• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Seasonal variations of sulfur aerosols at Zhongshan Station,East Antarctica

    2015-02-06 03:47:28ZHANGMimingCHENLiqiLINQiWANGYanmin
    Advances in Polar Science 2015年3期

    ZHANG Miming, CHEN Liqi*, LIN Qi & WANG Yanmin

    Key Laboratory of Global change and Marine-Atmospheric Chemistry, SOA, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China

    1 Introduction

    The dimethyl sulfide (DMS) oxidation byproducts methanesulfonic acid (MSA) and nss-SO42-in the atmosphere are believed to contribute to cloud condensation nuclei (CCN)number concentration, alter atmospheric albedo, and regulate the climate (the CLAW hypothesis)[1-2]. In contrast to the Northern Hemisphere, atmospheric sulfur aerosols in Antarctica are natural rather than anthropogenic[3]. Therefore,it is very important to study marine biogenic sulfur emissions at high southern latitudes, where such emissions are expected to strongly dominate the natural sulfur cycle.

    However, because of the harsh environment in Antarctica, most sulfur aerosol studies are performed in austral spring and summer[4-7]. Seasonal and annual observations are still sparse[8-10]. It has been demonstrated that there is a strong seasonal cycle of sulfur aerosols in Antarctica.These variations are related to phytoplanktonic activity and sea ice condition variation in the Southern Ocean[8]. This productivity could be enhanced following sea ice retreat[11]because of the release of micronutrients (such as iron)[12-13]and algae[14-15]by sea ice melt. In addition, most of the seasonal sea ice zone (south of 60°S) is covered by sea ice with low phytoplanktonic activity and DMS emissions[16-17].Significant DMS concentrations and emissions have been detected in the polynyas or open waters off coastal regions of Antarctica[18-20]. Therefore, attention should be paid to linking phytoplanktonic activity variations in such polynyas with atmospheric sulfur aerosols in coastal regions of Antarctica.

    In this study, we present seasonal variations of sulfur aerosols from December 2010 through November 2011. The seasonal variation of sulfur species is discussed. The influence of oceanic phytoplanktonic activity on variations of these species is also analyzed through remote sensing technology.We hope that this research provides information for analysis of the source of the species in aerosol at coastal regions of Antarctica.

    2 Experiment

    2.1 Sampling site

    Zhongshan Station (69°22′S, 76°22′E) is a Chinese Antarctic research base to the southeast of Prydz Bay in East Antarctica(Figure 1). That bay is the third largest surrounding Antarctica, and the purpose of sulfur aerosol observation at Zhongshan Station was to investigate the influence of marine phytoplanktonic activity in the bay on atmospheric sulfur species. The sampling site was on a hill facing upwind of the station, to avoid local contamination.

    2.2 Sampling and chemical analyses

    Sampling and measurement methods were the same as described in Xu et al.[21]and Chen et al.[22]. Aerosol samples were collected with a Whatman 41 fi lter using a high-volume bulk sampler Model M241 (University of Miami, USA). The sampling interval was 10 d with flow rate ~1 m3?min-1. After sampling, sample fi lters were stored in a refrigerator at 4°C.A total of 36 high-volume bulk samples were collected from December 2010 through November 2011. A Dionex ICS-2500 ion chromatograph (IC) was used to analyze aerosol samples for water-soluble ions, including MSA, SO42-, Cl-,Na+, and Mg2+. Experimental methods were as follows. About 1/8 portion of each filter was placed in 50 mL of deionized water, ultrasonicated for 40 min, and leached overnight.Then, the sample solutions were injected into the IC system through 0.22-μm filters. Cations were analyzed with a CS12A analytical column and CG12A guard column with the MSA eluent, and anions were analyzed with an AS18 analytical column and AG18 guard column with KOH eluent. Detection limits were 0.13 ng?m-3for MSA, 0.016 ng?m-3for SO42-, 0.38 ng?m-3for Na2+. Precision of the analytical procedures based on seven spiked samples was< 5%.

    2.3 Calculation of nss-SO42-

    Nss-SO42-is commonly calculated by the equation [nss-SO42-] = [SO42-]total-[Na+] × 0.252, where 0.252 is the mass ratio of SO42-/Na+in seawater. However, when using this equation, negative nss-SO42-values may result, especially during austral fall and winter. The reasons for this were discussed by Hall and Wolff[23], the most important of which was the fractionation of sulfate aerosols from the formation of Na2SO42-?10 H2O when temperature was < -8.2°C[24].Therefore, in consideration of this fractionation, we used SO42-/Na+ratio 0.13 as in Preunkert et al.[8]to calculate nss-SO42-during winter (April through October) in Antarctica.

    2.4 Chl a concentrations and meteorological data

    Eight-day average Chlaconcentration distributions in the sampling site sector were obtained from http://oceancolor.gsfc.nasa.gov (Modisa L3SMI Chladata, with resolution 4 km × 4 km). Chlaconcentrations in selected regions were also calculated for analyzing the distribution of phytoplankton activity. Meteorology data were obtained from Zhongshan Station meteorology observatory operated by the Polar Research Institute of China. Three main parameters, air temperature, wind direction and wind speed, were selected and averaged daily for investigation.

