• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    機(jī)器人足球——智能機(jī)器人的新領(lǐng)域

    2015-01-30 19:08:35
    中國學(xué)術(shù)期刊文摘 2015年20期
    關(guān)鍵詞:移動(dòng)機(jī)器人機(jī)器人

    ?

    機(jī)器人足球——智能機(jī)器人的新領(lǐng)域

    高大志,張春暉,徐心和

    摘要:本文主要介紹近年來發(fā)展的機(jī)器人足球比賽和足球機(jī)器人系統(tǒng)。足球機(jī)器人系統(tǒng)由機(jī)器人、視覺系統(tǒng)、主機(jī)系統(tǒng)和通訊系統(tǒng)組成。多機(jī)器人組隊(duì)比賽便構(gòu)成一個(gè)復(fù)雜大系統(tǒng),它涉及機(jī)器人、自動(dòng)控制、通信、傳感、圖像處理以及人工智能等領(lǐng)域,而機(jī)器人足球便成為研究多機(jī)器人合作以及多智能體系統(tǒng)的一個(gè)很好的實(shí)驗(yàn)載體。

    關(guān)鍵詞:機(jī)器人;多智能體系統(tǒng);足球機(jī)器人;移動(dòng)機(jī)器人

    來源出版物:機(jī)器人, 1998, 20(4): 309-314

    被引頻次:1869

    A robust layered control system for a mobile robot

    Brooks, RA

    Abstract:A new architecture for controlling mobile robots is described. Layers of control system are built to let the robot operate at increasing levels of competence. Layers are made up of asynchronous modules that communicate over low-bandwidth channels. Each module is an instance of a fairly simple computational machine. Higher-level layers can subsume the roles of lower levels by suppressing their outputs. However, lower levels continue to function as higher levels are added. The result is a robust and flexible robot control system. The system has been used to control a mobile robot wandering around unconstrained laboratory areas and computer machine rooms. Eventually it is intended to control a robot that wanders the office areas of our laboratory, building maps of its surroundings using an onboard arm to perform simple tasks. This paper presents a unique real-time obstacle avoidance approach for manipulators and mobile robots based on the artificial potential field concept. Collision avoidance, traditionally considered a high level planning problem, can be effectively distributed between different levels of control, al lowing real-time robot operations in a complex environment. This method has been extended to moving obstacles by using a time-varying artificial potential field. We have applied this obstacle avoidance scheme to robot arm mechanisms and have used a new approach to the general problem of real-time manipulator control. We reformulated the manipulator con trol problem as direct control of manipulator motion in operational space—the space in which the task is originally described—rather than as control of the task's corresponding joint space motion obtained only after geometric and kinematic transformation. Outside the obstacles' regions of influence, we caused the end effectors to move in a straight line with an upper speed limit. The artificial potential field approach has been extended to collision avoidance for all manipulator links. In addition, a joint space artificial potential field is used to satisfy the manipulator internal joint constraints. This method has been implemented in the COSMOS system for a PUMA 560 robot. Real-time collision avoidance demonstrations on moving obstacles have been performed by using visual sensing. This article proposes a betterment process for the operation of a mechanical robot in a sense that it betters the next operation of a robot by using the previous operation's data. The process has an iterative learning structure such that the (k + 1)th input to joint actuators consists of the kth input plus an error increment composed of the derivative difference between the kth motion trajectory and the given desired motion trajectory. The convergence of the process to the desired motion trajectory is assured under some reasonable conditions. Numerical results by computer simulation are presented to show the effectiveness of the proposed learning scheme. A framework for the analysis and control of manipulator systems with respect to the dynamic behavior of their end-effectors is developed. First, issues related to the description of end-effector tasks that involve constrained motion and active force control are discussed. The fundamentals of the operational space formulation are then presented, and the unified approach for motion and force control is developed. The extension of this formulation to redundant manipulator systems is also presented, constructing the end-effector equations of motion and describing their behavior with respect to joint forces. These results are used in the development of a new and systematic approach for dealing with the problems arising at kinematic singularities. At a singular configuration, the manipulator is treated as a mechanism that is redundant with respect to the motion of the end-effector in the subspace of operational space orthogonal to the singular direction. A new real-time obstacle avoidance method for mobile robots has been developed and implemented. This method, named the vector field histogram (VFH), permits the detection of unknown obstacles and avoids collisions while simultaneously steering the mobile robot toward the target. The VFH method uses a two-dimensional Cartesian histogram grid as a world model. This world model is updated continuously with range data sampled by on-board range sensors. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one-dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. Experimental results from a mobile robot traversing densely cluttered obstacle courses in smooth and continuous motion and at an average speed of 0.6-0.7 m/s demonstrate the power of the VFH method. We present a new methodology for exact robot motion planning and control that unifies the purely kinematic path planning problem with the lower level feedback controller design. Complete information about the free space and goal is encoded in the form of a special artificial potential function-a navigation function-that connects the kinematic planning problem with the dynamic execution problem in a provably correct fashion. The navigation function automatically gives rise to a bounded-torque feedback controller for the robot's actuators that guarantees collision-free motion and convergence to the destination from almost all intial free configurations. Since navigation functions exist for any robot and obstacle course, our methodology is completely general in principle. However, this paper is mainly concerned with certain constructive techniques for a particular class of motion planning problems. Specifically, we present a formula for navigation functions that guide a point-mass robot in a generalized sphere world. The simplest member of this family is a space obtained by puncturing a disc by an arbitrary number of smaller disjoint discs representing obstacles. The other spaces are obtained from this model by a suitable coordinate transformation that we show how to build. Our constructions exploit these coordinate transformations to adapt a navigation function on the model space to its more geometrically complicated (but topologically equivalent) instances. The formula that we present admits sphere-worlds of arbitrary dimension and is directly applicable to configuration spaces whose forbidden regions can be modeled by such