• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural features of substituted triazole-linked chalcone derivatives as antimalarial activities against D10 strains of Plasmodium falciparum:A QSAR approach

    2015-02-01 09:11:46MukeshSharma
    Journal of Central South University 2015年10期

    Mukesh C. Sharma

    Division of Drug Design & Medicinal Chemistry Research Lab, School of Pharmacy, Devi Ahilya University,Takshila Campus, Khandwa Road, Indore (M.P)-452001, India

    Structural features of substituted triazole-linked chalcone derivatives as antimalarial activities against D10strains ofPlasmodium falciparum:A QSAR approach

    Mukesh C. Sharma

    Division of Drug Design & Medicinal Chemistry Research Lab, School of Pharmacy, Devi Ahilya University,Takshila Campus, Khandwa Road, Indore (M.P)-452001, India

    A quantitative structure–activity relationship (QSAR) was performed to analyze antimalarial activities against the D10 strains ofPlasmodium falciparumof triazole-linked chalcone and dienone hybrid derivatives using partial least squares regression coupled with stepwise forward–backward variable selection method. QSAR analyses were performed on the available IC50D10strains ofPlasmodium falciparumdata based on theoretical molecular descriptors. The QSAR model developed gave good predictive correlation coefficient (r2) of 0.8994, significant cross validated correlation coefficient (q2) of 0.7689,r2for external test set (2)rpred of 0.8256, coefficient of correlation of predicted data setof 0.3276. The model shows that antimalarial activity is greatly affected by donor and electron-withdrawing substituents. The study implicates that chalcone and dienone rings should have strong donor and electron-withdrawing substituents as they increase the activity of chalcone. Results show that the predictive ability of the model is satisfactory, and it can be used for designing similar group of antimalarial compounds. The findings derived from this analysis along with other molecular modeling studies will be helpful in designing of the new potent antimalarial activity of clinical utility.

    quantitative structure–activity relationship (QSAR); chalcone; antimalarial;Plasmodium falciparum; stepwise forward–backward; partial least squares

    1 Introduction

    Malaria, a devastating infectious disease caused by the protozoaPlasmodium falciparum, affects 200?500 million people worldwide annually.[1] The current global situation with respect to malaria indicates that about two billion people are exposed to the disease and more than one million people die from it every year[2].Malaria is caused by five species of parasites of the genusPlasmodiumthat affect humans:Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae,Plasmodium ovalandPlasmodium knowlesi. The situation is rapidly worsening mainly due to non-availability of effective drugs and development of drug resistance in areas where malaria is frequently transmitted[3?4]. Malaria due toPlasmodium falciparumis the most deadly variety as it is responsible for the majority of malaria deaths. ThePlasmodium falciparumspecies, which is the most virulent and deadly of the malaria parasites, is responsible in more than 90%of the cases. Many commonly available antimalarial drugs and therapies are becoming ineffective because of the emergence of multidrug resistantPlasmodium falciparum, which drives the need for the development of new antimalarial drugs[4]. In spite of the intensive efforts to combat malaria, the incidence of malaria has not decreased, especially in the tropical and subtropical areas[5]. The primary drugs for treatment of malaria have been the quinolones chloroquine (CQ), quinine (QN)and mefloquine; the antifolate combination of pyrimethamine and sulfadoxine; and others[6]. However,during the past three decades,P. falciparumhas developed resistance to every commonly available antimalarial drug[7], including chloroquine-resistant(CQ-R), multi-drug-resistant (MDR) and others[8?10].Ethnic medicine has provided two of the most efficacious drugs, quinine and artemisinin (and its analogs) and the ongoing screening of medicinal plants yields new lead compounds[11]. Quantitative structure activity relationships are the most important applications of chemo metrics, giving information useful for the design of new compounds acting on a specific target.QSAR (quantitative structure-activity relationship)attempts to find a consistent relationship between biological activity and molecular properties[12].Descriptors are generally used to describe different characteristics/attributes of the chemical structure in order to yield information about the activity/property being studied. In the present work, QSAR studies havebeen performed on triazole-linked chalcone and dienone hybrid derivatives as potential antimalarial[13] to explore important molecular properties as well as the interaction patterns between the D10strain ofPlasmodium falciparumpotency and ligands at the molecular level for design of new potent antimalarial activities. We have used this partial least squares analysis in this venture for QSAR modeling and to predict the drug activity of a series of newly synthesized triazole-linked chalcone derivatives.

    2 Materials and method

    QSAR studies were performed using the Molecular Design Suite VLife MDS software package, version 3.5 from VLife Sciences, Pune, India[14]. All computational work was performed on a HP Compaq PC running on Intel Pentium-D processor.

