighted subjects was likely due to cross-modal inhibitions which naturally occur because the visual part of the brain in sighted subjects is not necessarily required for interpreting non-visual sensory stimuli (Kawashima et al., 1995; Laurienti et al., 2002; Hairston et al., 2008). In contrast, a positive BOLD response was found in the visual cortex of both peri-natal and acquired blind subjects with both BrainPort and The vOICe input, suggesting that this brain region, deprived of aff erent visual input because of blindness, is being recruited to assist with the interpretation of both tactile and auditory information. The diff erent BOLD responses exhibited between blind and sighted subjects in the visual cortex demonstrated direct evidence of functional brain reorganization as a function of blindness. Not only were the brain responses diff erent between blind and sighted subjects, but the brains of the same blind subjects were also able to secondarily activate the visual cortex from two completely diff erent primary alternative senses (touch and sound). This fi nding supports the fl exibility of the visual brain to adapt to multi-sensory cross-modal inputs, at least in the context of visual deprivation.

    To evaluate the possible causes of visual cortex activation with sensory substitution, a separate experiment was performed to test the minimum duration of training needed to increase activity of the visual cortex in the blind. Our initial fi ndings suggested that this can occur shortly. In naive subjects with no prior exposure to The vOICe, active interpretation of the vOICe stimulus after only 10 minutes of rudimentary training increased the BOLD signal in the visual cortex of the blind subjects compared to passive presentation of the same stimulus at baseline (Murphy et al., 2014). Notably, sighted subjects did not show apparent changes in BOLD activation in any visual cortical regions before and after the short training session.

    In addition to active task-based fMRI, fMRI technology has the capability to evaluate functional connectivity between brain regions when the subjects are at rest. Our initial fi ndings suggested that in the passive, resting state when the subjects were not instructed to perform any tasks, functional connectivity of the visual cortex becomes weaker within sensory networks but stronger in those brain regions responsible for higher-order cognitive functions such as task-positive networks, where activity increases during cognitive tasks, and salience networks (Chan et al., 2014a). These fi ndings support the recent model that the visual brain is not limited to a single sensory modality but rather is highly plastic and task-fl exible (Reich et al., 2012). We speculate that an adaptive brain reorganization which shifted the visual cortex from a predominantly sensory network to that of a higher-order, top-down task-positive cognitive network was already extant in the blind group before task-based fMRI experiments, and that this adaptation enabled BOLD activation of the visual cortex during our experiments.

    In addition to functional imaging, magnetic resonance enables multiparametric assessments of the metabolism and structure of the central nervous system in both humans and animal models. Future studies are envisioned that utilize magnetic resonance spectroscopy to determine the neurochemical changes in visually deprived brains such as the balance between excitatory and inhibitory neurotransmissions (Chow et al., 2011; Weaver et al., 2013; Wu et al., 2013). Advanced diffusion MRI techniques and MRI tracers can also be used to determine which neural pathways are altered in diff erent types of blindness (Schoth et al., 2006; Chan et al., 2012, 2014b; Li et al., 2013; Lee et al., 2014; Dietrich et al., 2015; Ho et al., 2015; Reislev et al., 2015), and which pathways are predominantly responsible for cross-modal brain activation by probing training-induced white matter plastic changes during sensory substitution rehabilitation over time. This data set could be co-registered with fMRI to study the structure-function relationships between white matter integrity and brain activities as well as sensory substitution performance across diff erent life fractions of blindness.

    An interesting observation is that even though cross-modal plasticity is a well-established phenomenon in the blind, and that this eff ect is measurable using various methods of neuroimaging when the blind use sensory substitution devices, whether these neuronal changes confer superior abilities in the functional domain remains controversial. For example, in our laboratory, we have yet to fi nd a correlation between increased activation of the visual cortex and performance improvements on many diff erent types of outcomes measures (Lee et al., 2014). This fi nding is at odds with the generally accepted notion that the blind should be better able to discriminate auditory and tactile stimuli than their sighted counterparts. It is also inconsistent with experiments that suggest brain structure and function can predict performance with spatial hearing (Roder et al., 2002; Gougoux et al., 2005) and pitch discrimination (Voss and Zatorre, 2012; Voss et al., 2014). Future experiments with greater numbers of subjects followed for longer periods of time will be needed to shed light on this question, but are not likely to occur until sensory substitution devices are more widely available and are easier for subjects to use throughout the day.