    3 Result and discussion

    3.1 Ion concentrations

    Figure 2 presents ion concentrations from December 2010 through November 2011. Mean concentrations of MSA, nss-SO42-, SO42-and Na+were 24.2 ± 37.9 ng?m-3(0.5-158.3 ng?m-3), 53.0 ± 82.6 ng?m-3(n.d.-395.4 ng?m-3), 129.6 ±112.8 ng?m-3(18.5-416.7 ng?m-3), and 443.4 ± 409.5 ng?m-3(30.6-1648.2 ng?m-3), respectively.

    Table 1 Summary of average MSA and nss-SO42- concentrations observed at various coastal Antarctic sites

    In contrast with other sites (Table 1), MSA mean concentration during austral summer at Zhongshan Station was consistent with observation at Halley Station (January 2004 through February 2004) and Dumont d’Urille Station(December through February of 1996/1997, 1999/2000 and 2001/2002), but nearly two times smaller than at Palmer Station (January 1994 through February 1994) and Halley(January 2005 through February 2005). Slightly different than the MSA, nss-SO42-mean concentrations in summer at Zhongshan Station were lower than at Palmer (January 1994 through February 1994) and Dumont d’Urille (December through February 1996/1997, 1999/2000 and 2001/2002).Sulfur species variations between the sites could be attributed to biology, sea ice, oxidation and transportation processes,and meteorological conditions.

    3.2 Seasonal variations of MSA and nss-SO42-

    The atmospheric sulfur species MSA and nss-SO42-exhibited a strong seasonal cycle with summer maxima (Figure 2).The variability of Na+was different from sulfur compounds and had more fluctuation over the year. This may also be attributed to different sources or mechanisms, such as sea spray and biogenic components, formation mechanisms,various atmospheric reactions, and different size distributions and transport processes[26].

    Figure 2 shows that maximum MSA and nss-SO42-values appeared at the end of December, slightly earlier than previous studies at Dumont d’Urille[5,8-9], in which the maxima sulfur species occurred in January. The maxima of MSA and nss-SO42-concentrations were 158.3 ng?m-3and 395.4 ng?m-3,respectively. Such high concentrations of sulfur species were possibly related to biogenic emissions of DMS in the coastal regions[27-28]or marginal sea ice zone[29-30]of Antarctica,because phytoplankton blooms are frequent there in austral spring and summer. Monthly means of sulfur species are shown in Figure 3, from December through March. Both MSA and nss-SO42-decreased rapidly, by a factor of 4-10. Their concentrations decreased from 121.1 ng?m-3to 30.8 ng?m-3and 277.6 ng?m-3to 28.5 ng?m-3, respectively. From April through October, very low MSA sulfur species concentrations were observed. During that period, because the ocean was covered by ice and there was very weak solar radiation,primary productivity was very low in the Southern Ocean.This led to weak DMS emissions, with almost no contribution to sulfur aerosols at Zhongshan Station. It has been reported that sulfur species during winter in coastal Antarctica regions are mostly transported from mid or low latitude regions[9-10]because the lifetimes of MSA and nss-SO42-could be as long as a few weeks[31]. However, MSA and nss-SO42-showed a rapid increase from October to November. In contrast to the value at the beginning of November, MSA rapidly increased by a factor of 12. However, the increase of monthly average MSA values relative to winter was not obvious. This may be attributed to missing sample data at the end of that month. The high concentrations of MSA and nss-SO42-may be attributed to the early spring phytoplankton bloom in the coastal region or marginal sea ice zone, which followed the sea ice retreat[17,19]and increase of solar radiation[32]. In addition, we found a strong relationship between MSA and nss-SO42-(R2= 0.91,n= 28,p< 0.01), which is the reason that they had a common precursor (DMS).

    3.3 Influences on MSA and nss-SO42- seasonal variation

    Because the only source of MSA is believed to derive from the oxidation of DMS[33]and DMS production is largely related to phytoplanktonic activity, it is reasonable to link the sulfur species to that activity in the oceans. A study by Legrand and Pasteur[10]demonstrated that marine source regions affecting the sulfur aerosol cycle in high-latitude southern regions were primarily south of 50°S, with an increasing contribution of emissions from regions south of 60°S in summer[9]. However, most regions in the sea ice zone(south of 60°S) are covered by sea ice with weak biological activity and DMS emissions[16]. Conversely, as much as hundreds of nmol?L-1DMS concentrations have been found in polynyas along the coastal regions of Antarctica, such as the Ross and Amundsen seas[17-18,34]. Thus, it is of interest to investigate locations with major influences on the sulfur species at Zhongshan Station. To discuss the influence of oceanic DMS emissions on atmospheric sulfur compounds,attention should be given to ice-free open waters with high primary productivity. As shown in Figure 4, the dominant daily wind direction was northeast in spring and summer at Zhongshan Station. Because the sampling site was very close to open water (< 1 km), the direct air mass source is offshore.

    Figure 5 (bottom panels) depicts relatively strong phytoplanktonic activity in November, i.e., spring in the Southern Hemisphere, following sea ice retreat. The contributions of DMS emissions from the marginal ice zone would be much greater than those from open water offshore of the sampling site, because the ice-free open water area was small with little phytoplanktonic activity (~0.1 mg?m-3).However, in general, because both that activity and ice-free water area were not substantial, in combination with relatively low air temperature and solar radiation that could possibly impact the DMS oxidation process[35], the sulfur aerosol concentration was low.