    2.1 Biological activity dataset for analysis

    The QSAR studies were performed on a series of triazole-linked chalcone and dienone hybrid analogs derivatives as antimalarial activity, to which the in vitro antimalarial activities against the D10strain ofPlasmodium falciparumpotency values (measured by IC50) were collected from Ref.[13]. The D10(IC50μM)values were expressed in negative logarithmic units,pIC50(lgIC50) and used as dependent variables in QSAR analysis. The chemical structures and corresponding pIC50are listed in Fig. 1 and Table 1.

    Fig. 1 Structure of triazole-linked chacone and dienone hybrid analogs derivative

    2.2 Training and test set

    Sphere exclusion method[15] was adopted for division of training and test set. Sphere exclusion method is used for creating training and test sets from the data.This is a rational selection method which takes into consideration both biological and chemical spaces for division of dataset. Dissimilarity value provides handle to vary train/test set size. It needs to be adjusted by trial and error until a desired division of train and test set is achieved. As a rule, increase in dissimilarity value will lead to increase in number of molecules in the test set.The compounds of both training and test sets were randomly selected subject to the constraint to ensure complete and representative coverage across the entire range of pIC50values. The models were externally validated using a test set with 10 compounds (Table 1)and were not included in the QSAR models development process.

    2.3 Two-dimensional QSAR studies

    Table 1 Structures and in vitro antimalarial activities against D10 strains of P. falciparum

    All the molecules were constructed using the standard geometry with 2D molecular module of molecular design suite. Three-dimensional structures were drawn for each molecule and the molecular geometries optimized using Monte Carlo conformational search[16]. All the compounds were batch optimized for the minimization of energies and geometry optimization using Merck molecular force field followed by considering distance-dependent dielectric constant of 1.0,convergence criterion or root-mean-square (RMS)gradient at 0.01 kcal/(mol·?) and the iteration limit to 10000[17]. The purpose of molecular descriptor is to calculate the properties of molecules that serve as numerical characterizations of molecules in other calculations, such as QSAR, diversity analysis.

    2.4 Calculation of 2D descriptors

    The energy-minimized geometry was used for the calculation of the various 2D descriptors (Individual, Chi,ChiV, Kappa, element count, estate number, estate contribution, Polar surface area and Alignment independent) and was considered independent variables in the present work. The electrostatic descriptors constitute charged polarization, polarity parameter, local dipole index, maximum positive charge, maximum negative charge, total absolute atomic charge, total negative charge, total positive charge. The preprocessing of the independent variables (i.e. descriptors) was done by removing invariable (constant column), which resulted in a total of 250 descriptors to be used for QSAR analysis. The various alignment-independent (AI)descriptors[18] were also calculated. For calculation of AI descriptors every atom in the molecule was assigned at least one and at most three attributes. After all atoms have been assigned their respective attributes, selective distance count statistics for all combinations of different attributes are computed. To calculate AI descriptors, we have used following attributes, 2 (double bonded atom),3 (triple bonded atom), C, N, O, S, H, F, Cl, Br and I and the distance range of 0?7.

    2.5 Model validation

    Internal validation was carried out using leave-oneout (q2, LOO) method[19]. To calculateq2, each molecule in the training set was sequentially removed,the model refit using same descriptors, and the biological activity of the removed molecule predicted using the refit model. Theq2can be calculated using Eq. (1).

    whereyiandy?iare the actual and predicted activity of thei-th molecule in the training set, respectively;ymeanis the average activity of all molecules in the training set.For external validation, activity of each molecule in the test set was predicted using the model generated from the training set. The2rpredvalue is calculated as

    whereyiandy?iare the actual and predicted activity of thei-th molecule in the test set, respectively;ymeanis the average activity of all molecules in the training set. Both summations are over all molecules in the test set.

    3 Results and discussion

    A QSAR analysis has been performed to study the quantitative effects of the molecular structure of the substituted triazole-linked chalcone and dienone hybrid on their antimalarial evaluation. Stepwise forward–backward based feature selection coupled with partial least squares was used as a chemometric tool for QSAR modeling. The below models are validated by predicting the biological activities of the training set and test molecules, as indicated in Table 2. Several 2D QSAR models were constructed, and the best three-regression equation obtained is represented as

    The developed QSAR models are evaluated using the following statistical measures:n(the number of compounds in regression); optimum component (number of optimum PLS components in the model);r2(the squared correlation coefficient),Ftest(the Fischer value for statistical significance),q2(cross-validated correlation coefficient);(r2for external test set).The regression coefficientr2is a relative measure of fit by the regression equation.

    Model 1 generated using the SW-PLS method with 0.8994 as the coefficient of determination (r2) was considered the best model using the same molecules in the test and training sets as in QSAR (Table 3). The model can explain 90% of the variance in the observed activity values. The model shows an internal predictive power (q2=0.7689) of 76% and a predictivity for the external test setof about 82%. The activity contribution chart for 2D-QSAR model is shown in Fig. 2. Figure 3 shows the fit plot of experimental vs predicted pIC50values for the training as well as the test sets by the best QSAR Model 1.

