楊辰, 沈潤(rùn)平
(1.上海市氣象災(zāi)害防御工程技術(shù)中心,上海 200030;2.上海市防雷中心,上海 200030;3.南京信息工程大學(xué)遙感學(xué)院,南京 210044)
森林?jǐn)_動(dòng)遙感監(jiān)測(cè)研究進(jìn)展
楊辰1,2, 沈潤(rùn)平3
(1.上海市氣象災(zāi)害防御工程技術(shù)中心,上海 200030;2.上海市防雷中心,上海 200030;3.南京信息工程大學(xué)遙感學(xué)院,南京 210044)
作為陸地生態(tài)系統(tǒng)的主體,森林的碳循環(huán)與碳蓄積對(duì)研究陸地生態(tài)系統(tǒng)起著重要作用,但目前森林?jǐn)_動(dòng)資料的缺乏在很大程度上影響著區(qū)域森林碳通量的估算精度。在對(duì)森林?jǐn)_動(dòng)監(jiān)測(cè)方法和監(jiān)測(cè)指數(shù)進(jìn)行總結(jié)的基礎(chǔ)上,對(duì)幾種森林?jǐn)_動(dòng)監(jiān)測(cè)指數(shù)進(jìn)行了比較研究。鑒于當(dāng)前基于長(zhǎng)時(shí)間序列的森林?jǐn)_動(dòng)研究主要集中在北美國(guó)家,國(guó)內(nèi)鮮有系統(tǒng)報(bào)道,因此,針對(duì)我國(guó)森林變化特點(diǎn),結(jié)合長(zhǎng)時(shí)間序列擾動(dòng)分析方法和適宜的擾動(dòng)監(jiān)測(cè)指數(shù),研究適用于我國(guó)森林的擾動(dòng)監(jiān)測(cè)模型具有重要的理論意義和應(yīng)用價(jià)值。
森林?jǐn)_動(dòng);監(jiān)測(cè)方法;監(jiān)測(cè)指數(shù)
森林是地球生物圈的重要組成部分,也是人類(lèi)社會(huì)賴(lài)以生存和發(fā)展的物質(zhì)基礎(chǔ)之一。森林生態(tài)系統(tǒng)是陸地生態(tài)系統(tǒng)中生產(chǎn)力最高的系統(tǒng),也是一個(gè)巨大的碳庫(kù)。已有研究表明,森林生態(tài)系統(tǒng)儲(chǔ)存了陸地生態(tài)系統(tǒng)地上部分76%~98%的有機(jī)碳[1],是大氣CO2含量的2倍之多[2]。因此,森林生態(tài)系統(tǒng)的碳循環(huán)與碳蓄積在全球陸地碳循環(huán)和氣候變化研究中具有重要意義[3-4]。1997年《京都議定書(shū)》的通過(guò),認(rèn)可森林碳匯功能可部分抵消溫室氣體減排指標(biāo),更激起了陸地生態(tài)系統(tǒng)碳循環(huán)研究的高潮。中國(guó)作為最大的亞洲國(guó)家,闡明其森林的CO2源匯功能不僅對(duì)研究本地區(qū)碳循環(huán)至關(guān)重要,對(duì)研究全球碳循環(huán)也必不可少。
通常情況下,森林植被通過(guò)光合作用吸收空氣中的CO2,并將一部分碳儲(chǔ)存于生物體中,而諸如森林火災(zāi)、病蟲(chóng)害和砍伐等森林?jǐn)_動(dòng)事件則將儲(chǔ)存于生物體中的碳重新釋放到大氣中。由于森林植被是最大的陸地碳匯,因此,森林?jǐn)_動(dòng)事件在一定程度上影響著區(qū)域與全球的碳收支,并可能對(duì)全球氣候系統(tǒng)產(chǎn)生影響[5]。大量研究表明,大氣中CO2等溫室氣體濃度增加的一個(gè)主要來(lái)源就是人類(lèi)對(duì)森林的不斷破壞[6-7],其中,全球因森林砍伐造成的CO2凈排放占到由于土地利用變化導(dǎo)致的CO2凈排放中的約87%[8]。目前較大尺度森林碳匯的估算及預(yù)測(cè)方法仍然不成熟,估測(cè)結(jié)果存在很大的不確定性[9],其中一個(gè)主要原因就是缺乏較為精確的森林?jǐn)_動(dòng)資料[10]。因此,準(zhǔn)確地估算森林?jǐn)_動(dòng)引起的碳儲(chǔ)量的變化不僅可以加深對(duì)生態(tài)系統(tǒng)結(jié)構(gòu)、功能的理解,提高全球碳匯的估算精度,更能夠在國(guó)家政策的制定以及碳預(yù)算的評(píng)估中發(fā)揮重要作用。
當(dāng)前森林?jǐn)_動(dòng)研究集中在北美國(guó)家,主要基于區(qū)域和全球尺度的遙感數(shù)據(jù)。低分辨率的AVHRR和MODIS資料大多應(yīng)用于大尺度的森林?jǐn)_動(dòng)變化分析;相比之下,Landsat具有較高的空間分辨率,適合研究區(qū)域尺度的森林?jǐn)_動(dòng)以及由其造成的森林碳通量的變化。目前,森林?jǐn)_動(dòng)研究主要針對(duì)監(jiān)測(cè)方法和監(jiān)測(cè)指數(shù)開(kāi)展,為此,本文分別對(duì)監(jiān)測(cè)方法和監(jiān)測(cè)指數(shù)進(jìn)行總結(jié),并對(duì)幾種擾動(dòng)監(jiān)測(cè)指數(shù)進(jìn)行了比較研究。