    In summary, sensory substitution devices for blindness should be considered a valuable method for studying plasticity of the central nervous system. In order for vision restoration eff orts to move forward, a better understanding of the brain changes as a result of vision loss is urgently needed. Neuroimaging in combination with sensory substitution devices off ers tremendous versatility to provide the answers needed when deciding on the appropriate candidates forvision restoration.

    This work was supported by National Institutes of Health Contracts P30-EY008098 and T32-EY017271-06 (Bethesda, MD); United States Department of Defense DM090217 (Arlington, VA); Alcon Research Institute Young Investigator Grant (Fort Worth, TX); Eye and Ear Foundation (Pittsburgh, PA); Research to Prevent Blindness (New York, NY); Aging Institute Pilot Seed Grant, University of Pittsburgh (Pittsburgh, PA); and Postdoctoral Fellowship Program in Ocular Tissue Engineering and Regenerative Ophthalmology, Louis J. Fox Center for Vision Restoration, University of Pittsburgh and UPMC (Pittsburgh, PA). We thank all collaborators who contributed to our research papers upon which the present commentary is based.

    Amy C. Nau*, Matthew C. Murphy, Kevin C. Chan*

    UPMC Eye Center, Ophthalmology and Visual Science Research

    Center, Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA (Nau AC, Murphy MC, Chan KC)

    Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA (Chan KC)

    McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA (Nau AC, Chan KC)

    Louis J. Fox Center for Vision Restoration, University of Pittsburgh, Pittsburgh, PA, USA (Nau AC, Murphy MC, Chan KC)

    Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA (Chan KC)

    *Correspondence to: Amy C. Nau, O.D. or Kevin C. Chan, Ph.D., anau@korbassociates.com or chuenwing.chan@fulbrightmail.org.

    Accepted: 2015-08-15

    orcid: 0000-0003-4012-7084 (Kevin C. Chan)

    Abboud S, Hanassy S, Levy-Tzedek S, Maidenbaum S, Amedi A (2014) EyeMusic: Introducing a “visual” colorful experience for the blind using auditory sensory substitution. Restor Neurol Neurosci 32:247-257.

    Bach-y-Rita P, Collins CC, Saunders FA, White B, Scadden L (1969) Vision substitution by tactile image projection. Nature 221:963-964.

    Bedny M, Pascual-Leone A, Dravida S, Saxe R (2012) A sensitive period for language in the visual cortex: distinct patterns of plasticity in congenitally versus late blind adults. Brain Lang 122:162-170.

    Chan KC, Cheng JS, Fan S, Zhou IY, Yang J, Wu EX (2012) In vivo evaluation of retinal and callosal projections in early postnatal development and plasticity using manganese-enhanced MRI and diff usion tensor imaging. Neuroimage 59:2274-2283.

    Chan KC, Murphy MC, Fisher C, Kim SG, Schuman JS, Nau AC (2014a) Functional plasticity of the visual system in the blind during sensory substitution task and at rest. In: Investigative Ophthalmology and Visual Science 55:2163.

    Chan KC, Fan SJ, Chan RW, Cheng JS, Zhou IY, Wu EX (2014b) In vivo visuotopic brain mapping with manganese-enhanced MRI and resting-state functional connectivity MRI. Neuroimage 90:235-245.

    Chow AM, Zhou IY, Fan SJ, Chan KW, Chan KC, Wu EX (2011) Metabolic changes in visual cortex of neonatal monocular enucleated rat: a proton magnetic resonance spectroscopy study. Int J Dev Neurosci 29:25-30.

    Collignon O, Dormal G, Albouy G, Vandewalle G, Voss P, Phillips C, Lepore F (2013) Impact of blindness onset on the functional organization and the connectivity of the occipital cortex. Brain 136:2769-2783.

    Dietrich S, Hertrich I, Kumar V, Ackermann H (2015) Experience-related structural changes of degenerated occipital white matter in late-blind humans - a diff usion tensor imaging study. PLoS One 10:e0122863.

    Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E, Fraga-Pumar E, Llufriu S, Ortiz S, Bullich S, Sepulveda M, Falcon C, Berenguer J, Saiz A, Sanchez-Dalmau B, Villoslada P (2014) Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol 75:98-107.