    The descriptorISssOEwhich is electrotopological state indices for number of oxygen atom connected with two single bonds showed positive contribution with

    contribution of ~30%. Such positive effect indicated that the antimalarial activity increased with the presence of methoxy groups such as compounds 1?4; 7?9; 13?20 and 29?31; 35?37. It emphasizes that increase in methoxy of compound will favor the biological activity.The good activity of molecules of 1?4, 7?9, 13?20 and 29?31, 35?37 over other molecules justifies this finding.The next descriptorCSsOH(signifies total number of hydroxy group connected with one single bond) reveals that hydroxy group should be directly attached with chalcone ring for the maximal antimalarial activity and suggests that the increased number of hydroxy atoms will augment the potency of the compounds. The next descriptor isdefining the total number of —CH3group connected with single bond. The positive coefficient of this descriptor signifies the importance of methyl group for antimalarial activities. The next descriptor(~20%) directly proportional to the activity shows the role of the total number of fluorine atom in a molecule. It reveals that presence of electron withdrawing groups over the chalcone and dienone is favorable for the activity (like compounds 6, 11, 12, 22,27, 28, 33, 34, 39 and 40).Table 3 Correlation matrix indicating inter-correlation between descriptors used in model 1

    Table 2 Comparative observed and predicted activities of triazole-linked chalcone and dienone derivatives as D10 strains of P.falciparum

    Parameter ISssOE CSsOH 3 C CFluorine SsCH ISssOE 1.0000 CSsOH 0.4385 1.0000 C 0.3752 0.6522 1.0000 CFluorine 0.4684 0.6886 0.7321 1.0000 SsCH3

    Fig. 2 Contribution charts of descriptors for 2D model 1

    Fig. 3 Graph of observed vs predicted activities of QSAR model 1

    Fig. 4 Contribution charts of descriptors for 2D model 2

    Fig. 5 Graph of observed vs predicted activity of QSAR model 2

    The developed SW-PLS model reveals that the descriptorDTCO1carbon atoms (single double or triple bonded) separated from any oxygen atom (single or double bonded) by bond distance in a molecule plays most important role (~31%) in determining activity.The alignment-independent descriptorDTClCl2showed positive contribution approx ~25%, which reveals the count of number of chlorine atoms separated from any other chlorine atom by 2 bonds in a molecule results increases in activity as augment by the molecules 5, 10,21, 26, 32 and 38.Msignifies relative molecular mass of a compound. This descriptor is inversely proportional to the activity (~15%) and indices the presence heavy or bulky group which decreases the activity.

    In 2D QSAR model,r2>0.5 suggests significant percentage of the total variance in biological activity is accounted by the model. The stability of model judged by leave-one-out procedure is fairly good (q2>0.6),suggesting that the model can be utilized for predictions.Model 3 was generated using the partial least squares regression method with 0.7223 as the coefficient of determination (r2) was considered using the same molecules in the test and training sets. The model can explain 72 % of the variance in the observed activity values. The model shows an internal predictive power(q2=0.6612) of 66% and predictivity for the external test setof about 68%. The descriptorwhich signifies estate contributions defining electro topologic state indices for the number of =CH2groups attached to two single bonds, also showed a positive contribution. The nextISdssCE, an electrotopological parameter, which defines the total number of carbon atoms connected with one double and two single bonds. The descriptor shows the highest negative correlation among the parameters selected for the derived QSAR model. The negative coefficient suggests that inclusion of such carbon atoms in the molecules lead to decreased antimalarial activity shown by substituted chalcone derivatives.DT2Cl2alignment-independent descriptor which means the count of number of single-bonded atoms separated from chlorine atom by two bonds in a molecule to be detrimental for the activity was exhibited by the compounds. It emphasizes that increase inDT2Cl2of compound will favor the biological activity. The activity contribution chart for QSAR model is shown in Fig. 6 and plots of observed vs predicted values of pIC50are shown in Fig. 7.

    Fig. 6 Contribution charts of descriptors for 2D model 3

    Fig. 7 Graph of observed vs. predicted activity of QSAR Model 3

    4 Conclusions

    A quantitative structure–activity relationship(QSAR) study is applied to diverse set of potentially active compounds against the D10, strains ofPlasmodium falciparumstrains of malaria. In pursuit of better antimalarial drugs, a quantitative structure-activity relationship analysis using a novel set of 2D descriptors electrostatic, topological, constitutional, geometrical, and physicochemical descriptors is performed on a series of antimalarial activity triazole-linked chalcone and dienone hybrid. The QSAR models discussed above explains how electron withdrawing, and H-donor properties should be modified to achieve better antimalarial activity. The present work reveals that presence of methoxy, hydroxy groups and less bulky groups at R position of chalcone scaffold increase the antimalarial activity. It shows the requirement of electropositive groups such as methyl,ethyl, propyl, and butyl or less electronegative groups such as cyanide, hydroxyl, amino, nitro, etc. For each set,statistically significant models were obtained using the stepwise forward–backward variable method encoded in software. These models may be considered as mathematical equations for the prediction of antimalarial activities of the compounds structurally similar to those used. We have reported herein the QSAR models for antimalarial activity to update the design process to develop some novel and potent antimalarial agents.