generalized discs. We have implemented these navigation functions on planar scenarios, and simulation results are provided throughout the paper. Passive-dynamic walkers are simple mechanical devices, composed of solid parts connected by joints, that walk stably down a slope. They have no motors or controllers, yet can have remarkably humanlike motions. This suggests that these machines are useful models of human locomotion; however, they cannot walk on level. ground. Here we present three robots based on passive-dynamics, with small active power sources substituted for gravity, which can walk on level ground. These robots use less control and less energy than other powered robots, yet walk more naturally, further suggesting the importance of passive-dynamics in human locomotion. A methodology of feedback control is developed to achieve accurate tracking in a. class of non-linear, time-varying systems in the presence of disturbances and parameter variations. The methodology uses in its idealized form piecewise continuous feedback control, resulting in the state trajectory sliding along a time-varying sliding surface in the state space. This idealized control law achieves perfect tracking; however, non-idealities in its implementation result in the generation of an undesirable high-frequency component in the state trajectory. To rectify this, it is shown how continuous control laws may be used to approximate the discontinuous control law to obtain robust tracking to within a prescribed accuracy without generating undesirable high-frequency signal. The method is applied to the control of a two-link manipulator handling variable loads in a flexible manufacturing system environment. A new adaptive robot control algorithm is derived, which consists of a PD feedback part and a full dynamics feed forward compensation part, with the unknown manipulator and payload parameters being estimated online. The algorithm is computationally simple, because of an effective exploitation of the structure of manipulator dynamics. In particular, it requires neither feedback of jointbook=14,ebook=18accelerations nor inversion of the estimated inertia matrix. The algorithm can also be applied directly in Cartesian space. Mobile robot localization is the problem of determining a robot’s pose from sensor data. This article presents a family of probabilistic localization algorithms known as: Monte Carlo Localization (MCL). MCL algorithms represent a robot's belief by a set of weighted hypotheses (samples), which approximate the posterior under a common Bayesian formulation of the localization problem. Building on the basic MCL algorithm, this article develops a more robust algorithm called Mixture-MCL, which integrates two complimentary ways of generating samples in the estimation. To apply this algorithm to mobile robots equipped with range finders, a kernel density tree is learned that permits fast sampling. Systematic empirical results illustrate the robustness and computational efficiency of the approach. It has been known for some time (Gevarter 1970) that if a flexible structure is controlled by locating every sensor exactly at the actuator it will control, then stable operation is easy to achieve. Nearly all commercial robots are controlled in this way, for this reason. So are most flexible spacecraft. Conversely, when one attempts to control a flexible structure by applying control torques at one end that are based on a sensor at the other end, the problem of achieving stability is severe. Solving it is an essential step for better control in space: the space-shuttle arm is a cogent example. The next generation of industrial robots will also need such control capability, for they will need to be much lighter in weight (to achieve quick response with modest energy), and they will need to achieve greater precision by employing end-point sensing. A set of experiments has been constructed to demonstrate control strategies for a single-link, very flexible manipulator, where the position of one end is to be sensed and precisely positioned by torturing at the other end. The objective of this first set of experiments is to uncover and solve problems related to the control of very flexible manipulators where sensors are not collocated with the actuator. The experimental arrangement described here is also a test bed for new designs for flexible-structure controllers, designs that use insensitive, reduced-order control and adaptive control methods, for example. This paper describes the experimental arrangement, model identification, control design, and first experimental results. Some interesting results are the following. First, good stability can be achieved for such noncollocated systems, and reponse can be achieved that is effectively three times faster than the first natural cantilever period of the system: but a good model of the system dynamics and rather sophisticated control algorithms are essential to doing so. Even then, the system will always be conditionally stable. In addition to the tip sensor, a collocated rate sensor and nearly collocated strain gauges have been found to be very useful for achieving good closed-loop performance, that is, high gain and high band width. Second, there is an ultimate physical limit to achievable response time, namely, the time required for a wave to travel the length of the member. Well-designed controllers can approach this limit. Third, the use of end-point sensing makes less critical the elaborate dynamic conditioning of position-command signals— "model-following" differentiators, feed-forward, and the like—such as are typically needed in presentgeneration robots that use "dead reckoning" in lieu of end-point sensing. With end-point sensing, feedback alone (suitably conditioned) is sufficient to whip the tip to the commanded position and hold it there precisely. Even more important, a shift in, for example, work piece with respect to robot base, no longer produces an error. To determine whether simultaneously recorded motor cortex neurons can be used for real-time device control, rats were trained to position a robot arm to obtain water by pressing a lever. Mathematical transformations, including neural networks, converted multineuron signals into 'neuronal population functions' that accurately predicted lever trajectory. Next, these functions were electronically converted into real-time signals for robot arm control. After switching to this 'neurorobotic' mode, 4 of 6 animals (those with >25 task-related neurons) routinely used these brain-derived signals to position the robot arm and obtain water. With continued training in neurorobotic mode, the animals' lever movement diminished or stopped. These results suggest a possible means for movement restoration in paralysis patients. Chain form systems have recently been introduced to model the kinematics of a class of nonholonomic mechanical systems. The first part of the study is centered on control design and analysis for nonlinear systems which