    Garaci FG, Bolacchi F, Cerulli A, Melis M, Spano A, Cedrone C, Floris R, Simonetti G, Nucci C (2009) Optic nerve and optic radiation neurodegeneration in patients with glaucoma: in vivo analysis with 3-T diff usion-tensor MR imaging. Radiology 252:496-501.

    Gougoux F, Zatorre RJ, Lassonde M, Voss P, Lepore F (2005) A functional neuroimaging study of sound localization: visual cortex activity predicts performance in early-blind individuals. PLoS Biol 3:e27.

    Hairston WD, Hodges DA, Casanova R, Hayasaka S, Kraft R, Maldjian JA, Burdette JH (2008) Closing the mind’s eye: deactivation of visual cortex related to auditory task diffi culty. Neuroreport 19:151-154.

    Ho LC, Wang B, Conner IP, van der Merwe Y, Bilonick RA, Kim SG, Wu EX, Sigal IA, Wollstein G, Schuman JS, Chan KC (2015) In vivo evaluation of white matter integrity and anterograde transport in visual system after excitotoxic retinal injury with multimodal MRI and OCT. Invest Ophthalmol Vis Sci 56:3788-3800.

    Kawashima R, O’Sullivan BT, Roland PE (1995) Positron-emission tomography studies of cross-modality inhibition in selective attentional tasks: closing the “mind’s eye”. Proc Natl Acad Sci U S A 92:5969-5972.

    Kupers R, Ptito M (2014) Compensatory plasticity and cross-modal reorganization following early visual deprivation. Neurosci Biobehav Rev 41:36-52. Laurienti PJ, Burdette JH, Wallace MT, Yen YF, Field AS, Stein BE (2002) Deactivation of sensory-specifi c cortex by cross-modal stimuli. J Cogn Neurosci 14:420-429.

    Lee VK, Nau AC, Laymon C, Chan KC, Rosario BL, Fisher C (2014) Successful tactile based visual sensory substitution use functions independently of visual pathway integrity. Front Hum Neurosci 8:291.

    Li J, Liu Y, Qin W, Jiang J, Qiu Z, Xu J, Yu C, Jiang T (2013) Age of onset of blindness aff ects brain anatomical networks constructed using diff usion tensor tractography. Cereb Cortex 23:542-551.

    Maidenbaum S, Abboud S, Amedi A (2014a) Sensory substitution: closing the gap between basic research and widespread practical visual rehabilitation. Neurosci Biobehav Rev 41:3-15.

    Maidenbaum S, Hanassy S, Abboud S, Buchs G, Chebat DR, Levy-Tzedek S, Amedi A (2014b) The “EyeCane”, a new electronic travel aid for the blind: Technology, behavior & swift learning. Restor Neurol Neurosci 32:813-824. Merabet LB, Pascual-Leone A (2010) Neural reorganization following sensory loss: the opportunity of change. Nat Rev Neurosci 11:44-52.

    Murphy MC, Fisher C, Kim SG, Schuman JS, Nau AC, Chan KC (2014) Top down infl uence on the visual cortex of the blind during auditory sensory substitution. Proc Intl Soc Mag Reson Med 22:579.

    Nau AC, Pintar C, Arnoldussen A, Fisher C (2015) Acquisition of visual perception in blind adults using the brainport artifi cial vision device. Am J Occup Ther 69:6901290010p6901290011-6901290018.

    Ohno N, Murai H, Suzuki Y, Kiyosawa M, Tokumaru AM, Ishii K, Ohno-Matsui K (2015) Alteration of the optic radiations using diff usion-tensor MRI in patients with retinitis pigmentosa. Br J Ophthalmol 99:1051-1054.

    Reich L, Maidenbaum S, Amedi A (2012) The brain as a fl exible task machine: implications for visual rehabilitation using noninvasive vs. invasive approaches. Curr Opin Neurol 25:86-95.

    Reislev NL, Kupers R, Siebner HR, Ptito M, Dyrby TB (2015) Blindness alters the microstructure of the ventral but not the dorsal visual stream. Brain Struct Funct DOI:10.1007/s00429-015-1078-8.