    The author is thankful to Vlife Science Technologies Pvt. Ltd. (Pune India) for providing the facility.

    [1]World Health Organization:World Malaria Report 2010[R]. Geneva,Switzerland, 2010.

    [2]TRIGG P I, KONDRACHINE A V. Malaria parasite biology,pathogenesis and protection:The current global malaria situation[M].Washington, DC:ASM, 1998:11?22.

    [3]WHITE N J. Drug resistance in malaria[J]. British Medical Bulletin,1998, 54:703?715.

    [4]LI Jia-zhong, LI Shu-yan, BAI Chong-liang, LIU Huan-xiang,PAOLA GRAMATICA. Structural requirements of 3-carboxyl-4(1H)-quinolones as potential antimalarials from 2D and 3D QSAR analysis[J]. Journal of Molecular Graphics and Modelling,2013, 44:266?277.

    [5]BEALES P F, BRABIN B, DORMAN E, GILLES H M, LOUTAIN L, MARSH K, MOLYNEUX M E, OLLIARO P, SCHAPIRA A,TOUZE J E, HIEN T T, WARRELL D A, WHITE N. Severe falciparum malaria[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2000, 94:1?90.

    [6]WINTER R W, KELLY J X, SMILKSTEIN M J, DODEAN R,HINRICHS D, RISCOE M K. Antimalarial quinolones:Synthesis,potency, and mechanistic studies[J]. Experimental Parasitology,2008, 118:487?497.

    [7]CROSS R M, MONASTYRSKYI A, MUTKA T S, BURROWS J N,KYLE D E, MANETSCH R. Endochin optimization:Structure–activity, structure–property relationship studies of 3-substituted 2-methyl-4(1H)-quinolones with antimalarial activity[J]. Journal of Medicinal Chemistry, 2010, 53:7076?7094.

    [8]WELLEMS T E, PLOWE C V. Chloroquine-resistant malaria[J].Journal of Infectious Diseases, 2001, 184:770?776.

    [9]SIDHU A B S, VERDIER-PINARD D, FIDOCK D A. Chloroquine resistance inPlasmodium falciparummalaria parasites conferred by pfcrt mutations[J]. Science, 2002, 298:210?213.

    [10] HYDE J E. Drug-resistant malaria[J]. Trends in Parasitology, 2005,21:494?498.

    [11] WILLCOX M L, BODEKER G. Traditional herbal medicines for malaria[J]. BMJ, 2004, 329:1156.

    [12] KARELSON M. Molecular Descriptors in QSAR/QSPR[M]. New York:Wiley-Interscience, 2000.

    [13] GUANTAI E M, NCOKAZI K, EGAN T J, GUT J, ROSENTHAL P J, SMITH P J, CHIBALE K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds[J]. Bioorganic and Medicinal Chemistry, 2010,18:8243?8256.

    [14] VLIFE MDS 3.5:Molecular design suite[M]. Pune, India:Vlife Sciences Technologies Pvt Ltd, 2008.

    [15] GOLBRAIKH A, TROPSHA A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection[J]. Journal of Computer-Aided Molecular Design,2002, 16:357?369.

    [16] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N,TELLER A H, TELLER E. Equation of state calculations by fast computing machines[J]. Journal of Chemical Physics, 1953, 21:1087?1092.

    [17] HALGREN T A. Merck molecular force field II. MMFF94 vander Waals and electrostatic parameters for intermolecular interactions[J].Journal of Computational Chemistry, 1996, 17:520?552

    [18] BAUMANN K. An alignment-independent versatile structure descriptor for QSAR and QSPR based on the distribution of molecular features[J]. Journal of Chemical Information and Modeling, 2002, 42:26?35

    [19] CRAMER R D, PATTERSON D E, BUNCE J D. Comparative molecular field analysis (CoMFA) 1. Effect of shape on binding of steroids to carrier proteins[J]. Journal of the American Chemical Society, 1998, 110:5959?5967.