在人類(lèi)的發(fā)展進(jìn)程中,全球森林植被遭到了頻繁且大量的破壞,以美國(guó)原始森林為例,在近300 a內(nèi),被破壞的森林面積達(dá)130億m3,占總面積的2/3。森林?jǐn)_動(dòng)通常包括人為擾動(dòng)和自然擾動(dòng)2個(gè)方面,其形式主要表現(xiàn)為森林火災(zāi)、森林砍伐、病蟲(chóng)害以及森林撫育管理政策等所引起的變化。Waring等[11]將森林?jǐn)_動(dòng)定義為持續(xù)1 a以上并造成生態(tài)系統(tǒng)葉面積指數(shù)明顯降低的事件。這一定義與生態(tài)失調(diào)的概念相吻合,但森林?jǐn)_動(dòng)并不包括生態(tài)系統(tǒng)自身的時(shí)空動(dòng)態(tài)變化[12]。
傳統(tǒng)的森林資源調(diào)查監(jiān)測(cè)主要以地面調(diào)查為主,存在著工作量大、成本高、周期長(zhǎng)、效率低和實(shí)效性差等問(wèn)題,而且調(diào)查精度不高,難以滿足當(dāng)今森林資源變化監(jiān)測(cè)的需要。隨著上世紀(jì)70年代陸地資源衛(wèi)星的發(fā)射,遙感技術(shù)得到了極大的發(fā)展,特別是對(duì)于區(qū)域以及更大的空間尺度來(lái)說(shuō),遙感技術(shù)已經(jīng)成為定期和連續(xù)監(jiān)測(cè)森林變化的唯一可行手段。
早期的森林遙感監(jiān)測(cè)主要基于對(duì)影像的目視解譯[13],由于在解譯過(guò)程中存在較多的主觀因素,因此其結(jié)果具有很大的不確定性。隨著遙感監(jiān)測(cè)技術(shù)的發(fā)展,20世紀(jì)80—90年代逐漸涌現(xiàn)出以分類(lèi)后比較法和影像差異法為基礎(chǔ)的森林變化監(jiān)測(cè)技術(shù),而隨著研究的深入和細(xì)化,更多方法和技術(shù)手段被逐步運(yùn)用到森林遙感監(jiān)測(cè)中,如分類(lèi)及統(tǒng)計(jì)分析法、時(shí)間序列分析法及綜合分析法等。本文對(duì)目前常用的森林?jǐn)_動(dòng)監(jiān)測(cè)方法進(jìn)行了歸納。
1.1 分類(lèi)后比較法
分類(lèi)后比較法通常需要首先對(duì)每一期影像進(jìn)行單獨(dú)分類(lèi),并基于不同時(shí)期的分類(lèi)結(jié)果進(jìn)行逐像元比較來(lái)監(jiān)測(cè)森林覆蓋的變化情況。由于分類(lèi)后比較法僅針對(duì)影像的分類(lèi)結(jié)果,因此能在很大程度上減少光照輻射差異對(duì)監(jiān)測(cè)的影響,并適用于不同傳感器、不同季相數(shù)據(jù)的比較[14],同時(shí)該方法不僅可以提供變化信息,而且還能夠給出各時(shí)期之間的類(lèi)型轉(zhuǎn)換矩陣,便于森林管理政策的制定。但是分類(lèi)后比較法的精度取決于每一期影像的分類(lèi)精度,并且由于不同時(shí)期分類(lèi)結(jié)果存在誤差累積現(xiàn)象,最終導(dǎo)致對(duì)森林監(jiān)測(cè)的精度偏低[15]。Allum等[16]使用間隔10 a的2幅MSS影像進(jìn)行了分類(lèi)后比較,得到了安大略湖流域植被的相對(duì)變化信息;Hall等[17]同樣利用2景MSS數(shù)據(jù)區(qū)分出5種森林類(lèi)別,分別為皆伐、再生、闊葉林、針葉林和混合林;Miller等[18]基于4期MSS影像實(shí)現(xiàn)了18 a的長(zhǎng)時(shí)間監(jiān)測(cè),結(jié)果表明,研究區(qū)森林的破壞率在10%左右;而Cohen等[19]利用非監(jiān)督分類(lèi)方法研究了西俄勒岡地區(qū)的長(zhǎng)時(shí)間人為擾動(dòng)規(guī)律,并著重分析了森林權(quán)屬與擾動(dòng)的關(guān)系。
1.2 影像差異法
影像差異法通過(guò)選取對(duì)森林變化比較敏感的波段或指數(shù),并使用差值的方法來(lái)提取森林的變化信息。該方法可以避免分類(lèi)過(guò)程所導(dǎo)致的誤差累積,但需要事先對(duì)影像進(jìn)行嚴(yán)格的輻射標(biāo)準(zhǔn)化。由于目前對(duì)各種干擾造成的輻射差異的校正方法仍不成熟,因此,只能通過(guò)選擇同一傳感器、同一季相的數(shù)據(jù)來(lái)盡可能地減少噪聲影響。Collins等[20]基于多期影像的纓帽(tasseled cap)變換結(jié)果,使用影像差異法分析了森林的多年受災(zāi)狀況;Coppin等[21]評(píng)估了輻射標(biāo)準(zhǔn)化對(duì)影像差異法應(yīng)用效果的影響;Key等[22]通過(guò)計(jì)算火災(zāi)前后2幅影像中NBR指數(shù)(歸一化燃燒率)的差值來(lái)劃分火災(zāi)的嚴(yán)重等級(jí);Masek等[23]計(jì)算了10 a間擾動(dòng)指數(shù)(disturbance index,DI)的變化情況,并在此基礎(chǔ)上估算得到北美地區(qū)的森林年擾動(dòng)率;DeRose等[24]同樣使用影像差異法評(píng)估了DI的監(jiān)測(cè)效果,結(jié)果表明該方法的總體精度可以達(dá)到80%~82%;Huang等[25-26]通過(guò)引入一定的判別流程,使用VCT模型成功識(shí)別出多年的森林、非森林和擾動(dòng)區(qū)域,并進(jìn)一步提取了擾動(dòng)時(shí)間和擾動(dòng)量信息。此外,張連華等[27]也采用類(lèi)似方法對(duì)云南省景洪市森林?jǐn)_動(dòng)狀況進(jìn)行了遙感監(jiān)測(cè)。