    In December 2010, high Chlaconcentration was observed along 62°S. In the waters near Zhongshan Station(65°S-70°S, 70°E-85°E), biological activity was low through the end of December (Chlaaverage concentrations were 0.2221-0.8286 mg?m-3) (Figure 5). However, the low Chlamean values there did not coincide with the high concentrations of MSA (mean 121.3 mg?m-3, range 83.9-158.3 mg?m-3) and nss-SO42-(mean 277.6 mg?m-3, range 159.8-359.4 mg?m-3) in December. This suggests that the high concentration of sulfur species in December could hardly have originated from the nearby ocean but were possibly derived from the air mass over the marginal ice zone (along 62°S). It has been reported that in the marginal ice zone of the Weddle Sea, Chlaconcentration and primary productivity could be as high as 3.0 mg?m-3and 490 mg?C?m-2?d-1in austral spring[36]. Therefore, as ocean with weak biological DMS emissions offshore of the sampling site, DMS emissions from highly productive oceans to the north (following the sea ice retreat around 62°S) are important in impacting sulfur species in coastal regions of Antarctica.

    From early January to February, Chlaconcentration along 60°-64°S began to decline (Figure 5). However, a very high biomass level in surface sea water was detected near the sampling site (Chlaconcentrations were 1.0172 mg?m-3to 3.1508 mg?m-3; Figure 5), and phytoplankton bloom always followed sea ice melt. In addition, the average Chlaconcentration in ice-free open water offshore of the sampling site decreased rapidly from the beginning of January, together with an increase of open water area,through the end of February. Therefore, the dynamics of sea ice would significantly affect phytoplanktonic activity[37],further modulating DMS emissions. The maximum Chlavalue in early January coincided with high atmospheric MSA and nss-SO42-concentrations (115.2 mg?m-3and 226.8 mg?m-3, respectively), suggesting that DMS emission from the adjacent ocean directly influenced the sulfur aerosols.Park et al.[38]reported that atmospheric DMS mixing ratios at Svalbard (78.5°N, 11.8°E) were strongly correlated with variability in Chlaconcentration in nearby waters (r= 0.89).Because the lifetime of atmospheric DMS in mid austral summer is close to one day[25], phytoplankton blooms in water offshore of the sampling site could account for the high sulfur species concentrations at Zhongshan Station. However, the high Chlavalues were not always consistent with the high concentrations of MSA (Figures 2 and 5). For example, a high MSA concentration in late February (63.7 mg?m-3, Figure 2)corresponded with a low Chlaconcentration (1.0172 mg?m-3,Figure 5). This could be attributed to the substantial open water area. In late summer, the ice-free open water area maximized,which could also lead to release of abundant DMS from the ocean to atmosphere. In addition, the air mass at Zhongshan Station may be impacted by air mass transport from inland,which could contain low sulfur species concentrations[7]. The low temperature and rapid horizontal mixing may also affect the formation of sulfur species in February. Therefore, sulfur species concentrations in that month were not high.

    Beginning the end of February, sea ice began to freeze,and Chlaconcentration in waters offshore of the sampling site was at a low level (Figure 5). However, phytoplanktonic activity could also have been enhanced during sea ice formation[11]. The large value of MSA (36 ng?m-3) in early March would be a response to that. During austral winter (April through October), local emission of biogenic DMS would be weak because of heavy sea ice coverage and lack of sunlight,with almost no phytoplanktonic activity. Sulfur species could potentially be transported from mid or low latitude regions.Minikin et al.[9]stated that DMS byproducts in coastal regions of Antarctica originated from between 50°S and 60°S in austral winter. Therefore, in that season, sulfur species at Zhongshan Station possibly originated from mid or low latitudes, with high primary productivity via long range transport.

    4 Summary

    The data collected at Zhongshan Station from December 2010 through November 2011 indicated that atmospheric MSA and nss-SO42-concentrations had a strong seasonal variation, with maxima in austral summer and minima in winter. Variations of sea ice conditions and phytoplankton activity in offshore waters were important in affecting sulfur species concentrations over Zhongshan Station. However,given a lack of high-resolution observation of those species(sampling intervals were 10 d in the study), we could not analyze in detail the species variations. In addition,to fully understand the impact of DMS emissions from offshore water on those variations at Zhongshan Station,the atmospheric DMS mixing ratio and seasonal variation of seawater DMS concentration must also be investigated.Therefore, improvements in sulfur cycle study at Zhongshan Station are required in the future.

    1 Vogt M, Liss P S. Dimethylsulfide and climate. Geophys Monogr Series, 2009, 187: 197-232

    2 Charlson R J, Lovelock J E, Andreaei M O, et al. Oceanic phytoplankton, atmospheric sulphur, cloudalbedo and climate. Nature,1987, 326(6114): 655-661

    3 Bates T S, Lamb B K, Guenther A, et al. Sulfur emissions to the atmosphere from natural sourees. J Atmos Chem, 1992, 14(1): 315-337

    4 Berresheim H, Huey J W, Thorn R P, et al. Measurements of dimethyl sulfide, dimethyl sulfoxide, dimethyl sulfone, and aerosol ions at Palmer Station, Antarctica. J Geophys Res, 1998, 103(D1): 1629-1637

    5 Legrand M, Sciare J, Jourdain B, et al. Subdaily variations of atmospheric dimethylsulfide, dimethylsulfoxide, methanesulfonate,and non-sea-salt sulfate aerosols in the atmospheric boundary layer at Dumont d’Urville (coastal Antarctica) during summer. J Geophys Res, 2001, 106(D13): 14409-14422