can be converted to the chain form. Solutions to various control problems (open-loop steering, partial or complete state feedback stabilization) are either recalled, generalized, or developed. In particular, globally stabilizing time-varying feedbacks are derived, and a discussion of their convergence properties is provided. Application to the control of nonholonomic wheeled mobile robots is described in the second part of the study by considering the case of a car-pulling trailers. In this paper we give a tutorial account of several of the most recent adaptive control results for rigid robot manipulators. Our intent is to lend some perspective to the growing list of adaptive control results for manipulators by providing a unified framework for comparison of those adaptive control algorithms which have been shown to be globally convergent. In most cases we are able to simplify the derivations and proofs of these results as well. In this paper, the authors describe the design and control cf, RHex, a power autonomous, untethered, compliant-legged hexapod robot. RHex has only six actuators-one motor located at each hip-achieving mechanical simplicity that promotes reliable and robust operation in real-world tasks. Empirically stable and highly maneuverable locomotion arises from a very simple clock-driven, open-loop tripod gait. The legs rotate full circle, thereby preventing the common problem of toe stubbing in the protraction (swing) phase. An extensive suite of experimental results documents the robot's significant "intrinsic mobility"-the traversal of rugged, broken, and obstacle-ridden ground without any terrain sensing or actively controlled adaptation. RHex achieves fast and robust forward locomotion traveling at speeds up to one body length per second and traversing height variations well exceeding its body clearance. This paper addresses the control of a team of nonholonomic mobile robots navigating in a terrain with obstacles while maintaining a desired formation and changing formations when required, using graph theory. We model the team as a triple, (g, r, H), consisting of a group element g that describes the gross position of the lead robot, a set of shape variables r that describe the relative positions of robots, and a control graph H that describes the behaviors of the robots in the formation. Our framework enables the representation and enumeration of possible control graphs and the coordination of transitions between any two formations. A multilayer neural-net (NN) controller for a general serial-link rigid robot arm is developed. The structure of the NN controller is derived using a filtered error/passivity approach. No off-line learning phase is needed for the proposed NN controller and the weights are easily initialized. The nonlinear nature of the NN, plus NN functional reconstruction inaccuracies and robot disturbances, mean that thebook=16,ebook=20standard delta rule using backpropagation tuning does not suffice for closed-loop dynamic control. Novel on-line weight tuning algorithms, including correction terms to the delta rule plus an added robustifying signal, guarantee bounded tracking errors as well as bounded NN weights. Specific bounds are determined, and the tracking error bound can be made arbitrarily small by increasing a certain feedback gain. The correction terms involve a second-order forward-propagated wave in the backprop network. New NN properties including the notions of a passive NN, a dissipative NN, and a robust NN are introduced. A real-time obstacle avoidance approach for mobile robots has been developed and implemented. It permits the detection of unknown obstacles simultaneously with the steering of the mobile robot to avoid collisions and advance toward the target. The novelty of this approach, entitled the virtual force field method, lies in the integration of two known concepts: certainty grids for obstacle representation and potential fields for navigation. This combination is especially suitable for the accommodation of inaccurate sensor data as well as for sensor fusion and makes possible continuous motion of the robot with stopping in front of obstacles. This navigation algorithm also takes into account the dynamic behavior of a fast mobile robot and solves the local minimum trap problem. Experimental results from a mobile robot running at a maximum speed of 0.78 m/s demonstrate the power of the algorithm. An approach to robot perception and world modeling that uses a probabilistic tesselated representation of spatial information called the occupancy grid is reviewed. The occupancy grid is a multidimensional random field that maintains stochastic estimates of the occupancy state of the cells in a spatial lattice. To construct a sensor-derived map of the robot's world, the cell state estimates are obtained by interpreting the incoming range readings using probabilistic sensor models. Bayesian estimation procedures allow the incremental updating of the occupancy grid, using readings taken from several sensors over multiple points of view. The use of occupancy grids from mapping and for navigation is examined. Operations on occupancy grids and extensions of the occupancy grid framework are briefly considered. Objective: To compare the effects of robot-assisted movement training with conventional techniques for the rehabilitation of upper-limb motor function after stroke. Design: Randomized controlled trial, 6-month follow-up. Setting: A Department of Veterans Affairs rehabilitation research and development center. Participants: Consecutive sample of 27 subjects with chronic hemiparesis (>6 mo after cerebrovascular accident) randomly allocated to group. Interventions: All subjects received twenty-four I-hour sessions over 2 months. Subjects in the robot group practiced shoulder and elbow movements while assisted by a robot manipulator. Subjects in the control group received neurodevelopmental therapy (targeting proximal upper limb function) and 5 minutes of exposure to the robot in each session. Main Outcome Measures: Fugl-Meyer assessment of motor impairment, FIM(TM) instrument, and biomechanic measures of strength and reaching kinematics. Clinical evaluations were performed by a therapist blinded to group assignments. Results: Compared with the control group, the robot group had larger improvements in the proximal movement portion of the Fugl-Meyer test after 1 month of treatment (P < 0.05) and also after 2 months of treatment (P < 0.05). The robot group had larger gains in strength (P < 0.02) and larger increases in reach extent (P < 0.01) after 2 months of treatment. At the 6-month follow-up, the groups no longer differed in terms of the Fugl-Meyer test (P > 0.30); however, the robot group had larger improvements in the FIM (P < 0.04). Conclusions: Compared with conventional treatment, robot-assisted movements had advantages in terms of clinical and biomechanical measures. Further research into the use of robotic manipulation for motor rehabilitation is justified.