    ? Central South University Press and Springer-Verlag Berlin Heidelberg 2015

    10.1007/s11771-015-2917-8

    date:2014?12?12; Accepted date:2015?02?22

    Mukesh C. Sharma, PhD; Tel:+96?731?2100605; E-mail:mukeshcsharma@yahoo.com

    (Edited by DENG Lü-xiang)

    国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久 | av天堂中文字幕网| 看免费成人av毛片| 国产精品99久久久久久久久| 1000部很黄的大片| 欧美黑人欧美精品刺激| 国产精品嫩草影院av在线观看 | 亚洲真实伦在线观看| 亚洲国产欧洲综合997久久,| 久9热在线精品视频| 久久久久久久久久久丰满 | 琪琪午夜伦伦电影理论片6080| 制服丝袜大香蕉在线| 狠狠狠狠99中文字幕| 亚洲四区av| 桃红色精品国产亚洲av| 99热这里只有是精品50| 久久精品91蜜桃| 成人国产麻豆网| 搡老妇女老女人老熟妇| 欧美3d第一页| 日本熟妇午夜| 热99在线观看视频| 色精品久久人妻99蜜桃| 久久精品国产鲁丝片午夜精品 | 毛片女人毛片| 观看免费一级毛片| 动漫黄色视频在线观看| 欧美黑人欧美精品刺激| 精品一区二区三区视频在线| 成人欧美大片| 亚洲精品亚洲一区二区| 99九九线精品视频在线观看视频| 99热这里只有是精品在线观看| 日韩大尺度精品在线看网址| 22中文网久久字幕| 国产精品精品国产色婷婷| 免费在线观看成人毛片| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 欧美性猛交╳xxx乱大交人| 精品人妻熟女av久视频| 看黄色毛片网站| 国产乱人视频| 琪琪午夜伦伦电影理论片6080| 国产人妻一区二区三区在| 成人美女网站在线观看视频| 午夜福利高清视频| 国产精品自产拍在线观看55亚洲| 老司机午夜福利在线观看视频| 91狼人影院| 午夜福利在线在线| 欧美zozozo另类| 国产精品久久久久久久久免| 久久久久国产精品人妻aⅴ院| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站| aaaaa片日本免费| 国产精品人妻久久久久久| 国产乱人视频| 久久久精品欧美日韩精品| 三级毛片av免费| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清专用| 免费av观看视频| 97碰自拍视频| 搡老妇女老女人老熟妇| 国产av一区在线观看免费| 国产精品98久久久久久宅男小说| 97超视频在线观看视频| 久久久色成人| 国产av麻豆久久久久久久| 男女啪啪激烈高潮av片| а√天堂www在线а√下载| 精品午夜福利视频在线观看一区| 在线观看66精品国产| 久久精品国产清高在天天线| 在线免费十八禁| 国产欧美日韩精品一区二区| 欧美一区二区精品小视频在线| 国产一区二区激情短视频| 国产麻豆成人av免费视频| 黄色配什么色好看| 免费av毛片视频| 欧美成人一区二区免费高清观看| 免费在线观看日本一区| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 午夜激情福利司机影院| 日韩精品中文字幕看吧| 免费电影在线观看免费观看| 国产美女午夜福利| 久久精品国产亚洲av涩爱 | 日韩人妻高清精品专区| 校园人妻丝袜中文字幕| 欧美高清性xxxxhd video| 色综合色国产| 天堂√8在线中文| 国产成人aa在线观看| 亚洲中文日韩欧美视频| 人人妻,人人澡人人爽秒播| 精品人妻视频免费看| 免费观看人在逋| 国产精品自产拍在线观看55亚洲| 日本与韩国留学比较| 韩国av在线不卡| 乱码一卡2卡4卡精品| 欧美3d第一页| 亚洲最大成人中文| 精品人妻偷拍中文字幕| 国产三级在线视频| 精品一区二区免费观看| 亚洲自偷自拍三级| av在线天堂中文字幕| 免费在线观看成人毛片| 看黄色毛片网站| 国产乱人伦免费视频| 欧美精品啪啪一区二区三区| 一区二区三区高清视频在线| 亚洲一级一片aⅴ在线观看| 久久午夜福利片| 简卡轻食公司| 最近最新中文字幕大全电影3| 国产精品98久久久久久宅男小说| 色哟哟哟哟哟哟| 热99在线观看视频| 成人无遮挡网站| 麻豆国产av国片精品| 成人亚洲精品av一区二区| 真实男女啪啪啪动态图| av.