    6 Jourdain B, Legrand M. Seasonal variations of atmospheric dimethylsul fide, dimethylsulfoxide, sulfur dioxide, methanesulfonate,and non-sea-salt sulfate aerosols at Dumont d’Urville (coastal Antarctica) (December 1998 to July 1999). J Geophys Res, 2001,106(D13): 14391-14408

    7 Preunkert S, Jourdain B, Legrand M, et al. Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica: Inland versus coastal regions. J Geophys Res, 2008,113(D15): D15302

    8 Preunkert S, Legrand M, Jourdain B, et al. Interannual variability of dimethylsul fide in air and seawater and its atmospheric oxidation byproducts (methanesulfonate and sulfate) at Dumont d’Urville, coastal Antarctica (1999-2003). J Geophys Res, 2007, 112(D6): D06306

    9 Minikin A, Legrand M, Hall J, et al. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J Geophys Res, 1998, 103(D9): 10975-10990

    10 Legrand M, Pasteur E C. Methane sulfonic acid to non-sea-salt sulfate ratio in coastal Antarctic aerosol and surface snow. J Geophys Res,1998, 103(D9): 10991-11006

    11 Lizotte M P. The contributions of sea ice algae to antarctic marine primary production. Amer Zool, 2001, 41(1): 57-73

    12 Wang S, Bailey D, Lindsay K, et al. Impact of sea ice on the marine iron cycle and phytoplankton productivity. Biogeosciences, 2014,11(17): 4713-4731

    13 De Baar H J W, De Jong J T M, Bakker D C E, et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature, 1995,373(6513): 412-415

    14 Loose B, Miller L A, Elliott S, et al. Sea ice biogeochemistry and material transport across the frozen interface. Oceanography, 2011,24(3): 202-218

    15 Boetius A, Albrecht S, Bakker K, et al. Export of algal biomass from the melting arctic sea ice. Science, 2013, 339(6126): 1430-1432

    16 Lana A, Bell T G, Simó R, et al. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean. Global Biogeochem Cycles, 2011, 25(1): GB1004

    17 Tortell P D, Guéguen C, Long M C, et al. Spatial variability and temporal dynamics of surface water pCO2, ΔO2/Ar and dimethylsul fide in the Ross Sea, Antarctica. Deep Sea Res Part I: Oceanogr Res Pap,2011, 58(3): 241-259

    18 Tortell P D, Long M C, Payne C D, et al. Spatial distribution of pCO2,ΔO2/Ar and dimethylsulfide (DMS) in polynya waters and the sea ice zone of the Amundsen Sea, Antarctica. Deep Sea Res Part II: Top StudOceanogr, 2012, 71-76: 77-93

    19 Tortell P D, Long M C. Spatial and temporal variability of biogenic gases during the Southern Ocean spring bloom. Geophys Res Lett,2009, 36(1): L01603

    20 Kettle A, Andreae M. Flux of dimethylsul fide from the oceans: A comparison of updated data sets and flux models. J Geophys Res,2000, 105(D22): 26793-26808

    21 Xu G J, Gao Y, Lin Q, et al. Characteristics of water-soluble inorganic and organic ions in aerosols over the Southern Ocean and coastal East Antarctica during austral summer. J Geophys Res, 2013, 118(23):13303-13318

    22 Chen L Q, Wang J J, Gao Y, et al. Latitudinal distributions of atmospheric MSA and MSA/nss-SO42-ratios in summer over the high latitude regions of the Southern and Northern Hemispheres. J Geophys Res, 2012, 117(D10): D10306

    23 Hall J S, Wolff E W. Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmos Environ,1998, 32(21): 3669-3677

    24 Wagenbach D, Ducroz F, Mulvaney R, et al. Sea-salt aerosol in coastal Antarctic regions. J Geophys Res, 1998, 103(D9): 10961-10974

    25 Read K A, Lewis A C, Bauguitte S, et al. DMS and MSA measurements in the Antarctic Boundary Layer: impact of BrO on MSA production. Atmos ChemPhys, 2008, 8(11): 2985-2997

    26 Saltzman E S. Marine aerosols, in surface ocean-lower atmosphere processes.Washington, DC: American Geophysical Union,2009:17-35

    27 Sullivan C W, Arrigo K R, Mc Clain C R, et al. Distributions of phytoplankton blooms in the Southern Ocean. Science, 1993,262(5141): 1832-1837

    28 Holm-Hansen O, Mitchell B G, Hewes D C, et al. Phytoplankton blooms in the vicinity of Palmer Station, Antarctica. Polar Biol, 1989,10(1): 49-57

    29 Taylor M H, Losch M, Bracher A. On the drivers of phytoplankton blooms in the Antarctic marginal ice zone: A modeling approach. J Geophys Res, 2013, 118(1): 63-75

    30 Fitch D T, Moore J K. Wind speed in fluence on phytoplankton bloom dynamics in the Southern Ocean Marginal Ice Zone. J Geophys Res,2007, 112(C8): C08006

    31 Kloster S, Feichter J, Maier-Reimer E, et al. DMS cycle in the marine ocean-atmosphere system—a global model study. Biogeosciences,2006, 3(1): 29-51

    32 Vallina S M, Simó R. Strong relationship between DMS and the solar radiation dose over the global surface ocean. Science, 2007,315(5811): 506-508