1.3 分類(lèi)及統(tǒng)計(jì)分析法
相對(duì)于未發(fā)生變化的森林來(lái)說(shuō),擾動(dòng)森林在影像光譜上會(huì)產(chǎn)生較為明顯的變化,并且這種變化可以通過(guò)一定的統(tǒng)計(jì)方法加以識(shí)別。分類(lèi)及統(tǒng)計(jì)分析法一般通過(guò)對(duì)單期或多期影像的光譜變化進(jìn)行模式分析來(lái)確定發(fā)生擾動(dòng)的森林區(qū)域,該方法通常需要一定的先驗(yàn)知識(shí)參與判斷。Adams等[28]使用光譜混合分解方法對(duì)亞馬孫森林的植被覆蓋狀況進(jìn)行了研究;Woodcock等[29]通過(guò)采用人工神經(jīng)網(wǎng)絡(luò)方法得到了新俄勒岡州森林變化信息;而Gitas等[30]基于NOAA-AVHRR數(shù)據(jù)、采用面向?qū)ο蟮挠跋穹诸?lèi)方法實(shí)現(xiàn)了地中海地區(qū)大范圍的森林火災(zāi)監(jiān)測(cè),結(jié)果表明該方法的監(jiān)測(cè)結(jié)果與地面資料的匹配程度高達(dá)90%;Healey等[31]通過(guò)監(jiān)督分類(lèi)方法驗(yàn)證了不同研究區(qū)DI的監(jiān)測(cè)效果,表明DI在不同研究區(qū)具有一定的差異;Jin等[32]比較了MODIS日產(chǎn)品和16 d合成產(chǎn)品在擾動(dòng)提取上的差異,結(jié)果表明2種產(chǎn)品總體分類(lèi)精度比較相近,但對(duì)于斑塊尺度的擾動(dòng)識(shí)別存在顯著的差異;Schreader等[33]對(duì)不同日期的影像進(jìn)行RGB合成,并基于合成結(jié)果進(jìn)行監(jiān)督分類(lèi)實(shí)驗(yàn)以研究火災(zāi)后的砍伐擾動(dòng),得到總體精度為68%的擾動(dòng)分類(lèi)圖;Hanson等[34-35]使用回歸樹(shù)方法構(gòu)建了森林的連續(xù)覆蓋數(shù)據(jù)集(vegetation continuous fields,VCF);而Potapov等[36]同樣使用基于S-Plus構(gòu)建的回歸樹(shù)方法得到研究區(qū)多年的植被損害信息。
1.4 時(shí)間序列分析方法
時(shí)間序列分析方法一般用于多期影像的聯(lián)合分析中,通過(guò)對(duì)時(shí)間序列進(jìn)行特征提取和分析可以有效地監(jiān)測(cè)森林的長(zhǎng)期變化狀況。Eklundh等[37]通過(guò)對(duì)MODIS 16 d合成影像進(jìn)行Savitsky-Golay濾波以消除數(shù)據(jù)質(zhì)量差異對(duì)擾動(dòng)識(shí)別的影響,同時(shí)通過(guò)TIMESAT提取的植被物候?qū)W參數(shù)來(lái)確定蟲(chóng)害擾動(dòng);Vogelmann等[38]通過(guò)對(duì)光譜指數(shù)和觀測(cè)年份進(jìn)行線性回歸來(lái)描述森林的擾動(dòng)特征;R?der等[39-40]通過(guò)構(gòu)建分段線性函數(shù)的方式評(píng)估了火災(zāi)擾動(dòng)后森林植被的恢復(fù)情況;Kennedy等[41-42]引入了LandTrendr分析方法,通過(guò)對(duì)擾動(dòng)的時(shí)間序列進(jìn)行分割和重構(gòu),不僅可以獲取短暫的擾動(dòng)信息,還可以監(jiān)測(cè)森林長(zhǎng)期的變化;Gómez等[43]在纓帽角(tasseled cap angle,TCA)指數(shù)的基礎(chǔ)上引入過(guò)程指標(biāo)(process indicator,PI)分析方法,用以監(jiān)測(cè)植被的持續(xù)變化。楊辰等[44]同樣利用時(shí)間序列軌跡分析方法研究了江西省武寧縣近30 a的森林?jǐn)_動(dòng)狀況。
1.5 綜合分析法