    Roder B, Stock O, Bien S, Neville H, Rosler F (2002) Speech processing activates visual cortex in congenitally blind humans. Eur J Neurosci 16:930-936.

    Sadato N, Okada T, Honda M, Yonekura Y (2002) Critical period for cross-modal plasticity in blind humans: a functional MRI study. Neuroimage 16:389-400.

    Schoth F, Burgel U, Dorsch R, Reinges MH, Krings T (2006) Diff usion tensor imaging in acquired blind humans. Neurosci Lett 398:178-182.

    Voss P, Zatorre RJ (2012) Occipital cortical thickness predicts performance on pitch and musical tasks in blind individuals. Cereb Cortex 22:2455-2465.

    Voss P, Pike BG, Zatorre RJ (2014) Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. Brain 137:1224-1240.

    Weaver KE, Richards TL, Saenz M, Petropoulos H, Fine I (2013) Neurochemical changes within human early blind occipital cortex. Neuroscience 252:222-233.

    Wu L, Tang Z, Sun X, Feng X, Qian W, Wang J, Jin L (2013) Metabolic changes in the visual cortex of binocular blindness macaque monkeys: a proton magnetic resonance spectroscopy study. PLoS One 8:e80073.

    10.4103/1673-5374.169612 http://www.nrronline.org/

    Nau AC, Murphy MC, Chan KC (2015) Use of sensory substitution devices as a model system for investigating cross-modal neuroplasticity in humans. Neural Regen Res 10(11):1717-1719.