    33 Legrand M, Feniet-Saigne C, Sattzman E S, et al. Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle.Nature, 1991, 350(6314): 144-146

    34 Del Valle D A, Kieber D J, Toole D A, et al. Biological consumption of dimethylsul fide (DMS) and its importance in DMS dynamics in the Ross Sea, Antarctica. Limnol Oceanogr, 2009, 54(3): 785-798

    35 Smith W O, Nelson D M. Phytoplankton growth and new production in the Weddell Sea marginal ice zone in the austral spring and autumn.Limnol Oceanogr, 1990, 35(4): 809-821

    36 Smith W O, Comiso J C. In fluence of sea ice on primary production in the Southern Ocean: A satellite perspective. J Geophys Res, 2008,113(C5): C05S93

    37 Park K T, Lee K, Yoon Y J, et al. Linking atmospheric dimethyl sulfide and the Arctic Ocean spring bloom. Geophys Res Lett, 2013,40(1): 155-160

    38 Von Glasow R, Crutzen P J. Model study of multiphase DMS oxidation with a focus on halogens. Atmos Chem Phys, 2004, 4(3):589-608

    亚洲精品在线美女| 免费观看人在逋| 美女免费视频网站| 超碰成人久久| 熟女少妇亚洲综合色aaa.| 色精品久久人妻99蜜桃| 女生性感内裤真人,穿戴方法视频| 男女午夜视频在线观看| 亚洲欧美精品综合一区二区三区| 国产97色在线日韩免费| 国内毛片毛片毛片毛片毛片| 亚洲国产精品999在线| 亚洲 欧美 日韩 在线 免费| 在线观看舔阴道视频| 91大片在线观看| 亚洲人成电影免费在线| 18禁美女被吸乳视频| 十八禁网站免费在线| 日韩欧美一区视频在线观看| 纯流量卡能插随身wifi吗| 国产亚洲精品综合一区在线观看 | 精品卡一卡二卡四卡免费| 亚洲国产精品久久男人天堂| 亚洲欧美激情综合另类| 亚洲成av人片免费观看| 99国产综合亚洲精品| 婷婷六月久久综合丁香| 亚洲少妇的诱惑av| 妹子高潮喷水视频| 午夜福利高清视频| 亚洲自拍偷在线| 在线观看www视频免费| 亚洲五月色婷婷综合| 动漫黄色视频在线观看| 成人av一区二区三区在线看| 欧美av亚洲av综合av国产av| 日韩欧美一区二区三区在线观看| 久久久久久久午夜电影| 母亲3免费完整高清在线观看| 18禁黄网站禁片午夜丰满| 日韩欧美国产在线观看| 中文字幕av电影在线播放| 欧美国产精品va在线观看不卡| 国产一级毛片七仙女欲春2 | 亚洲 欧美一区二区三区| 成人18禁在线播放| 亚洲欧美日韩高清在线视频| 亚洲 欧美一区二区三区| 成人永久免费在线观看视频| 无限看片的www在线观看| 午夜激情av网站| 不卡av一区二区三区| 亚洲中文日韩欧美视频| 日日摸夜夜添夜夜添小说| 亚洲午夜理论影院| 黄色丝袜av网址大全| 九色国产91popny在线| 黄色毛片三级朝国网站| 级片在线观看| 欧美大码av| 亚洲天堂国产精品一区在线| 伦理电影免费视频| 成人三级做爰电影| 亚洲人成伊人成综合网2020| 女警被强在线播放| 精品一区二区三区四区五区乱码| 亚洲国产精品成人综合色| 国产成人精品在线电影| 在线免费观看的www视频| 午夜免费成人在线视频| 又紧又爽又黄一区二区| 国产亚洲精品一区二区www| 9色porny在线观看| 人人妻人人澡人人看| 桃红色精品国产亚洲av| 俄罗斯特黄特色一大片| 人成视频在线观看免费观看| 最好的美女福利视频网| 欧美在线黄色| 精品人妻在线不人妻| 久久精品国产清高在天天线| 国产蜜桃级精品一区二区三区| 黄片小视频在线播放| 在线视频色国产色| 亚洲成人久久性| 免费无遮挡裸体视频| 一边摸一边抽搐一进一出视频| 侵犯人妻中文字幕一二三四区| 免费看a级黄色片| 在线免费观看的www视频| 女生性感内裤真人,穿戴方法视频| 久久国产精品男人的天堂亚洲| 久久人人精品亚洲av| 亚洲成人精品中文字幕电影| 久久人人精品亚洲av| 无遮挡黄片免费观看| 国产三级在线视频| 美女免费视频网站| 99re在线观看精品视频| 亚洲国产高清在线一区二区三 | 操美女的视频在线观看| 大香蕉久久成人网| 亚洲九九香蕉| 琪琪午夜伦伦电影理论片6080| 日韩成人在线观看一区二区三区| 欧美日韩精品网址| 亚洲自偷自拍图片 自拍| 