在线天堂| 五月伊人婷婷丁香| 亚洲综合色惰| 美女xxoo啪啪120秒动态图| 亚洲黑人精品在线| 特大巨黑吊av在线直播| 午夜日韩欧美国产| 两个人的视频大全免费| 欧美黑人欧美精品刺激| www.www免费av| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 久久亚洲精品不卡| 一区二区三区四区激情视频 | 免费在线观看日本一区| 精品福利观看| 日韩中字成人| 久久久久久久久久黄片| 亚洲欧美日韩无卡精品| 欧美日韩精品成人综合77777| 欧美zozozo另类| 久久人妻av系列| 欧美高清成人免费视频www| 91av网一区二区| 一边摸一边抽搐一进一小说| 亚洲午夜理论影院| 九九久久精品国产亚洲av麻豆| 春色校园在线视频观看| 成人一区二区视频在线观看| 久久精品久久久久久噜噜老黄 | 欧美三级亚洲精品| 国产精品女同一区二区软件 | 又粗又爽又猛毛片免费看| 国产精品三级大全| 一卡2卡三卡四卡精品乱码亚洲| 熟女电影av网| 国产黄色小视频在线观看| 精品久久久久久久久久久久久| 人妻夜夜爽99麻豆av| 日韩欧美免费精品| 国内精品久久久久精免费| 午夜影院日韩av| 女人十人毛片免费观看3o分钟| 亚洲人成网站高清观看| 精华霜和精华液先用哪个| www.www免费av| 小蜜桃在线观看免费完整版高清| 国产精品一及| 中文字幕精品亚洲无线码一区| 国产精品国产高清国产av| 国产精品一区二区三区四区久久| 国产亚洲欧美98| 日本成人三级电影网站| 国产精品爽爽va在线观看网站| 成人亚洲精品av一区二区| 国产一区二区三区视频了| 国产av不卡久久| 亚洲av美国av| 国产伦精品一区二区三区四那| 免费在线观看日本一区| 成年女人看的毛片在线观看| 99国产极品粉嫩在线观看| 亚洲国产欧洲综合997久久,| 欧美在线一区亚洲| 嫩草影院入口| 免费搜索国产男女视频| 桃红色精品国产亚洲av| 亚洲人与动物交配视频| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 天天躁日日操中文字幕| 日日夜夜操网爽| 午夜福利18| 一本久久中文字幕| 欧美激情国产日韩精品一区| 国产成年人精品一区二区| 日韩 亚洲 欧美在线| 国产免费男女视频| a级毛片免费高清观看在线播放| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| 亚洲欧美日韩高清专用| 少妇熟女aⅴ在线视频| 97超视频在线观看视频| 在线免费观看不下载黄p国产 | 国产高清激情床上av| 麻豆成人午夜福利视频| 中文亚洲av片在线观看爽| 听说在线观看完整版免费高清| 级片在线观看| 婷婷色综合大香蕉| 三级毛片av免费| 日本成人三级电影网站| 女人十人毛片免费观看3o分钟| 日日夜夜操网爽| 久久精品久久久久久噜噜老黄 | 国产一区二区三区av在线 | 日本 欧美在线| 色综合婷婷激情| 91麻豆精品激情在线观看国产| 免费在线观看成人毛片| 国产高清视频在线播放一区| 99riav亚洲国产免费| 国产午夜精品论理片| 日本精品一区二区三区蜜桃| 国产久久久一区二区三区| 久久久午夜欧美精品| 亚洲va在线va天堂va国产| 日日摸夜夜添夜夜添av毛片 | 国产精品人妻久久久久久| 91麻豆精品激情在线观看国产| 99热这里只有是精品在线观看| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 欧美高清成人免费视频www| 精品乱码久久久久久99久播| 九九爱精品视频在线观看| 久久久午夜欧美精品| 桃红色精品国产亚洲av| av福利片在线观看| 亚洲国产精品成人综合色| 小蜜桃在线观看免费完整版高清| 亚洲自偷自拍三级| 国产大屁股一区二区在线视频| 久久人人精品亚洲av| 国产亚洲av嫩草精品影院| 少妇熟女aⅴ在线视频| 久久久久久久午夜电影| 尤物成人国产欧美一区二区三区| 五月伊人婷婷丁香| 久久久国产成人精品二区| 国产午夜福利久久久久久| 欧美在线一区亚洲| 少妇熟女aⅴ在线视频| 成人特级av手机在线观看| 国产aⅴ精品一区二区三区波| 亚洲自拍偷在线| 成人性生交大片免费视频hd| 久久精品91蜜桃| 欧美zozozo另类| 小蜜桃在线观看免费完整版高清| 十八禁网站免费在线| 精品久久久久久成人av| 少妇人妻一区二区三区视频| 美女 人体艺术 gogo| 一区二区三区激情视频| 一区二区三区免费毛片| 国产精品99久久久久久久久| 18禁在线播放成人免费| 国产精品不卡视频一区二区| 淫秽高清视频在线观看| 看片在线看免费视频| 日日撸夜夜添| 尤物成人国产欧美一区二区三区| 成人国产麻豆网| 成人鲁丝片一二三区免费| 成人av一区二区三区在线看| 久久国内精品自在自线图片| 欧美最新免费一区二区三区| 久久久久久久精品吃奶| 