綜合分析法一般通過(guò)引入多源數(shù)據(jù)進(jìn)行聯(lián)合分析,以克服現(xiàn)有方法的不足,進(jìn)一步提高森林?jǐn)_動(dòng)的監(jiān)測(cè)效果。Hilker等[45]引入STAARCH融合方法,通過(guò)結(jié)合Landsat和MODIS數(shù)據(jù),在保證監(jiān)測(cè)效果的基礎(chǔ)上,提高了森林?jǐn)_動(dòng)的監(jiān)測(cè)頻率;Li等[46]在對(duì)阿拉巴馬州進(jìn)行擾動(dòng)監(jiān)測(cè)的基礎(chǔ)上,進(jìn)一步評(píng)估了因擾動(dòng)引起的研究區(qū)森林變化和森林破碎狀況;Li等[47]使用Landsat與激光雷達(dá)GLAS數(shù)據(jù)相結(jié)合的方法監(jiān)測(cè)了擾動(dòng)后森林的恢復(fù),克服了激光雷達(dá)覆蓋范圍小的劣勢(shì),實(shí)現(xiàn)了大范圍的變化監(jiān)測(cè);此外,Vogelmann等[48]采用多種擾動(dòng)監(jiān)測(cè)方法對(duì)不同類(lèi)型的擾動(dòng)進(jìn)行了研究,結(jié)果表明,沒(méi)有一種方法能將所有類(lèi)型的擾動(dòng)變化信息提取出來(lái),需要采取多種技術(shù)、多種數(shù)據(jù)源相結(jié)合的方法進(jìn)行提取。
在森林?jǐn)_動(dòng)遙感監(jiān)測(cè)中,通常使用多光譜數(shù)據(jù)構(gòu)建的用于表征森林生長(zhǎng)狀況的監(jiān)測(cè)指數(shù)來(lái)進(jìn)行分析研究。但是,由于植被變化在光譜空間中的響應(yīng)比較復(fù)雜,因此,沒(méi)有一種指數(shù)可以完全概括多維光譜空間的變化信息,因此,Wallace等[49]認(rèn)為應(yīng)引入不同的監(jiān)測(cè)指數(shù)進(jìn)行比較分析。
雖然森林?jǐn)_動(dòng)可以通過(guò)可見(jiàn)光[50]和熱紅外波段[51]加以監(jiān)測(cè),但目前常用的監(jiān)測(cè)指數(shù)主要基于短波紅外(SWIR)和近紅外(NIR)波段反射率[52-54]。森林?jǐn)_動(dòng)發(fā)生后,隨著落葉的增多,影像上逐漸表現(xiàn)出土壤的光譜特征。由于土壤的反射率低于針葉和闊葉植被的反射率[55],因此在影像上,近紅外波段反射率會(huì)呈現(xiàn)逐漸降低的趨勢(shì)[56]。相反,森林冠層(尤其是針葉林冠層)的短波紅外反射率低于裸土和林下植被,因此在森林?jǐn)_動(dòng)發(fā)生后短波紅外的反射率升高。擾動(dòng)發(fā)生后,隨著林下植被的再生,森林?jǐn)_動(dòng)監(jiān)測(cè)會(huì)更加復(fù)雜。由于林下植被在近紅外波段反射率較高,因此可能會(huì)補(bǔ)償由于森林?jǐn)_動(dòng)造成的近紅外波段反射率的降低[55]。
Horler等[52]指出,相比其他波段而言,短波紅外波段更多地解釋了森林結(jié)構(gòu)的信息;Vogelmann等[57]評(píng)估了TM數(shù)據(jù)對(duì)于云杉冠層損害的監(jiān)測(cè)能力,得出TM5/TM4所反映出的信息與森林損害的地面觀測(cè)信息十分吻合;Hunt等[58]同樣發(fā)現(xiàn)TM5/TM4與葉片相對(duì)含水量呈現(xiàn)線性相關(guān)關(guān)系;Fiorella等[59]指出了TM4/TM5與纓帽濕度存在很高的相關(guān)性(r2=0.97)。
纓帽變換也廣泛應(yīng)用于森林?jǐn)_動(dòng)的遙感監(jiān)測(cè)中,纓帽變換結(jié)果由3個(gè)主要分量組成,分別是亮度、綠度和濕度[60-61]。在這3個(gè)分量中,濕度對(duì)水分含量[60]和植被結(jié)構(gòu)[59,62-63]比較敏感,因此常常用于森林?jǐn)_動(dòng)的監(jiān)測(cè)中[64]。Wulder等[65]使用濕度分量監(jiān)測(cè)了紅松甲蟲(chóng)造成的森林侵害;Kuzera等[66]應(yīng)用亮度和綠度分量評(píng)估了華盛頓地區(qū)的森林?jǐn)_動(dòng)變化;Wulder等[67]通過(guò)結(jié)合3個(gè)分量估算了采伐的恢復(fù)時(shí)間;而Healey等[31]指出纓帽變換相比原始的Landsat反射率數(shù)據(jù)更能夠反映森林的擾動(dòng)狀況,其評(píng)估了纓帽分量的不同組合,并通過(guò)3個(gè)分量的結(jié)合,構(gòu)建了擾動(dòng)指數(shù)(DI),用于監(jiān)測(cè)森林冠層的更替擾動(dòng)。
2.1 歸一化植被指數(shù)(NDVI)
歸一化植被指數(shù)(normalized difference vegetable index,NDVI)常常用來(lái)反映植被的生長(zhǎng)狀況、覆蓋率和生物量等信息,是反映生態(tài)環(huán)境的重要指標(biāo),也是目前使用最為廣泛的植被指數(shù)之一。但是,在稀疏植被覆蓋條件下,NDVI容易受到土壤背景的干擾[68],并且對(duì)于濃密植被,NDVI也會(huì)表現(xiàn)出飽和效應(yīng)[69-70]。Maselli[71]利用NDVI指數(shù)對(duì)地中海保護(hù)區(qū)的森林狀況進(jìn)行了長(zhǎng)期監(jiān)測(cè),并分析了該區(qū)域生態(tài)系統(tǒng)功能的變化;付安民等[72]使用23期MODIS MOD13A1產(chǎn)品對(duì)我國(guó)東北亞研究區(qū)的森林覆蓋變化情況進(jìn)行了評(píng)估,森林變化的制圖精度分別達(dá)到80.24%和88.73%,取得了較好的監(jiān)測(cè)效果。