    欧美人与性动交α欧美精品济南到| 少妇 在线观看| 国产老妇伦熟女老妇高清| 日韩中文字幕欧美一区二区| 少妇被粗大的猛进出69影院| 男女免费视频国产| 国产97色在线日韩免费| 欧美乱码精品一区二区三区| 三上悠亚av全集在线观看| 日韩欧美一区二区三区在线观看 | 亚洲国产精品999| 香蕉丝袜av| 久久久国产成人免费| 黑人猛操日本美女一级片| 天天躁日日躁夜夜躁夜夜| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 国产av又大| 多毛熟女@视频| netflix在线观看网站| 婷婷色av中文字幕| 国产精品二区激情视频| 超色免费av| 各种免费的搞黄视频| 啦啦啦在线免费观看视频4| 国产亚洲av高清不卡| 韩国精品一区二区三区| 国产精品.久久久| 黄片大片在线免费观看| 亚洲精品国产一区二区精华液| netflix在线观看网站| 久久久久久人人人人人| 一二三四社区在线视频社区8| 国产精品 国内视频| 色婷婷av一区二区三区视频| 国产1区2区3区精品| 韩国高清视频一区二区三区| 久久久精品免费免费高清| 亚洲九九香蕉| 日韩大片免费观看网站| 又黄又粗又硬又大视频| av在线老鸭窝| 免费女性裸体啪啪无遮挡网站| 99香蕉大伊视频| 正在播放国产对白刺激| 一级黄色大片毛片| 国产精品国产av在线观看| 久久人妻熟女aⅴ| 三级毛片av免费| 国产成人av激情在线播放| 精品福利观看| 午夜免费观看性视频| 欧美激情高清一区二区三区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| 国产精品香港三级国产av潘金莲| 日本a在线网址| 国产极品粉嫩免费观看在线| 亚洲精品av麻豆狂野| 天堂俺去俺来也www色官网| 精品一区二区三卡| 亚洲av日韩在线播放| 久久这里只有精品19| 天堂8中文在线网| 国产精品99久久99久久久不卡| 亚洲av成人不卡在线观看播放网 | 精品卡一卡二卡四卡免费| 欧美日韩黄片免| 久久狼人影院| 人成视频在线观看免费观看| 国产亚洲午夜精品一区二区久久| 午夜激情av网站| av在线老鸭窝| 高清黄色对白视频在线免费看| 女人精品久久久久毛片| 老司机深夜福利视频在线观看 | 人妻久久中文字幕网| 人妻人人澡人人爽人人| 亚洲国产毛片av蜜桃av| 狠狠狠狠99中文字幕| 性少妇av在线| 亚洲专区字幕在线| 亚洲第一av免费看| 欧美xxⅹ黑人| 高清av免费在线| 岛国在线观看网站| 久久精品国产亚洲av香蕉五月 | 精品国产一区二区三区久久久樱花| 99热国产这里只有精品6| 国产精品一区二区免费欧美 | 国产成人av教育| 啦啦啦中文免费视频观看日本| 欧美亚洲日本最大视频资源| 国产三级黄色录像| 亚洲伊人久久精品综合| 热99国产精品久久久久久7| 亚洲伊人色综图| 欧美激情极品国产一区二区三区| 一区二区av电影网| 人妻人人澡人人爽人人| 国产xxxxx性猛交| 香蕉丝袜av| av片东京热男人的天堂| 亚洲va日本ⅴa欧美va伊人久久 | 中文字幕色久视频| www日本在线高清视频| 在线观看人妻少妇| 日本a在线网址| 久久久久国产一级毛片高清牌| 午夜91福利影院| 伊人久久大香线蕉亚洲五| 99re6热这里在线精品视频| 亚洲av国产av综合av卡| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 久久久水蜜桃国产精品网| 国产精品成人在线| 国产av国产精品国产| 超碰97精品在线观看| 宅男免费午夜| 制服诱惑二区| 亚洲精品av麻豆狂野| 男人舔女人的私密视频| 国产免费现黄频在线看| e午夜精品久久久久久久| 精品少妇内射三级| 日本91视频免费播放| 久久中文字幕一级| 91麻豆av在线| 亚洲欧美日韩另类电影网站| 人人妻人人爽人人添夜夜欢视频| 黄片大片在线免费观看| 黄色毛片三级朝国网站| 极品少妇高潮喷水抽搐| 成年人免费黄色播放视频| 69精品国产乱码久久久| 在线观看舔阴道视频| 免费黄频网站在线观看国产| 伊人亚洲综合成人网| 法律面前人人平等表现在哪些方面 | 97在线人人人人妻| 一级片免费观看大全| 男女高潮啪啪啪动态图| 黄色 视频免费看| 成年人免费黄色播放视频| 精品国产一区二区久久| 欧美国产精品va在线观看不卡| 男人添女人高潮全过程视频| 在线观看免费日韩欧美大片| 亚洲成人手机| 精品人妻在线不人妻| 国产福利在线免费观看视频| 亚洲国产精品一区三区| 精品人妻1区二区| 亚洲欧美精品自产自拍| 搡老乐熟女国产| 精品国产超薄肉色丝袜足j| 人妻一区二区av| 欧美精品一区二区免费开放| 午夜福利视频精品| 