    來源出版物: IEEE Journal of Robotics and Automation, 1986, 2(1): 14-23

    被引頻次:1780

    Real-time obstacle avoidance for manipulators and mobile robots

    Khatib, O

    來源出版物: International Journal of Robotics Research, 1986, 5(1): 90-98

    被引頻次:1196

    Bettering operation of robots by learning

    Arimoto, S; Kawamura, S; Miyazaki, F

    來源出版物:Journal of Robotic Systems, 1984, 1(2): 123-140

    被引頻次:769

    A unified approach for motion and force control of robot manipulator: The operational space formulation

    Khatib, O

    來源出版物: IEEE Journal of Robotics and Automation, 1987, 3(1): 43-53

    被引頻次:697

    The vector field histogram - fast obstacle avoidance for mobile robots

    Borenstein, J; Koren, Y

    Keywords: navigation; sonar

    來源出版物: IEEE Journal of Robotics and Automation, 1991, 7(3): 278-288

    被引頻次:684

    Exact robot navigation using artificial potential functions

    Rimon, E; Koditschek, DE

    Keywords:time obstacle avoidance; mobile robots; manipulators; motion walking; reinforcement; locomotion mobile robots; localization; position estimation; particle filters; kernel density trees somatic sensory transmission; movement; rat; patterns; restoration; modulation; ensembles; thalamus laws adaptive control; robots; parameter estimation; passivity; non-linear control; robustness legged locomotion; hexapod robot; clock driven; mobility; autonomy; biomimesis formation control of mobile robots; graph theory; non-linear control adaptive-control; robust-control; networks; systems mobile robots; localization; position estimation; particle filters; kernel density trees arm; cerebrovascular accident; movement; rehabilitation; robotics; therapy

    來源出版物: IEEE Journal of Robotics and Automation, 1992, 8(5): 501-518

    被引頻次:677

    Efficient bipedal robots based on passive-dynamic walkers

    Collins, S; Ruina, A; Tedrake, R; et al.

    來源出版物: Science, 2005, 307(5712): 1082-1085

    被引頻次:646

    Tracking control of non-linear systems using sliding surfaces, with application to robot manipulators

    Slotine, JJ; Sastry, SS

    來源出版物: International Journal of Control, 1983, 38(2): 465-492

    被引頻次:616

    On the adaptive-control of robot manipulators

    Slotine, JJE; Li, WP

    來源出版物:International Journal of Robotics Research, 1987, 6(3): 49-59

    被引頻次:508

    Robust Monte Carlo localization for mobile robots

    Thrun, S; Fox, D; Burgard, W; et al.

    來源出版物: Artificial Intelligence, 2001, 128(1): 99-141

    被引頻次:503

    Initial experiments on the endpoint control of a flexible one-link robot

    Cannon, RH; Schmitz, E

    來源出版物: International Journal of Robotics Research, 1984, 3(3): 62-75

    被引頻次:500

    Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex

    Chapin, JK; Moxon, KA; Markowitz, RS; et al.

    來源出版物: Nature Neuroscience, 1999, 2(7): 664-670

    被引頻次:495

    Control of chained systems application to path-following and time-varying point-stabilization of mobile robots