2.2 歸一化濕度指數(shù)(NDMI)
歸一化濕度指數(shù)(normalized difference moisture index,NDMI)是一種有效的森林?jǐn)_動(dòng)監(jiān)測(cè)方法,通常用于森林砍伐的遙感監(jiān)測(cè)[32]。Hardisky等[73]指出NDMI與冠層水分含量高度相關(guān),由于提高了對(duì)擇伐的監(jiān)測(cè)能力,與NDVI相比能更好地跟蹤植被生物量和水分阻抗的變化[74];Jin等[32]通過(guò)對(duì)比NDMI和纓帽濕度分量,指出2個(gè)指數(shù)對(duì)于森林?jǐn)_動(dòng)的監(jiān)測(cè)能力大體相當(dāng),但對(duì)于影像獲取時(shí)間間隔小于2 a的情況,NDMI的監(jiān)測(cè)精度稍高。研究表明,基于Landsat影像構(gòu)建的NDMI時(shí)間序列數(shù)據(jù)能夠精確地描述美國(guó)緬因州的森林變化狀況[32,74-75],對(duì)于局部的森林?jǐn)_動(dòng),作者推薦采用逐年的遙感影像來(lái)降低監(jiān)測(cè)誤差,而對(duì)于皆伐等擾動(dòng)類(lèi)型,則可以采用長(zhǎng)達(dá)5 a的時(shí)間間隔進(jìn)行監(jiān)測(cè)。
2.3 基于纓帽變換的監(jiān)測(cè)指數(shù)
基于纓帽變換的擾動(dòng)監(jiān)測(cè)指數(shù)被用于采伐、森林火災(zāi)和病蟲(chóng)害等多種類(lèi)型的擾動(dòng)監(jiān)測(cè)中。由于纓帽變換突出了森林的擾動(dòng)信息,因此通過(guò)對(duì)纓帽分量進(jìn)行適當(dāng)?shù)慕M合可以有效地增強(qiáng)擾動(dòng)的光譜響應(yīng)。相對(duì)于未受到擾動(dòng)的森林來(lái)說(shuō),擾動(dòng)森林的亮度分量較高,而綠度和濕度分量較低,因此通過(guò)線性組合方式構(gòu)建的擾動(dòng)指數(shù)(disturbance index,DI)方法對(duì)森林?jǐn)_動(dòng)信號(hào)的響應(yīng)更為敏感[30],Healey等[31]還針對(duì)不同研究區(qū)開(kāi)展了DI指數(shù)的監(jiān)測(cè)效果比較,結(jié)果發(fā)現(xiàn)DI指數(shù)對(duì)低生產(chǎn)率森林的監(jiān)測(cè)效果最好,而在生產(chǎn)率較高的西華盛頓地區(qū),由于擾動(dòng)信號(hào)的持續(xù)時(shí)間最為短暫,因此在長(zhǎng)時(shí)間間隔的觀測(cè)中DI精度并不理想;Skakun等[76]使用增強(qiáng)型植被差異指數(shù)(enhanced wetness difference index,EWDI)對(duì)受害林進(jìn)行了擾動(dòng)監(jiān)測(cè),總體精度為67%~78%;Hais等[77]在方法比較研究中針對(duì)研究區(qū)特點(diǎn)引入了與DI指數(shù)相類(lèi)似的DI’方法,取得了較好的監(jiān)測(cè)效果;Gómez等[43]基于亮度和綠度分量提出了纓帽角(tasseled cap angle,TCA)方法,通過(guò)構(gòu)建2個(gè)分量在植被平面上的夾角表征植被與非植被的比例。
2.4 IFZ指數(shù)
IFZ指數(shù)由Huang等[25-26]利用TM3,TM5和TM7波段數(shù)據(jù)構(gòu)建,并通過(guò)基于條件判別的VCT模型對(duì)長(zhǎng)時(shí)間序列中森林、非森林和擾動(dòng)區(qū)域進(jìn)行判別。結(jié)果表明,針對(duì)美國(guó)國(guó)家森林所發(fā)生的擾動(dòng),該方法的總體精度約為80%,其中大部分?jǐn)_動(dòng)類(lèi)別的用戶(hù)精度達(dá)到70%~95%;生產(chǎn)者精度則較低,一般為50%~70%。這表明該方法對(duì)于擾動(dòng)的監(jiān)測(cè)可能存在一定程度的低估,其中誤差主要發(fā)生在小型擾動(dòng)區(qū)域。該方法的優(yōu)點(diǎn)在于其空間明確且時(shí)間連續(xù),較傳統(tǒng)的雙時(shí)相變化監(jiān)測(cè)法增加了很多時(shí)間細(xì)節(jié)信息。Huang等[78]還指出該方法可以監(jiān)測(cè)大多數(shù)的森林?jǐn)_動(dòng)類(lèi)型,包括采伐、林火及城市發(fā)展引起的擾動(dòng)等,而對(duì)于一些程度較輕的擾動(dòng)(如擇伐等)也具有一定的監(jiān)測(cè)能力。此外,該方法分別在阿拉巴馬和密西西比研究區(qū)進(jìn)行了驗(yàn)證,取得了良好的監(jiān)測(cè)效果[46-47]。