亚洲欧美色中文字幕在线| 国产成人精品久久二区二区91| 国产激情久久老熟女| 亚洲午夜精品一区,二区,三区| 欧美97在线视频| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 亚洲专区中文字幕在线| 男女之事视频高清在线观看| 国产区一区二久久| av不卡在线播放| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品自产自拍| 午夜免费鲁丝| videos熟女内射| 肉色欧美久久久久久久蜜桃| 国产片内射在线| 老司机在亚洲福利影院| 国产主播在线观看一区二区| 青草久久国产| 无限看片的www在线观看| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 啦啦啦视频在线资源免费观看| 极品少妇高潮喷水抽搐| 交换朋友夫妻互换小说| 亚洲av片天天在线观看| a级片在线免费高清观看视频| 国产av又大| 精品久久久精品久久久| a级片在线免费高清观看视频| 一区二区三区精品91| 精品国内亚洲2022精品成人 | 日日摸夜夜添夜夜添小说| 在线亚洲精品国产二区图片欧美| 久久免费观看电影| 午夜免费鲁丝| 精品一品国产午夜福利视频| 18禁黄网站禁片午夜丰满| 一本久久精品| 国产又色又爽无遮挡免| 欧美人与性动交α欧美精品济南到| 美国免费a级毛片| 精品人妻在线不人妻| 中文欧美无线码| 91九色精品人成在线观看| 男人添女人高潮全过程视频| 汤姆久久久久久久影院中文字幕| 日韩大片免费观看网站| 成人av一区二区三区在线看 | 日本a在线网址| 免费高清在线观看视频在线观看| 亚洲国产欧美网| 国产精品1区2区在线观看. | 韩国精品一区二区三区| 超色免费av| 一级毛片电影观看| 女人高潮潮喷娇喘18禁视频| 国产精品 国内视频| 热re99久久国产66热| videos熟女内射| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看 | 久久影院123| 99久久人妻综合| av超薄肉色丝袜交足视频| 50天的宝宝边吃奶边哭怎么回事| 日韩精品免费视频一区二区三区| 日本vs欧美在线观看视频| 一二三四在线观看免费中文在| 国产欧美亚洲国产| 中国国产av一级| 999精品在线视频| 亚洲精品中文字幕一二三四区 | 好男人电影高清在线观看| 伊人亚洲综合成人网| 亚洲国产欧美网| 国产一卡二卡三卡精品| 国产激情久久老熟女| 日韩欧美国产一区二区入口| 欧美日韩成人在线一区二区| 在线观看免费高清a一片| 男女无遮挡免费网站观看| 18禁黄网站禁片午夜丰满| 国产亚洲av高清不卡| 欧美激情高清一区二区三区| 精品卡一卡二卡四卡免费| 久久中文看片网| 少妇的丰满在线观看| 中文字幕制服av| 伊人亚洲综合成人网| 欧美日韩国产mv在线观看视频| 美女高潮喷水抽搐中文字幕| 18禁裸乳无遮挡动漫免费视频| 少妇粗大呻吟视频| 超色免费av| 五月天丁香电影| 国产精品九九99| av天堂久久9| 天天影视国产精品| 色婷婷av一区二区三区视频| 自线自在国产av| 18在线观看网站| 国产av一区二区精品久久| 亚洲精品国产av成人精品| 人人妻人人爽人人添夜夜欢视频| 爱豆传媒免费全集在线观看| 日韩欧美国产一区二区入口| 69精品国产乱码久久久| 亚洲欧美激情在线| 男女下面插进去视频免费观看| 一级毛片精品| av欧美777| 亚洲人成电影免费在线| 丝袜在线中文字幕| 中亚洲国语对白在线视频| 精品少妇内射三级| 五月开心婷婷网| 伦理电影免费视频| tube8黄色片| 精品熟女少妇八av免费久了| 麻豆乱淫一区二区| 久久人妻熟女aⅴ| 亚洲国产av新网站| 老司机深夜福利视频在线观看 | 免费不卡黄色视频| 精品一区二区三区av网在线观看 | 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品久久二区二区免费| 久久久久精品人妻al黑| 首页视频小说图片口味搜索| 日韩制服丝袜自拍偷拍| 99国产精品一区二区蜜桃av | 国产精品欧美亚洲77777| 一本综合久久免费| 久久中文字幕一级| 王馨瑶露胸无遮挡在线观看| 日韩精品免费视频一区二区三区| 人妻久久中文字幕网| 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 欧美 亚洲 国产 日韩一| 精品人妻在线不人妻| 最新在线观看一区二区三区| 欧美精品亚洲一区二区| 天堂中文最新版在线下载| 正在播放国产对白刺激| 热99久久久久精品小说推荐| 久久这里只有精品19| 成人av一区二区三区在线看 | 搡老熟女国产l中国老女人| 国产欧美日韩一区二区三 | 少妇猛男粗大的猛烈进出视频| h视频一区二区三区| 免费看十八禁软件| av免费在线观看网站| 国产一区二区三区在线臀色熟女 | 精品国内亚洲2022精品成人 | 国产免费福利视频在线观看| 热re99久久国产66热| 精品亚洲成a人片在线观看| 午夜精品久久久久久毛片777| 亚洲欧美一区二区三区久久| 叶爱在线成人免费视频播放| 操美女的视频在线观看| av天堂在线播放| 美女主播在线视频| 超碰97精品在线观看| 精品久久久久久久毛片微露脸 | 咕卡用的链子| 高清视频免费观看一区二区| 久久影院123| videos熟女内射| 老司机午夜十八禁免费视频| 亚洲欧美日韩另类电影网站| 亚洲国产欧美一区二区综合| 亚洲av片天天在线观看| 性高湖久久久久久久久免费观看| 午夜激情久久久久久久| 波多野结衣av一区二区av| 亚洲一区二区三区欧美精品| 亚洲成人免费电影在线观看| 人人妻人人澡人人爽人人夜夜| 国产成人免费无遮挡视频| 欧美黄色片欧美黄色片| 亚洲情色 制服丝袜| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 美国免费a级毛片| 亚洲男人天堂网一区| 国产片内射在线| av视频免费观看在线观看| 亚洲欧美成人综合另类久久久| 色视频在线一区二区三区| 亚洲少妇的诱惑av| 两人在一起打扑克的视频| 国产成+人综合+亚洲专区| 一个人免费在线观看的高清视频 | 婷婷成人精品国产| 成人免费观看视频高清| 丁香六月欧美| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲少妇的诱惑av| 亚洲免费av在线视频| 亚洲成人免费电影在线观看| 香蕉国产在线看| 青青草视频在线视频观看| 国产一卡二卡三卡精品| 日韩大片免费观看网站| 欧美97在线视频| 国产亚洲欧美精品永久| 女人被躁到高潮嗷嗷叫费观| 在线观看免费午夜福利视频| 午夜激情av网站| 男女边摸边吃奶| 亚洲欧美一区二区三区久久| 成年美女黄网站色视频大全免费| 成年人午夜在线观看视频| 精品少妇黑人巨大在线播放| 亚洲 欧美一区二区三区| 啦啦啦 在线观看视频| 香蕉国产在线看| 老汉色∧v一级毛片| 久久九九热精品免费| 蜜桃国产av成人99| a级毛片在线看网站| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 正在播放国产对白刺激| 久久亚洲国产成人精品v| 成人国语在线视频| 国产在线一区二区三区精| a在线观看视频网站| 性色av一级| 国产成人影院久久av| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 日韩一区二区三区影片| 日本a在线网址| 中文字幕高清在线视频| a级片在线免费高清观看视频| 一本色道久久久久久精品综合| 手机成人av网站| 最近中文字幕2019免费版| 精品久久久精品久久久| 纵有疾风起免费观看全集完整版| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| www日本在线高清视频| 五月开心婷婷网| 黑人操中国人逼视频| 亚洲成av片中文字幕在线观看| 亚洲情色 制服丝袜| 嫩草影视91久久| 精品久久久久久电影网| 精品人妻一区二区三区麻豆| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 亚洲色图综合在线观看| 久久精品人人爽人人爽视色| √禁漫天堂资源中文www| 80岁老熟妇乱子伦牲交| 久久久久久久精品精品| 大陆偷拍与自拍| 久久久久国产一级毛片高清牌| av欧美777| 国产精品一区二区在线不卡| 深夜精品福利| 欧美中文综合在线视频| 欧美黄色片欧美黄色片| 免费av中文字幕在线| 国产欧美日韩一区二区三 | 曰老女人黄片| 国产不卡av网站在线观看| 亚洲免费av在线视频| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码| 久久国产精品男人的天堂亚洲| 欧美精品一区二区免费开放| 少妇粗大呻吟视频| 18禁裸乳无遮挡动漫免费视频| 国产精品香港三级国产av潘金莲| 国产精品一区二区免费欧美 | 999久久久精品免费观看国产| 最近最新中文字幕大全免费视频| 日韩一区二区三区影片| 国产av又大| 亚洲成人免费电影在线观看| 99久久国产精品久久久| 国产亚洲av片在线观看秒播厂| av福利片在线| 国产一区有黄有色的免费视频| 国产精品欧美亚洲77777| 亚洲 国产 在线| 国产97色在线日韩免费| 久热这里只有精品99| 