亚洲国产中文字幕在线视频| 三级毛片av免费| 午夜福利视频1000在线观看 | 午夜福利在线观看吧| 成在线人永久免费视频| 日韩av在线大香蕉| 免费人成视频x8x8入口观看| 亚洲精品国产精品久久久不卡| 久久婷婷人人爽人人干人人爱 | 国产单亲对白刺激| 人妻久久中文字幕网| 成人三级做爰电影| 精品国产乱子伦一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲精品一卡2卡三卡4卡5卡| 国产亚洲精品一区二区www| 动漫黄色视频在线观看| 亚洲成人精品中文字幕电影| 国产欧美日韩一区二区三| 琪琪午夜伦伦电影理论片6080| 日韩高清综合在线| 亚洲色图 男人天堂 中文字幕| 首页视频小说图片口味搜索| 91大片在线观看| 91在线观看av| 亚洲人成网站在线播放欧美日韩| 亚洲精品一区av在线观看| 亚洲av成人不卡在线观看播放网| 久热爱精品视频在线9| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 天天躁夜夜躁狠狠躁躁| 精品国产一区二区三区四区第35| 成人av一区二区三区在线看| 一区二区三区国产精品乱码| 午夜成年电影在线免费观看| 国产97色在线日韩免费| 波多野结衣一区麻豆| 欧美人与性动交α欧美精品济南到| 黄色片一级片一级黄色片| 老司机午夜福利在线观看视频| 欧美大码av| 成人欧美大片| 在线十欧美十亚洲十日本专区| 国产免费男女视频| 国产日韩一区二区三区精品不卡| 亚洲欧美精品综合久久99| 国内久久婷婷六月综合欲色啪| 又黄又粗又硬又大视频| 国产欧美日韩一区二区三区在线| 97碰自拍视频| 日韩欧美一区二区三区在线观看| 黑丝袜美女国产一区| 18美女黄网站色大片免费观看| 美女 人体艺术 gogo| www.精华液| 9191精品国产免费久久| 国产成人欧美| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久av网站| 国产三级黄色录像| 搡老妇女老女人老熟妇| 国产精品久久久久久人妻精品电影| 久久亚洲真实| 最近最新免费中文字幕在线| 国产成人一区二区三区免费视频网站| 国产精品久久电影中文字幕| 亚洲成国产人片在线观看| 国产成人av激情在线播放| 亚洲一区二区三区不卡视频| 悠悠久久av| 国产av在哪里看| 亚洲精品国产精品久久久不卡| 可以在线观看的亚洲视频| 黑人欧美特级aaaaaa片| 亚洲中文字幕日韩| 搡老岳熟女国产| 十八禁网站免费在线| 男女之事视频高清在线观看| 电影成人av| 久久久久久亚洲精品国产蜜桃av| 国产人伦9x9x在线观看| 热re99久久国产66热| 在线观看66精品国产| 亚洲精品一区av在线观看| 国产欧美日韩精品亚洲av| av网站免费在线观看视频| 国产成人一区二区三区免费视频网站| 日韩欧美国产在线观看| 9191精品国产免费久久| 欧美精品啪啪一区二区三区| 妹子高潮喷水视频| 国产高清激情床上av| 国产蜜桃级精品一区二区三区| 欧美成人性av电影在线观看| 日本 欧美在线| 国产精品久久久久久人妻精品电影| 日韩有码中文字幕| 成人亚洲精品av一区二区| 午夜福利影视在线免费观看| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 亚洲三区欧美一区| 欧美av亚洲av综合av国产av| 久久精品国产清高在天天线| 亚洲精品国产精品久久久不卡| 久久中文字幕人妻熟女| 高清毛片免费观看视频网站| 性少妇av在线| 色尼玛亚洲综合影院| 亚洲国产精品合色在线| 日韩中文字幕欧美一区二区| 国产亚洲av高清不卡| 午夜影院日韩av| 亚洲熟妇熟女久久| 性色av乱码一区二区三区2| 一进一出抽搐动态| 色综合婷婷激情| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 国产色视频综合| 正在播放国产对白刺激| 欧美久久黑人一区二区| 91字幕亚洲| 国产不卡一卡二| 亚洲精品国产精品久久久不卡| 国产成人精品久久二区二区91| 精品无人区乱码1区二区| 国产精品电影一区二区三区| 国产精品1区2区在线观看.| 大型黄色视频在线免费观看| 午夜a级毛片| 久久精品国产清高在天天线| 美女高潮喷水抽搐中文字幕| 国产亚洲精品久久久久5区| 亚洲熟妇熟女久久| 最近最新中文字幕大全免费视频| 99riav亚洲国产免费| 69精品国产乱码久久久| 欧美成狂野欧美在线观看| 欧美日韩一级在线毛片| 女人精品久久久久毛片| 久久久久精品国产欧美久久久| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费| 国产精品香港三级国产av潘金莲| 亚洲男人天堂网一区| 黑丝袜美女国产一区| 在线观看免费午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 午夜两性在线视频| 欧美在线黄色| 久久中文字幕一级| 国产国语露脸激情在线看| 国产成人欧美在线观看| 在线观看免费午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 成人国产综合亚洲| 亚洲国产看品久久| 亚洲熟妇中文字幕五十中出| 这个男人来自地球电影免费观看| 女人被狂操c到高潮| 久久精品国产综合久久久| 久久婷婷成人综合色麻豆| 亚洲av美国av| 欧美在线一区亚洲| 亚洲av电影不卡..