    Samson, C

    來源出版物: IEEE Transactions on Automatic Control, 1995, 40(1): 64-77

    被引頻次:467

    Adaptive motion control of rigid robots: A tutorial

    Ortega, R; Spong, MW

    來源出版物: Automatica, 1989, 25(6): 877-888

    被引頻次:458

    RHex: A simple and highly mobile hexapod robot

    Saranli, U; Buehler, M; Koditschek, DE

    來源出版物: International Journal of Robotics Research, 2001, 20(7): 616-631

    被引頻次:448

    Modeling and control of formations of nonholonomic mobile robots

    Desai, JP; Ostrowski, JP; Kumar, V

    來源出版物: IEEE Transactions on Robotics and Automation, 2001, 17(6): 905-908

    被引頻次:437

    Multilayer neural-net robot controller with guaranteed tracking performance

    Lewis, F; Yesildirek, A; Liu, K

    來源出版物: IEEE Transactions on Neural Networks, 1996, 7(2): 388-399

    被引頻次:421

    Real-time obstacle avoidance for fast mobile robots

    Borenstein, J; Koren, Y

    來源出版物:IEEE Transactions on Man and Cybernetics, 1989, 19(5): 1179-1187

    被引頻次:409

    Using occupancy grids for mobile robot perception and navigation

    Elfes, A

    來源出版物: Archives of Physical Medicine and Rehabilitation, 2002, 83(7): 952-959

    專家推薦

    來源出版物: Computer, 1989, 22(6): 46-57

    被引頻次:390

    Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke

    Lum, PS; Burgar, CG; Shor, PC

    猜你喜歡
    移動(dòng)機(jī)器人機(jī)器人
    移動(dòng)機(jī)器人自主動(dòng)態(tài)避障方法
    移動(dòng)機(jī)器人VSLAM和VISLAM技術(shù)綜述
    機(jī)器人,讓未來走近你
    金橋(2019年10期)2019-08-13 07:15:16
    基于Twincat的移動(dòng)機(jī)器人制孔系統(tǒng)
    室內(nèi)環(huán)境下移動(dòng)機(jī)器人三維視覺SLAM
    機(jī)器人來幫你
    認(rèn)識(shí)機(jī)器人
    機(jī)器人來啦
    為什么造機(jī)器人?
    認(rèn)識(shí)機(jī)器人
    女性生殖器流出的白浆| 黑人操中国人逼视频| 两人在一起打扑克的视频| 麻豆av在线久日| 欧美激情极品国产一区二区三区| 精品视频人人做人人爽| 午夜两性在线视频| 9191精品国产免费久久| 成人18禁高潮啪啪吃奶动态图| 一区二区av电影网| 视频在线观看一区二区三区| 男女之事视频高清在线观看| 亚洲精品美女久久久久99蜜臀| 日韩 欧美 亚洲 中文字幕| 久久久久久人人人人人| 黄网站色视频无遮挡免费观看| 真人做人爱边吃奶动态| 精品少妇久久久久久888优播| 成人国产av品久久久| 亚洲国产欧美一区二区综合| 美国免费a级毛片| 欧美日韩亚洲国产一区二区在线观看 | 亚洲av片天天在线观看| 法律面前人人平等表现在哪些方面 | 日韩大片免费观看网站| av福利片在线| 久久久久久久久久久久大奶| 一个人免费在线观看的高清视频 | 人人妻人人爽人人添夜夜欢视频| 男女午夜视频在线观看| 亚洲成人免费电影在线观看| 美女福利国产在线| 人人妻人人澡人人看| 成年美女黄网站色视频大全免费| 亚洲精品美女久久久久99蜜臀| 涩涩av久久男人的天堂| 亚洲五月色婷婷综合| av不卡在线播放| 搡老乐熟女国产| 精品欧美一区二区三区在线| 午夜精品久久久久久毛片777| 99久久无色码亚洲精品果冻| 亚洲熟妇中文字幕五十中出| 少妇被粗大的猛进出69影院| 此物有八面人人有两片| 亚洲一区二区三区色噜噜| 国产精品99久久99久久久不卡| 国产成+人综合+亚洲专区| 日日夜夜操网爽| 丰满人妻熟妇乱又伦精品不卡| 国产成人欧美在线观看| 91麻豆av在线| 国产69精品久久久久777片 | 中亚洲国语对白在线视频| 少妇裸体淫交视频免费看高清 | 99久久无色码亚洲精品果冻| 最近视频中文字幕2019在线8| 国产高清视频在线观看网站| videosex国产| 丰满人妻一区二区三区视频av | 长腿黑丝高跟| 国产成年人精品一区二区| 色综合亚洲欧美另类图片| 亚洲精品久久成人aⅴ小说| 日韩欧美精品v在线| 好男人电影高清在线观看| 一区二区三区激情视频| 欧美日韩精品网址| 亚洲一区中文字幕在线| 老司机深夜福利视频在线观看| 在线观看舔阴道视频| 又黄又粗又硬又大视频| 丁香六月欧美| 看黄色毛片网站| 窝窝影院91人妻| 免费观看精品视频网站| 麻豆一二三区av精品| 国产精品久久电影中文字幕| 成人三级做爰电影| 精品久久久久久成人av| 欧美3d第一页| tocl精华| 欧美色视频一区免费| 欧美色视频一区免费| 别揉我奶头~嗯~啊~动态视频| 一本一本综合久久| 久久性视频一级片| 在线观看免费日韩欧美大片| 亚洲精品久久国产高清桃花| 给我免费播放毛片高清在线观看| a在线观看视频网站| 久久性视频一级片| 99精品久久久久人妻精品| 久99久视频精品免费| 欧美日韩一级在线毛片| 在线观看午夜福利视频| 又大又爽又粗| 久久天躁狠狠躁夜夜2o2o| 欧美成狂野欧美在线观看| 在线观看午夜福利视频| 日韩高清综合在线| 免费搜索国产男女视频| 男女视频在线观看网站免费 | 精品久久久久久久人妻蜜臀av| 搡老妇女老女人老熟妇| 老汉色av国产亚洲站长工具| 免费电影在线观看免费观看| 亚洲片人在线观看| 亚洲国产精品999在线| 此物有八面人人有两片| 亚洲 欧美 日韩 在线 免费| 国内精品一区二区在线观看| www日本在线高清视频| 久久精品亚洲精品国产色婷小说| 91九色精品人成在线观看| 天天一区二区日本电影三级| 黑人操中国人逼视频| 91九色精品人成在线观看| 少妇熟女aⅴ在线视频| 国产乱人伦免费视频| 久久久久久免费高清国产稀缺| 午夜日韩欧美国产| 99精品欧美一区二区三区四区| 欧美一区二区国产精品久久精品 | 中文字幕人妻丝袜一区二区| 日韩精品青青久久久久久| 精品一区二区三区av网在线观看| 精品久久久久久久久久免费视频| 天堂影院成人在线观看| 久久人妻av系列| 免费在线观看日本一区| 亚洲 欧美一区二区三区| 国产探花在线观看一区二区| 在线观看舔阴道视频| 又黄又粗又硬又大视频| 亚洲欧美日韩东京热| 黑人巨大精品欧美一区二区mp4| 在线观看www视频免费| 国产高清视频在线播放一区| 日本黄色视频三级网站网址| 精品一区二区三区视频在线观看免费| 国产精品久久久久久久电影 | 俺也久久电影网| 十八禁人妻一区二区| 国产成人av教育| 亚洲一区高清亚洲精品| www.熟女人妻精品国产| 成人18禁高潮啪啪吃奶动态图| 亚洲人成网站高清观看| 欧美绝顶高潮抽搐喷水| 国产精品乱码一区二三区的特点| netflix在线观看网站| 国产午夜精品论理片| 国产精品久久久久久久电影 | 久久精品成人免费网站| 亚洲精品久久国产高清桃花| 禁无遮挡网站| 久久久精品国产亚洲av高清涩受| 女人被狂操c到高潮| 熟女少妇亚洲综合色aaa.| 久久人妻av系列| 精品久久久久久久久久久久久| 看片在线看免费视频| 亚洲av片天天在线观看| 级片在线观看| www.熟女人妻精品国产| 怎么达到女性高潮| 精品高清国产在线一区| 国产熟女xx| 少妇熟女aⅴ在线视频| 精品福利观看| 久久久久久免费高清国产稀缺| 999久久久国产精品视频| 2021天堂中文幕一二区在线观| 男人舔女人下体高潮全视频| 美女高潮喷水抽搐中文字幕| 亚洲中文av在线| 极品教师在线免费播放| 99国产精品一区二区蜜桃av| 母亲3免费完整高清在线观看| 久久久久九九精品影院| 亚洲欧美激情综合另类| 久久婷婷人人爽人人干人人爱| 国产真人三级小视频在线观看| av在线播放免费不卡| 免费av毛片视频| 国产高清视频在线观看网站| 搡老妇女老女人老熟妇| tocl精华| 久久久国产成人精品二区| 精品国产乱子伦一区二区三区| 亚洲国产日韩欧美精品在线观看 | 男女床上黄色一级片免费看| 90打野战视频偷拍视频| 久久久久久久精品吃奶| 久久精品综合一区二区三区| 夜夜爽天天搞| 午夜老司机福利片| 欧美国产日韩亚洲一区| 久久久久久久久中文| 亚洲精品一卡2卡三卡4卡5卡| 久久欧美精品欧美久久欧美| 国产精品,欧美在线| 国产一区二区三区在线臀色熟女| 大型av网站在线播放| 欧美日韩一级在线毛片| 久久午夜亚洲精品久久| 在线观看午夜福利视频| 亚洲免费av在线视频| 精品国产乱子伦一区二区三区| 久久久久国产精品人妻aⅴ院| 亚洲专区国产一区二区| 日本五十路高清| 亚洲最大成人中文| 熟女电影av网| 99国产精品一区二区三区| 亚洲成人久久爱视频| 精品熟女少妇八av免费久了| 好男人在线观看高清免费视频| 最好的美女福利视频网| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆 | 国产成人精品久久二区二区免费| 好男人在线观看高清免费视频| 亚洲色图 男人天堂 中文字幕| 国产亚洲欧美98| 国产精华一区二区三区| 在线观看免费日韩欧美大片| 国产亚洲欧美98| 日本三级黄在线观看| 欧美日韩亚洲国产一区二区在线观看| 熟女少妇亚洲综合色aaa.