精品欧美一区二区三区在线| 久热这里只有精品99| 亚洲国产av新网站| h视频一区二区三区| 久久影院123| 久久久欧美国产精品| 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 精品久久久精品久久久| 午夜福利在线免费观看网站| 欧美国产精品va在线观看不卡| 国产精品一区二区在线观看99| 亚洲自偷自拍图片 自拍| www.999成人在线观看| 美女福利国产在线| 国产三级黄色录像| www日本在线高清视频| 亚洲av电影在线进入| 不卡av一区二区三区| 国产精品二区激情视频| 午夜免费鲁丝| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 最新的欧美精品一区二区| 日日摸夜夜添夜夜添小说| 狠狠婷婷综合久久久久久88av| 老司机在亚洲福利影院| 欧美精品一区二区大全| 免费在线观看影片大全网站| 欧美日韩成人在线一区二区| 午夜免费成人在线视频| 国产97色在线日韩免费| 极品少妇高潮喷水抽搐| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 黄色怎么调成土黄色| 91麻豆精品激情在线观看国产 | 一边摸一边做爽爽视频免费| 精品福利永久在线观看| 欧美日韩国产mv在线观看视频| 电影成人av| 欧美国产精品va在线观看不卡| 桃红色精品国产亚洲av| 亚洲熟女毛片儿| 精品久久久久久电影网| 精品人妻1区二区| 欧美另类一区| 午夜福利乱码中文字幕| 中文精品一卡2卡3卡4更新| 欧美黑人欧美精品刺激| 国产精品一区二区在线不卡| 日韩视频一区二区在线观看| av在线播放精品| 亚洲国产精品一区二区三区在线| 欧美国产精品va在线观看不卡| 久久九九热精品免费| 亚洲欧美日韩另类电影网站| 亚洲伊人久久精品综合| 日韩欧美国产一区二区入口| 操出白浆在线播放| 欧美97在线视频| 国产亚洲欧美精品永久| 黄色视频不卡| 50天的宝宝边吃奶边哭怎么回事| 91av网站免费观看| 色播在线永久视频| 十八禁网站网址无遮挡| 免费久久久久久久精品成人欧美视频| 啦啦啦 在线观看视频| 欧美另类亚洲清纯唯美| 国产一级毛片在线| 国产成人欧美在线观看 | 国产一级毛片在线| 又大又爽又粗| 精品少妇一区二区三区视频日本电影| 人妻一区二区av| 无限看片的www在线观看| 天天添夜夜摸| 国产视频一区二区在线看| 汤姆久久久久久久影院中文字幕| 日本五十路高清| 亚洲熟女精品中文字幕| 韩国高清视频一区二区三区| 亚洲成国产人片在线观看| 黑人巨大精品欧美一区二区蜜桃| 久久久久精品国产欧美久久久 | 一本一本久久a久久精品综合妖精| 午夜91福利影院| 久久毛片免费看一区二区三区| 午夜福利视频精品| 国产三级黄色录像| 亚洲中文日韩欧美视频| 一级片免费观看大全| 老熟妇乱子伦视频在线观看 | 高清av免费在线| 亚洲少妇的诱惑av| 久久人人爽av亚洲精品天堂| 日本精品一区二区三区蜜桃| 老司机深夜福利视频在线观看 | av天堂久久9| 1024香蕉在线观看| 国产激情久久老熟女| 国产在线免费精品| 精品少妇久久久久久888优播| 成年美女黄网站色视频大全免费| 美女国产高潮福利片在线看| 三级毛片av免费| av线在线观看网站| 正在播放国产对白刺激| 黄片小视频在线播放| 超碰成人久久| 国产免费福利视频在线观看| 一二三四在线观看免费中文在| 亚洲成人国产一区在线观看| 中文字幕色久视频| 91老司机精品| 在线观看免费高清a一片| 久久毛片免费看一区二区三区| 少妇人妻久久综合中文| 亚洲五月色婷婷综合| 欧美亚洲 丝袜 人妻 在线| 欧美人与性动交α欧美软件| 黑丝袜美女国产一区| 亚洲av电影在线观看一区二区三区| 久久久久久人人人人人| 久久免费观看电影| 午夜福利影视在线免费观看| 满18在线观看网站| 我的亚洲天堂| 午夜影院在线不卡| 精品少妇内射三级| 国产av一区二区精品久久| 热99re8久久精品国产| av在线app专区| 国产黄色免费在线视频| netflix在线观看网站| 久久中文看片网| 真人做人爱边吃奶动态| 亚洲成av片中文字幕在线观看| 免费一级毛片在线播放高清视频 | 成年动漫av网址| 高清黄色对白视频在线免费看| 日韩欧美免费精品| 看免费av毛片| 国产一区二区三区在线臀色熟女 | 国产淫语在线视频| 1024视频免费在线观看| 99国产精品一区二区三区| 久久亚洲精品不卡| 亚洲五月婷婷丁香| 国产成人欧美| 国产av精品麻豆| 久久 成人 亚洲| 亚洲精品美女久久久久99蜜臀| 三级毛片av免费| 欧美日韩av久久| 一区二区三区精品91| 亚洲专区字幕在线|