在线观看| 欧美 亚洲 国产 日韩一| www.自偷自拍.com| 男女床上黄色一级片免费看| 一区二区三区精品91| 亚洲人成电影观看| 中文字幕色久视频| 丰满人妻熟妇乱又伦精品不卡| 精品国产乱子伦一区二区三区| 美女国产高潮福利片在线看| 免费在线观看影片大全网站| 97人妻精品一区二区三区麻豆 | 午夜成年电影在线免费观看| 美女扒开内裤让男人捅视频| 欧美最黄视频在线播放免费| 一级黄色大片毛片| 大型黄色视频在线免费观看| 欧美黑人欧美精品刺激| 99riav亚洲国产免费| 国产精品久久电影中文字幕| 国产成人啪精品午夜网站| 免费在线观看视频国产中文字幕亚洲| 91成人精品电影| 女性生殖器流出的白浆| 亚洲精华国产精华精| 亚洲第一电影网av| 国产亚洲av高清不卡| 亚洲国产看品久久| 亚洲五月婷婷丁香| 真人做人爱边吃奶动态| 午夜影院日韩av| 麻豆av在线久日| 国产成人av激情在线播放| 妹子高潮喷水视频| 午夜免费观看网址| tocl精华| 精品久久久精品久久久| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片 | 免费搜索国产男女视频| 校园春色视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产成人精品在线电影| 性少妇av在线| 曰老女人黄片| 他把我摸到了高潮在线观看| 在线观看日韩欧美| 国产成+人综合+亚洲专区| 两个人免费观看高清视频| 免费人成视频x8x8入口观看| 首页视频小说图片口味搜索| 亚洲av成人一区二区三| 在线观看免费视频网站a站| 18禁美女被吸乳视频| 午夜福利成人在线免费观看| 亚洲av五月六月丁香网| 黄色女人牲交| 1024视频免费在线观看| 老司机福利观看| av免费在线观看网站| 欧美激情 高清一区二区三区| 1024视频免费在线观看| 午夜福利成人在线免费观看| 又黄又爽又免费观看的视频| 天天躁夜夜躁狠狠躁躁| 琪琪午夜伦伦电影理论片6080| 欧美人与性动交α欧美精品济南到| 国内精品久久久久精免费| 亚洲精品中文字幕在线视频| 宅男免费午夜| 亚洲五月婷婷丁香| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2 | 国产主播在线观看一区二区| 国产成人系列免费观看| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利欧美成人| 中亚洲国语对白在线视频| av天堂久久9| 成人特级黄色片久久久久久久| 欧美黑人欧美精品刺激| 国产麻豆成人av免费视频| 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 满18在线观看网站| 高清在线国产一区| 久久香蕉精品热| 中文字幕人妻丝袜一区二区| 欧美乱妇无乱码| 亚洲色图综合在线观看| 亚洲伊人色综图| 亚洲欧美一区二区三区黑人| 老司机福利观看| 黄色成人免费大全| 国产成年人精品一区二区| 久久香蕉激情| 国产成人精品久久二区二区免费| 最好的美女福利视频网| 日韩大码丰满熟妇| 男男h啪啪无遮挡| 国产精品影院久久| 丝袜美腿诱惑在线| 亚洲男人的天堂狠狠| 亚洲五月色婷婷综合| 人人妻人人爽人人添夜夜欢视频| 欧美日韩一级在线毛片| 女人爽到高潮嗷嗷叫在线视频| 国产av在哪里看| 视频在线观看一区二区三区| 成人精品一区二区免费| 中文字幕人成人乱码亚洲影| 男人的好看免费观看在线视频 | 亚洲精品美女久久久久99蜜臀| 极品人妻少妇av视频| 黑人操中国人逼视频| 波多野结衣av一区二区av| 18禁裸乳无遮挡免费网站照片 | 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| 亚洲精品国产精品久久久不卡| 夜夜夜夜夜久久久久| 欧美不卡视频在线免费观看 | 看免费av毛片| 国产精品久久久久久精品电影 | 青草久久国产| 精品久久久精品久久久| 日韩欧美三级三区| 亚洲人成伊人成综合网2020| 老司机在亚洲福利影院| 99在线人妻在线中文字幕| 操美女的视频在线观看| 成人永久免费在线观看视频| 天堂√8在线中文| 亚洲男人的天堂狠狠| 亚洲 国产 在线| 久久久久国内视频| 欧美乱码精品一区二区三区| 亚洲激情在线av| 日韩一卡2卡3卡4卡2021年| 精品少妇一区二区三区视频日本电影| 亚洲性夜色夜夜综合| 国产精品永久免费网站| 男人舔女人的私密视频| 精品免费久久久久久久清纯| 级片在线观看| 日韩欧美国产一区二区入口| 男女下面插进去视频免费观看| 欧美黑人精品巨大| 国产单亲对白刺激| 午夜福利高清视频| 69av精品久久久久久| 中文字幕av电影在线播放| 宅男免费午夜| 久久精品国产99精品国产亚洲性色 | 在线天堂中文资源库| 极品人妻少妇av视频| 亚洲一区二区三区色噜噜| 啪啪无遮挡十八禁网站| 中文字幕高清在线视频| 午夜免费观看网址| 欧美一级毛片孕妇| 嫩草影视91久久| 禁无遮挡网站| 老司机在亚洲福利影院| 成人免费观看视频高清| 中文字幕久久专区| 欧美老熟妇乱子伦牲交| 久久草成人影院| 亚洲专区中文字幕在线| 日本a在线网址| 亚洲在线自拍视频| 村上凉子中文字幕在线| 