| 久久热在线av| 91九色精品人成在线观看| 夜夜看夜夜爽夜夜摸| 又紧又爽又黄一区二区| 成人国产综合亚洲| 国产精品一区二区精品视频观看| 成人国产综合亚洲| 精品国产亚洲在线| 黄色 视频免费看| 伊人久久大香线蕉亚洲五| avwww免费| 欧美午夜高清在线| 天堂动漫精品| 村上凉子中文字幕在线| 一本大道久久a久久精品| 淫妇啪啪啪对白视频| 欧美乱码精品一区二区三区| 999久久久精品免费观看国产| 国产一区在线观看成人免费| 一a级毛片在线观看| 午夜福利欧美成人| 99精品欧美一区二区三区四区| 天天添夜夜摸| 国产高清有码在线观看视频 | 老鸭窝网址在线观看| 一个人观看的视频www高清免费观看 | 身体一侧抽搐| 不卡av一区二区三区| 欧美乱色亚洲激情| 午夜两性在线视频| 国产爱豆传媒在线观看 | 一进一出抽搐动态| 国产精品久久电影中文字幕| 窝窝影院91人妻| 亚洲色图av天堂| 亚洲人成网站在线播放欧美日韩| 国产精品久久久av美女十八| 国产午夜福利久久久久久| 在线a可以看的网站| 欧美一区二区精品小视频在线| 欧美又色又爽又黄视频| 精品国产美女av久久久久小说| 久久久久久国产a免费观看| av超薄肉色丝袜交足视频| 日韩有码中文字幕| 午夜成年电影在线免费观看| 脱女人内裤的视频| 国产精品亚洲美女久久久| 欧美精品亚洲一区二区| 97人妻精品一区二区三区麻豆| 亚洲精品美女久久av网站| 老汉色av国产亚洲站长工具| 免费看美女性在线毛片视频| 亚洲性夜色夜夜综合| 亚洲色图 男人天堂 中文字幕| 中文在线观看免费www的网站 | 天堂√8在线中文| 欧美在线一区亚洲| 久久久久国内视频| 又爽又黄无遮挡网站| 色综合婷婷激情| 18禁观看日本| 神马国产精品三级电影在线观看 | 国产视频内射| 啦啦啦韩国在线观看视频| 国产av麻豆久久久久久久| 国产探花在线观看一区二区| 国产亚洲精品av在线| 日韩国内少妇激情av| 欧美日韩国产亚洲二区| 日本黄大片高清| 国产精品久久久久久精品电影| 19禁男女啪啪无遮挡网站| 黄片大片在线免费观看| 日韩欧美在线二视频| 亚洲最大成人中文| 午夜a级毛片| 国产精品av久久久久免费| 一边摸一边抽搐一进一小说| 亚洲免费av在线视频| 国产av一区在线观看免费| 亚洲av片天天在线观看| 999精品在线视频| 久久这里只有精品中国| 欧美性猛交╳xxx乱大交人| 一本一本综合久久| 亚洲国产中文字幕在线视频| 国产亚洲精品一区二区www| 每晚都被弄得嗷嗷叫到高潮| 男女做爰动态图高潮gif福利片| 国产av不卡久久| 精品久久久久久久末码| 最新在线观看一区二区三区| 人妻丰满熟妇av一区二区三区| 一级黄色大片毛片| 国产精品香港三级国产av潘金莲| 九九热线精品视视频播放| 亚洲五月天丁香| 欧美日韩福利视频一区二区| 国产av一区在线观看免费| 国产亚洲精品一区二区www| 男人舔女人的私密视频| 老汉色av国产亚洲站长工具| 黄片小视频在线播放| 国产精品自产拍在线观看55亚洲| 亚洲五月婷婷丁香| 亚洲在线自拍视频| 91字幕亚洲| 宅男免费午夜| 午夜亚洲福利在线播放| 精品熟女少妇八av免费久了| 精品久久久久久久久久久久久| 亚洲欧美精品综合一区二区三区| 在线永久观看黄色视频| 亚洲精品久久国产高清桃花| 精品久久久久久久久久久久久| 亚洲免费av在线视频| 久久精品国产综合久久久| 神马国产精品三级电影在线观看 | 国产区一区二久久| 亚洲欧洲精品一区二区精品久久久| 成人国产综合亚洲| 1024香蕉在线观看| 别揉我奶头~嗯~啊~动态视频| 人妻丰满熟妇av一区二区三区| 国产精品亚洲一级av第二区| 99久久精品热视频| 亚洲av熟女| 老司机福利观看| 国产成+人综合+亚洲专区| 亚洲av成人不卡在线观看播放网| 亚洲精品美女久久av网站| 一本一本综合久久| 观看免费一级毛片| 国产亚洲av高清不卡| 一a级毛片在线观看| а√天堂www在线а√下载| 成年女人毛片免费观看观看9| 国产精品99久久99久久久不卡| 曰老女人黄片| 91字幕亚洲| 久久久精品欧美日韩精品| 欧美zozozo另类| 亚洲人成网站在线播放欧美日韩| 国产精品98久久久久久宅男小说| 美女免费视频网站| 一级片免费观看大全| 国产在线精品亚洲第一网站| 久热爱精品视频在线9| 午夜免费观看网址| 亚洲五月婷婷丁香| 国产激情欧美一区二区| 又粗又爽又猛毛片免费看| 淫秽高清视频在线观看| 欧美3d第一页| 激情在线观看视频在线高清| 亚洲精品久久成人aⅴ小说| 久久久久国内视频| √禁漫天堂资源中文www| 变态另类成人亚洲欧美熟女| 1024香蕉在线观看| 成人av在线播放网站| 久久国产精品人妻蜜桃| 久久国产精品影院| 欧美午夜高清在线| 一本久久中文字幕| 国产99久久九九免费精品| 男人舔女人的私密视频| 天天添夜夜摸| 亚洲avbb在线观看| 精品高清国产在线一区| 日韩中文字幕欧美一区二区| 久久99热这里只有精品18| 嫁个100分男人电影在线观看| 国产激情欧美一区二区| 黑人巨大精品欧美一区二区mp4| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| 老司机午夜福利在线观看视频| 国产精品一区二区精品视频观看| 国产私拍福利视频在线观看| 久久这里只有精品19| 欧美 亚洲 国产 日韩一| 国产一区在线观看成人免费| 一级片免费观看大全| www.