亚洲国产精品合色在线| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 欧美精品国产亚洲| 一本精品99久久精品77| 九九久久精品国产亚洲av麻豆| 男人狂女人下面高潮的视频| 午夜福利在线在线| 很黄的视频免费| 国产免费一级a男人的天堂| 中亚洲国语对白在线视频| 久久精品国产亚洲av涩爱 | 99久久中文字幕三级久久日本| 亚洲av不卡在线观看| 国产av在哪里看| 国产成人aa在线观看| 欧美日韩黄片免| 欧美成人一区二区免费高清观看| 国产白丝娇喘喷水9色精品| 男女之事视频高清在线观看| 国产精品亚洲美女久久久| 麻豆国产97在线/欧美| 又爽又黄a免费视频| 男女下面进入的视频免费午夜| 干丝袜人妻中文字幕| 又粗又爽又猛毛片免费看| 国产欧美日韩一区二区精品| 999久久久精品免费观看国产| 日本 欧美在线| 国内精品一区二区在线观看| 两个人视频免费观看高清| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av中文字字幕乱码综合| 成年女人永久免费观看视频| 欧美最黄视频在线播放免费| 久久人人爽人人爽人人片va| 免费观看精品视频网站| 有码 亚洲区| 国产在线精品亚洲第一网站| 99久久中文字幕三级久久日本| 亚洲avbb在线观看| 少妇被粗大猛烈的视频| 男人狂女人下面高潮的视频| 亚洲国产精品sss在线观看| bbb黄色大片| 亚洲第一区二区三区不卡| 性色avwww在线观看| .国产精品久久| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 亚洲av第一区精品v没综合| 国产精品亚洲美女久久久| 国产精品自产拍在线观看55亚洲| 亚洲精华国产精华液的使用体验 | 香蕉av资源在线| 亚洲图色成人| 久久久成人免费电影| 国产日本99.免费观看| 又紧又爽又黄一区二区| 国产精品久久久久久精品电影| 日韩欧美在线乱码| 婷婷六月久久综合丁香| 欧美丝袜亚洲另类 | 亚洲精品成人久久久久久| 国产人妻一区二区三区在| 老司机深夜福利视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 两个人视频免费观看高清| 级片在线观看| 国产男靠女视频免费网站| 97热精品久久久久久| 日日摸夜夜添夜夜添av毛片 | 日韩国内少妇激情av| 免费观看人在逋| 国产精品99久久久久久久久| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 国产精品久久久久久av不卡| 九九在线视频观看精品| 99riav亚洲国产免费| 九九在线视频观看精品| 在现免费观看毛片| 久久久久久九九精品二区国产| 午夜爱爱视频在线播放| 又粗又爽又猛毛片免费看| 禁无遮挡网站| 国产高清视频在线播放一区| x7x7x7水蜜桃| 深夜a级毛片| 亚洲欧美精品综合久久99| 少妇被粗大猛烈的视频| 又爽又黄a免费视频| 亚洲av.av天堂| 老女人水多毛片| 国产成年人精品一区二区| 亚洲欧美日韩高清在线视频| 国产一区二区激情短视频| 成人精品一区二区免费| 偷拍熟女少妇极品色| 久久久久久久久久成人| 一个人观看的视频www高清免费观看| h日本视频在线播放| 毛片一级片免费看久久久久 | 久久久精品欧美日韩精品| 91在线观看av| 亚洲av熟女| 成人国产综合亚洲| 中国美女看黄片| 久久香蕉精品热| 午夜精品在线福利| 国产乱人视频| 又爽又黄无遮挡网站| 日韩中字成人| 国内久久婷婷六月综合欲色啪| 国产精品一及| 可以在线观看毛片的网站| 亚洲精品国产成人久久av| 中文字幕高清在线视频| 免费观看人在逋| 老司机深夜福利视频在线观看| 欧美激情在线99| 国产黄片美女视频| 嫁个100分男人电影在线观看| 九九在线视频观看精品| 久久久色成人| 99国产极品粉嫩在线观看| 性欧美人与动物交配| 男女下面进入的视频免费午夜| 亚洲av不卡在线观看| 国产 一区精品| 婷婷丁香在线五月| 国产91精品成人一区二区三区| 久久国产精品人妻蜜桃| 成年女人永久免费观看视频| 中国美白少妇内射xxxbb| 日韩欧美免费精品| 波野结衣二区三区在线| 好男人在线观看高清免费视频| 久久精品人妻少妇| 99热这里只有是精品在线观看| 国产精品无大码| 极品教师在线视频| 免费av毛片视频| 黄色欧美视频在线观看| a级毛片a级免费在线| 亚洲性久久影院| 精品免费久久久久久久清纯| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 国产精品一区二区性色av| 美女高潮的动态| 婷婷精品国产亚洲av在线| 麻豆av噜噜一区二区三区| www日本黄色视频网| 国产久久久一区二区三区| 