2.5 歸一化燃燒比(NBR)指數(shù)
歸一化燃燒比(normalized burn ratio,NBR)指數(shù)通常用于森林火災(zāi)的遙感監(jiān)測(cè)。Key和Benson[22]結(jié)合了對(duì)火燒跡地存在不同光譜響應(yīng)的TM4和TM7波段構(gòu)建了NBR指數(shù),用以評(píng)估火災(zāi)的嚴(yán)重等級(jí)。TM4對(duì)葉綠素含量比較敏感,而TM7對(duì)植被水汽含量較為敏感。通過(guò)計(jì)算火災(zāi)前后NBR指數(shù)的差值(dNBR)可以在一定程度上表征火災(zāi)的嚴(yán)重程度。Miller等[79]指出,dNBR與火災(zāi)發(fā)生前的綠色生物量關(guān)系密切,為了避免可能存在的誤差,Miller等通過(guò)引入火災(zāi)前植被密度參量,提出了相對(duì)差分歸一化燃燒比(relative differenced normalized burn ratio,RdNBR)指數(shù),用以消除火災(zāi)前植被覆蓋差異對(duì)火燒等級(jí)評(píng)估的影響。Soverel等[80]對(duì)加拿大國(guó)家公園應(yīng)用RdNBR和dNBR指數(shù)進(jìn)行對(duì)比,結(jié)果表明RdNBR有時(shí)候并不比dNBR的精度更高,2種指數(shù)方法的分類(lèi)總體精度分別為65.2%和70.2%;Sunderman等[81]針對(duì)沙漠生態(tài)系統(tǒng)進(jìn)行了dNBR和差異線性光譜分離(differenced linear spectral unmixing,dSMA)方法的對(duì)比分析,結(jié)果表明dNBR方法更勝一籌,對(duì)燃燒區(qū)的分類(lèi)精度達(dá)到86%。
2.6 MODIS全球擾動(dòng)指數(shù)(MGDI)
地表溫度(land surface temperature,LST)是區(qū)域和全球尺度地表過(guò)程的重要物理參數(shù),與地表大氣間相互作用以及能量通量的變化息息相關(guān)[82-83]。由于植被指數(shù)提供了綠色植被的生長(zhǎng)狀況,而地表溫度反映了土壤濕度狀況,兩者信息互補(bǔ),因此,地表溫度與植被指數(shù)之間存在密切的負(fù)相關(guān)關(guān)系[84-89]。Mildrexler等[90]利用植被指數(shù)和地表溫度的負(fù)相關(guān)關(guān)系提出了擾動(dòng)指數(shù),用于監(jiān)測(cè)基于像元尺度LST/EVI的長(zhǎng)期變化;Mildrexler等[91]改進(jìn)了先前提出的擾動(dòng)指數(shù),將其更名為MODIS全球擾動(dòng)指數(shù)(MODIS globle disturbance index,MGDI),并針對(duì)瞬時(shí)擾動(dòng)和非瞬時(shí)擾動(dòng)2種情況給出定義,使其具備監(jiān)測(cè)多種類(lèi)型擾動(dòng)的能力。由于MGDI使用的是年最大合成地表溫度數(shù)據(jù),因而避免了地表溫度可能存在的短時(shí)間自然變化的影響。
Mildrexler等[90]指出,MGDL指數(shù)可以精確估算森林火災(zāi)的影響范圍和程度,并且對(duì)擾動(dòng)后森林的恢復(fù)過(guò)程也很敏感;Mildrexler等[91]使用MGDI指數(shù)監(jiān)測(cè)北美森林火災(zāi)發(fā)生的位置、嚴(yán)重程度以及颶風(fēng)造成的風(fēng)倒木災(zāi)害,結(jié)果表明北美森林在2005年和2006年分別遭受了1.5%和0.5%的森林?jǐn)_動(dòng);Coops等[92]研究表明,MGDL監(jiān)測(cè)得到的擾動(dòng)區(qū)域與使用其他衛(wèi)星數(shù)據(jù)獲取的林火區(qū)域具有很高的相關(guān)性,并且指出MGDL還可用于區(qū)域尺度森林病蟲(chóng)害的監(jiān)測(cè)。此外,尤慧等[93]同樣利用MGDL對(duì)加拿大研究區(qū)開(kāi)展了火燒跡地的遙感監(jiān)測(cè)。