麻豆av在线久日| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 亚洲国产精品999在线| 日韩高清综合在线| 久久久久久久久中文| 国产精品香港三级国产av潘金莲| 精品欧美国产一区二区三| 亚洲专区字幕在线| 久久精品国产清高在天天线| 非洲黑人性xxxx精品又粗又长| 手机成人av网站| 天堂√8在线中文| 美女扒开内裤让男人捅视频| 日本黄色视频三级网站网址| 久久久精品欧美日韩精品| 日韩欧美在线二视频| 精品电影一区二区在线| 久久精品国产亚洲av高清一级| 久久人人爽av亚洲精品天堂| av中文乱码字幕在线| 桃红色精品国产亚洲av| 韩国av一区二区三区四区| 国产欧美日韩一区二区三| 天天躁狠狠躁夜夜躁狠狠躁| 日本 欧美在线| 亚洲av片天天在线观看| 在线永久观看黄色视频| 国产麻豆69| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 美女扒开内裤让男人捅视频| 欧美一区二区精品小视频在线| cao死你这个sao货| 亚洲色图综合在线观看| 男女下面进入的视频免费午夜 | 亚洲国产毛片av蜜桃av| 亚洲五月婷婷丁香| 超碰成人久久| 19禁男女啪啪无遮挡网站| 精品日产1卡2卡| 18禁观看日本| 一边摸一边抽搐一进一小说| 亚洲午夜理论影院| 久久中文看片网| 中出人妻视频一区二区| 午夜视频精品福利| 午夜福利在线观看吧| 女人爽到高潮嗷嗷叫在线视频| 88av欧美| 亚洲精品国产一区二区精华液| 自线自在国产av| 午夜免费激情av| 精品久久久精品久久久| 中文字幕人妻丝袜一区二区| 校园春色视频在线观看| 嫩草影视91久久| 男人的好看免费观看在线视频 | 美女高潮到喷水免费观看| 亚洲精品国产一区二区精华液| 久久人人97超碰香蕉20202| 麻豆av在线久日| 99国产精品一区二区三区| 久久久水蜜桃国产精品网| 亚洲男人的天堂狠狠| 国产男靠女视频免费网站| 久久午夜亚洲精品久久| 成年版毛片免费区| 极品教师在线免费播放| 亚洲 欧美一区二区三区| 国产蜜桃级精品一区二区三区| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 日韩av在线大香蕉| 好看av亚洲va欧美ⅴa在| 亚洲精品美女久久久久99蜜臀| 日本三级黄在线观看| 色在线成人网| 久9热在线精品视频| 麻豆成人av在线观看| 国产高清有码在线观看视频 | 亚洲三区欧美一区| 久久久久久久精品吃奶| 亚洲午夜理论影院| 欧美激情极品国产一区二区三区| 伦理电影免费视频| 一a级毛片在线观看| 桃色一区二区三区在线观看| 一区二区三区高清视频在线| www.www免费av| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| 免费久久久久久久精品成人欧美视频| 国产亚洲精品第一综合不卡| 麻豆国产av国片精品| 精品少妇一区二区三区视频日本电影| 男女之事视频高清在线观看| 91在线观看av| 琪琪午夜伦伦电影理论片6080| 黄片播放在线免费| 国产精品久久久久久精品电影 | 欧美日韩福利视频一区二区| 亚洲熟女毛片儿| 亚洲黑人精品在线| 亚洲自偷自拍图片 自拍| or卡值多少钱| 怎么达到女性高潮| 亚洲,欧美精品.| 高清在线国产一区| avwww免费| 婷婷丁香在线五月| 天天躁狠狠躁夜夜躁狠狠躁| 美女 人体艺术 gogo| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 亚洲熟女毛片儿| 中国美女看黄片| 国产精品98久久久久久宅男小说| 亚洲av第一区精品v没综合| 美国免费a级毛片| 亚洲精品美女久久av网站| 淫妇啪啪啪对白视频| 久久精品国产清高在天天线| 国产成人啪精品午夜网站| 日韩 欧美 亚洲 中文字幕| 欧美丝袜亚洲另类 | 老司机午夜十八禁免费视频| 久久国产乱子伦精品免费另类| 欧洲精品卡2卡3卡4卡5卡区| 亚洲视频免费观看视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲欧美日韩无卡精品| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 国产极品粉嫩免费观看在线| 999精品在线视频| 好男人在线观看高清免费视频 | 9热在线视频观看99| 亚洲一码二码三码区别大吗| 中文字幕精品免费在线观看视频| 99国产综合亚洲精品| 久久精品国产综合久久久| 精品久久久久久久毛片微露脸| 在线观看舔阴道视频| 久久人妻福利社区极品人妻图片| 女人爽到高潮嗷嗷叫在线视频| 久久久精品欧美日韩精品| 色播在线永久视频| 精品久久久久久久毛片微露脸| 热re99久久国产66热| 琪琪午夜伦伦电影理论片6080| 国产精品野战在线观看| 久久久久久国产a免费观看| 黄色毛片三级朝国网站| 久久久久久久午夜电影| 精品久久久久久久人妻蜜臀av | 欧美日韩一级在线毛片| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 欧美 亚洲 国产 日韩一| a在线观看视频网站| 亚洲精品一区av在线观看| 国产精品久久电影中文字幕| 99国产精品免费福利视频| 99国产精品99久久久久| 国产精品av久久久久免费|