精华液| 国产精品免费视频内射| 国产一区二区在线av高清观看| 欧美中文日本在线观看视频| 一级黄色大片毛片| 波多野结衣高清作品| aaaaa片日本免费| 国产亚洲精品久久久久久毛片| 亚洲人成77777在线视频| 亚洲国产精品久久男人天堂| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| 很黄的视频免费| 免费在线观看日本一区| 伊人久久大香线蕉亚洲五| 亚洲av片天天在线观看| 麻豆成人av在线观看| 国产一区二区在线av高清观看| 亚洲第一欧美日韩一区二区三区| 日韩中文字幕欧美一区二区| 久久人妻福利社区极品人妻图片| 91大片在线观看| 欧美+亚洲+日韩+国产| 国产av不卡久久| 欧美成狂野欧美在线观看| 免费一级毛片在线播放高清视频| 国产99白浆流出| 亚洲国产欧美人成| 久久伊人香网站| 婷婷精品国产亚洲av在线| 男人的好看免费观看在线视频 | 此物有八面人人有两片| 亚洲七黄色美女视频| 久久久久久久久免费视频了| 女人高潮潮喷娇喘18禁视频| 18美女黄网站色大片免费观看| 欧美最黄视频在线播放免费| 亚洲精品一区av在线观看| 中国美女看黄片| 香蕉久久夜色| 中文在线观看免费www的网站 | 草草在线视频免费看| 午夜老司机福利片| 女同久久另类99精品国产91| or卡值多少钱| 久久久久久久久免费视频了| 少妇人妻一区二区三区视频| 精品欧美国产一区二区三| 中文资源天堂在线| 国产精品,欧美在线| 很黄的视频免费| 欧美日韩精品网址| 亚洲国产欧美人成| 国产高清videossex| 婷婷精品国产亚洲av在线| 日本一二三区视频观看| 亚洲最大成人中文| 久久久久久国产a免费观看| 精品第一国产精品| 久久人人精品亚洲av| 欧美人与性动交α欧美精品济南到| 搡老熟女国产l中国老女人| 亚洲熟妇中文字幕五十中出| 美女扒开内裤让男人捅视频| 日韩欧美 国产精品| 久久天躁狠狠躁夜夜2o2o| 99精品在免费线老司机午夜| 1024香蕉在线观看| 成人三级做爰电影| 97碰自拍视频| 两性夫妻黄色片| 曰老女人黄片| 久久精品综合一区二区三区| 国产精品永久免费网站| 日韩免费av在线播放| 国产精品久久久久久人妻精品电影| 啦啦啦韩国在线观看视频| av欧美777| 性欧美人与动物交配| 两个人的视频大全免费| 精品免费久久久久久久清纯| 黄色a级毛片大全视频| 人人妻人人澡欧美一区二区| 久久午夜亚洲精品久久| 岛国在线观看网站| 一个人免费在线观看的高清视频| 九色国产91popny在线| 中文字幕人成人乱码亚洲影| 亚洲人成伊人成综合网2020| 久久香蕉精品热| 国产成人精品久久二区二区91| 亚洲av中文字字幕乱码综合| 久久99热这里只有精品18| 国产97色在线日韩免费| 黄色 视频免费看| 久久久久九九精品影院| av免费在线观看网站| 欧美日韩亚洲综合一区二区三区_| 国产精品久久电影中文字幕| 午夜视频精品福利| 成人午夜高清在线视频| 国产成人精品久久二区二区免费| 国产成年人精品一区二区| √禁漫天堂资源中文www| 国产精品久久久av美女十八| 久久久久性生活片| 嫩草影视91久久| 日本一二三区视频观看| 在线十欧美十亚洲十日本专区| 国产一区二区三区在线臀色熟女| 99热这里只有是精品50| 91麻豆精品激情在线观看国产| 亚洲第一欧美日韩一区二区三区| 国产三级中文精品| 亚洲成av人片免费观看| av免费在线观看网站| 亚洲一码二码三码区别大吗| 久久久久免费精品人妻一区二区| videosex国产| 成人欧美大片| 五月玫瑰六月丁香| 国产精品永久免费网站| 亚洲国产看品久久| 首页视频小说图片口味搜索| 欧美一区二区精品小视频在线| 1024手机看黄色片| 成人特级黄色片久久久久久久| 中亚洲国语对白在线视频| 成人国产综合亚洲| 啪啪无遮挡十八禁网站| 亚洲一区二区三区不卡视频| 国产av不卡久久| 中文字幕最新亚洲高清| 两个人免费观看高清视频| 国产97色在线日韩免费| 成人国产一区最新在线观看| 欧美日韩一级在线毛片| 人妻夜夜爽99麻豆av| 亚洲成av人片免费观看| 一区二区三区激情视频| 麻豆av在线久日| 亚洲欧美精品综合一区二区三区| av在线天堂中文字幕| 午夜日韩欧美国产| 琪琪午夜伦伦电影理论片6080| 91老司机精品| 88av欧美| 怎么达到女性高潮| 天堂动漫精品| 久久久精品大字幕| 成人国产综合亚洲| av片东京热男人的天堂| 精品国产超薄肉色丝袜足j| 1024视频免费在线观看| 亚洲av五月六月丁香网| 日韩欧美免费精品| 亚洲自偷自拍图片 自拍| 欧美日韩乱码在线| 超碰成人久久| 欧美成人性av电影在线观看| www日本在线高清视频| 黄频高清免费视频| 欧美精品啪啪一区二区三区| 两个人视频免费观看高清| 亚洲一区中文字幕在线| 国产精品久久久久久人妻精品电影| 欧美激情久久久久久爽电影| 亚洲一码二码三码区别大吗| 曰老女人黄片| 亚洲五月天丁香| 一边摸一边做爽爽视频免费| 久久久久九九精品影院| 日本黄色视频三级网站网址| 91国产中文字幕| 两个人的视频大全免费| 欧美日韩福利视频一区二区| 精品电影一区二区在线| 真人一进一出gif抽搐免费| 亚洲电影在线观看av| 欧美成人一区二区免费高清观看 | 麻豆国产97在线/欧美 | 不卡一级毛片| 最近在线观看免费完整版| ponron亚洲| 午夜老司机福利片| 男女午夜视频在线观看| 老司机午夜福利在线观看视频| av欧美777| 观看免费一级毛片| 床上黄色一级片| 真人做人爱边吃奶动态| 成在线人永久免费视频| 国产免费男女视频| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 国产亚洲av嫩草精品影院|