目前,針對(duì)不同監(jiān)測(cè)指數(shù)的比較研究還較少,僅在歐洲中部和加拿大北方森林研究區(qū)有過(guò)文獻(xiàn)記載。由于指數(shù)的構(gòu)建方式不同,因此針對(duì)不同的擾動(dòng)類(lèi)型和擾動(dòng)程度,不同監(jiān)測(cè)指數(shù)的響應(yīng)能力也存在較大的差異。以森林砍伐為例,森林砍伐分皆伐、擇伐和撫育伐等,皆伐最容易監(jiān)測(cè),而對(duì)后兩者的監(jiān)測(cè)卻比較困難。Hardisky等[73]比較了NDVI和NDMI,指出NDMI比NDVI更易于監(jiān)測(cè)因擇伐造成的擾動(dòng)。Hais等[77]比較了4種指數(shù)(NDMI、纓帽分量、DI和DI’)對(duì)樹(shù)皮甲蟲(chóng)暴發(fā)和皆伐擾動(dòng)的表現(xiàn)特點(diǎn)和響應(yīng)能力,結(jié)果表明,DI’、纓帽濕度和亮度分量對(duì)2種類(lèi)型的擾動(dòng)都比較敏感,且表現(xiàn)出較為明顯的差異;Schroeder等[94]比較了TM5、纓帽濕度、IFZ、NDVI、NBR和TCA等6種擾動(dòng)監(jiān)測(cè)指數(shù)對(duì)森林火災(zāi)和砍伐擾動(dòng)的區(qū)分能力,研究表明,基于短波紅外波段構(gòu)建的指數(shù)對(duì)于火災(zāi)和砍伐的區(qū)分能力普遍優(yōu)于使用近紅外波段構(gòu)建的指數(shù),并且該研究還進(jìn)一步分析了不同類(lèi)型擾動(dòng)對(duì)北方森林生態(tài)系統(tǒng)的影響。
本文對(duì)森林?jǐn)_動(dòng)遙感監(jiān)測(cè)方法和監(jiān)測(cè)指數(shù)進(jìn)行了回顧和總結(jié),歸納并比較了目前幾種擾動(dòng)監(jiān)測(cè)指數(shù)??梢钥闯?,盡管近年來(lái)森林?jǐn)_動(dòng)遙感監(jiān)測(cè)技術(shù)得到了較好的應(yīng)用,然而仍存在一定的不足,建議今后可以在以下3個(gè)方面開(kāi)展進(jìn)一步的研究:
1)加強(qiáng)擾動(dòng)監(jiān)測(cè)指數(shù)的比較研究。由于不同指數(shù)的構(gòu)建方式和理論依據(jù)各不相同,針對(duì)不同類(lèi)型擾動(dòng)的監(jiān)測(cè)效果也存在差異,因此,對(duì)于特定的森林?jǐn)_動(dòng)類(lèi)型,通過(guò)比較不同指數(shù)的監(jiān)測(cè)效果有助于進(jìn)一步區(qū)分和識(shí)別擾動(dòng)原因。
2)開(kāi)展長(zhǎng)時(shí)間序列擾動(dòng)監(jiān)測(cè)分析。長(zhǎng)期以來(lái),森林?jǐn)_動(dòng)研究多為基于2期或3期遙感資料的變化研究,不僅費(fèi)時(shí)費(fèi)力,還存在長(zhǎng)時(shí)間序列分析時(shí)精度明顯降低,以致不能滿足應(yīng)用要求的問(wèn)題。通過(guò)結(jié)合長(zhǎng)時(shí)間序列擾動(dòng)分析方法和適宜的擾動(dòng)監(jiān)測(cè)指數(shù),可以進(jìn)一步提高森林?jǐn)_動(dòng)的監(jiān)測(cè)效率。
3)建立和完善適用于我國(guó)森林的擾動(dòng)監(jiān)測(cè)模型。森林的頻繁變化對(duì)陸地碳匯的估算造成了很大的干擾,而現(xiàn)有森林碳儲(chǔ)量研究大多使用森林資源清查資料,基于遙感資料的森林?jǐn)_動(dòng)監(jiān)測(cè)開(kāi)展較少。因此,研究適用于我國(guó)森林的擾動(dòng)監(jiān)測(cè)模型具有重要的理論意義和應(yīng)用價(jià)值。
[1] 王效科,馮宗煒.森林生態(tài)系統(tǒng)生物量和碳儲(chǔ)存量的研究歷史[M].北京:中國(guó)科學(xué)技術(shù)出版社,1996:335-347. Wang X K,Feng Z W.Study on the History of Forest Ecosystem Biomass and Carbon Storage[M].Beijing:China Science and Technology Press,1996:335-347.
[2] Dixon R K,Solomon A M,Brown S,et al.Carbon pools and flux of global forest ecosystems[J].Science,1994,263(5144):185-190.
[3] 王紹強(qiáng),許君,周成虎.土地覆被變化對(duì)陸地碳循環(huán)的影響——以黃河三角洲河口地區(qū)為例[J].遙感學(xué)報(bào),2001,5(2):142-148. Wang S Q,Xu J,Zhou C H.The effect of land cover change on carbon cycle:A case study in the estuary of Yellow River Delta[J].Journal of Remote Sensing,2001,5(2):142-148.
[4] 于貴瑞.全球變化與陸地生態(tài)系統(tǒng)碳循環(huán)和碳蓄積[M].北京:氣象出版社,2003:139-179. Yu G R.Golbal Change,Carbon Cycle and Storage in Terrestrial Ecosystem[M].Beijing:China Meteorological Press,2003:139-179.