色吧在线观看| 久久久久久久久中文| 日韩欧美免费精品| 国产高清不卡午夜福利| 日本欧美国产在线视频| 又粗又爽又猛毛片免费看| 欧美中文日本在线观看视频| 色噜噜av男人的天堂激情| 日韩欧美国产在线观看| 亚洲av成人av| 亚洲,欧美,日韩| 色播亚洲综合网| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 国产大屁股一区二区在线视频| 长腿黑丝高跟| 中国美白少妇内射xxxbb| 99久久无色码亚洲精品果冻| 欧美日韩黄片免| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 国产高清三级在线| 91久久精品国产一区二区三区| av在线亚洲专区| 亚洲五月天丁香| 欧美三级亚洲精品| 很黄的视频免费| 男人舔女人下体高潮全视频| 亚洲人成网站高清观看| 欧美性猛交╳xxx乱大交人| 欧美激情久久久久久爽电影| 男人和女人高潮做爰伦理| 97碰自拍视频| 校园春色视频在线观看| 五月玫瑰六月丁香| 日日摸夜夜添夜夜添av毛片 | 悠悠久久av| 99热这里只有是精品在线观看| 色噜噜av男人的天堂激情| 观看免费一级毛片| 国产精品自产拍在线观看55亚洲| 免费无遮挡裸体视频| 毛片女人毛片| 亚洲真实伦在线观看| 日本三级黄在线观看| 日本精品一区二区三区蜜桃| 韩国av一区二区三区四区| 成人午夜高清在线视频| 亚洲专区国产一区二区| 能在线免费观看的黄片| 一级a爱片免费观看的视频| 真实男女啪啪啪动态图| 亚洲无线在线观看| 成年版毛片免费区| 乱系列少妇在线播放| 日韩欧美精品v在线| 国产又黄又爽又无遮挡在线| a级毛片免费高清观看在线播放| 黄色一级大片看看| 好男人在线观看高清免费视频| 日韩欧美精品v在线| av黄色大香蕉| 亚洲无线在线观看| 免费av不卡在线播放| 久久久国产成人免费| av在线观看视频网站免费| 国产久久久一区二区三区| 色哟哟·www| 国产精品乱码一区二三区的特点| 亚洲欧美清纯卡通| 精品人妻1区二区| 亚洲人成网站在线播| 变态另类丝袜制服| 日韩,欧美,国产一区二区三区 | 日本与韩国留学比较| 国产精品永久免费网站| 国产精品三级大全| 免费无遮挡裸体视频| 亚洲国产色片| 国产一区二区在线观看日韩| 日韩大尺度精品在线看网址| 国产高清有码在线观看视频| 不卡一级毛片| 女的被弄到高潮叫床怎么办 | 欧美激情国产日韩精品一区| 午夜免费激情av| 亚洲精品在线观看二区| 一本精品99久久精品77| 舔av片在线| 国产高清不卡午夜福利| 一级黄片播放器| 99热网站在线观看| 久久久久久久久中文| videossex国产| 嫩草影视91久久| 日韩欧美在线二视频| 国产一区二区在线av高清观看| 看免费成人av毛片| 精品一区二区三区视频在线| 最新中文字幕久久久久| 欧美最黄视频在线播放免费| 亚洲黑人精品在线| 久久久久久九九精品二区国产| 99热这里只有精品一区| 亚洲精品粉嫩美女一区| 白带黄色成豆腐渣| 午夜精品久久久久久毛片777| 色噜噜av男人的天堂激情| 99精品在免费线老司机午夜| 啪啪无遮挡十八禁网站| 22中文网久久字幕| 精品久久久久久久久久久久久| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| xxxwww97欧美| 精品久久久久久久久亚洲 | 国产 一区 欧美 日韩| 国产精品免费一区二区三区在线| 91久久精品国产一区二区成人| 国产精品永久免费网站| 香蕉av资源在线| 国产色婷婷99| 国产精品人妻久久久影院| 成人综合一区亚洲| 亚洲无线在线观看| 在线播放无遮挡| 18禁在线播放成人免费| 18+在线观看网站| 99九九线精品视频在线观看视频| 久久久久久久久久成人| 成人午夜高清在线视频| 小说图片视频综合网站| 美女cb高潮喷水在线观看| 国产爱豆传媒在线观看| 非洲黑人性xxxx精品又粗又长| 深夜a级毛片| 日韩欧美在线二视频| 国产精品,欧美在线| 精品久久久噜噜| a级毛片免费高清观看在线播放| 尾随美女入室| 女人十人毛片免费观看3o分钟| 亚洲成人免费电影在线观看| 欧美色视频一区免费| av中文乱码字幕在线| 极品教师在线视频| 丰满的人妻完整版| 免费观看精品视频网站| 淫秽高清视频在线观看| 日本熟妇午夜| 国产精华一区二区三区| 中文字幕av成人在线电影| 亚洲第一电影网av| 午夜亚洲福利在线播放| 亚洲成人久久性| 尤物成人国产欧美一区二区三区| 舔av片在线| 国产免费一级a男人的天堂| 免费黄网站久久成人精品| 18禁在线播放成人免费| 国产免费一级a男人的天堂| 久久精品国产鲁丝片午夜精品 | 联通29元200g的流量卡| 欧美黑人巨大hd| 22中文网久久字幕|