[5] Schimel D S,Emanuel W,Rizzo B,et al.Continental scale variability in ecosystem processes:Models,data,and the role of disturbance[J].Ecological Monographs,1997,67(2):251-271.
[6] Houghton R A.Land-use change and the carbon cycle[J].Global Change Biology,1995,1(4):275-287.
[7] Detwiler R P,Hall C A S.Tropical forests and the global carbon cycle[J].Science,1988,239(4835):42-47.
[8] Houghton R A,Hackler J L,Lawrence K T.The U S carbon budget:Contributions from land-use change[J].Science,1999,285(5427):574-578.
[9] Schimel D S,House J I,Hibbard K A,et al.Recent patterns and mechanisms of carbon exchange by terrestrial ecosystem[J].Nature,2001,414(6860):169-172.
[10]Goward S N,Masek J G,Cohen W,et al.Forest disturbance and North American carbon flux[J].Eosystems,2008,89(11):105-116.
[11]Waring R H,Running S W.Forest Ecosystems:Analysis at Multiple Scales[M].San Diego:Academic Press,1998.
[12]Oliver C D,Larson B C.Forest Stand Dynamics[M].New York:John Wiley and Sons,1996.
[13]Edwards G.Image segmentation,cartographic information and knowledge-based reasoning:Getting the mixture right[C]//10th Annual International Geoscience and Remote Sensing Symposium.Remote Sensing Science for the Nineties.College Park,MD,USA:IEEE,1990:1641-1644.
[14]Colwell J,Davis G,Thomas F.Detection and Measurement of Changes in the Production and Quality of Renewable Resources[M].Ann Arbor,MI:ERIM,1980.
[15]Howarth P J,Wickware G M.Procedures for change detection using Landsat digital data[J].International Journal of Remote Sensing,1981,2(3):277-291.
[16]Allum J A E,Dreisinger B R.Remote sensing of vegetation change near Inco’s Sudbury mining complexes[J].International Journal of Remote Sensing,1987,8(3):399-416.
[17]Hall F G,Botkin D B,Strebel D E,et al.Large-scale patterns of forest succession as determined by remote sensing[J].Ecology,1991,72(2):628-640.
[18]Miller A B,Bryant E S,Birnie R W.An analysis of land cover changes in the Northern Forest of New England using multitemporal Landsat MSS data[J].International Journal of Remote Sensing,1998,19(2):245-265.
[19]Cohen W B,Spies T A,Alig R J,et al.Characterizing 23 years(1972-95) of stand replacement disturbance in western Oregon forests with Landsat imagery[J].Ecosystems,2002,5(2):122-137.
[20]Collins J B,Woodcock C E.Change detection using the Gramm-Schmidt transformation applied to mapping forest mortality[J].Remote Sensing of Environment,1994,50(3):267-279.
[21]Coppin P R,Bauer M E.Processing of multitemporal Landsat TM imagery to optimize extraction of forest cover change features[J].IEEE Transactions on Geoscience and Remote Sensing,1994,32(4):918-927.
[22]Lutes D C,Keane R E,Caratti J F,et al.FIREMON:Fire Effects Monitoring and Inventory System[R].General Technical Report RMRS-GTR-164-CD.Washington,D C,2006.
[23]Masek J G,Huang C Q,Wolfe R,et al.North American forest disturbance mapped from a decadal Landsat record[J].Remote Sensing of Environment,2008,112(6):2914-2926.
[24]DeRose R J,Long J N,Ramsey R D.Combining dendrochronological data and the disturbance index to assess Engelmann spruce mortality caused by a spruce beetle outbreak in southern Utah,USA[J].Remote Sensing of Environment,2011,115(9):2342-2349.
[25]Huang C Q,Goward S N,Schleeweis K,et al.Dynamics of national forests assessed using the Landsat record:Case studies in eastern United States[J].Remote Sensing of Environment,2009,113(7):1430-1442.
[26]Huang C Q,Goward S N,Masek J G,et al.An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks[J].Remote Sensing of Environment,2010,114(1):183-198.
[27]張連華,龐勇,岳彩榮,等.基于纓帽變換的景洪市時(shí)間序列Landsat影像森林?jǐn)_動(dòng)自動(dòng)識(shí)別方法研究[J].林業(yè)調(diào)查規(guī)劃,2013,38(2):6-12. Zhang L H,Pang Y,Yue C R,et al.Forest disturbance automatic identification method based on time series Landsat image of Tasseled cap transformation[J].Forest Inventory and Planning,2013,38(2):6-12.
[28]Adams J B,Sabol D E,Kapos V,et al.Classification of multispectral images based on fractions of endmembers:Application to land-cover change in the Brazilian Amazon[J].Remote Sensing of Environment,1995,52(2):137-154.
[29]Woodcock C E,Macomber S A,Pax-Lenney M,et al.Monitoring large areas for forest change using Landsat: Generalization across space,time and Landsat sensors[J].Remote Sensing of Environment,2001,78(1/2):194-203.
[30]Gitas I Z,Mitri G H,Ventura G.Object-based image classification for burned area mapping of Creus Cape,Spain,using NOAA-AVHRR imagery[J].Remote Sensing of Environment,2004,92(3):409-413.
[31]Healey S P,Cohen W B,Yang Z Q,et al.Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection[J].Remote Sensing of Environment,2005,97(3):301-310.
[32]Jin S,Sader S A.MODIS time-series imagery for forest disturbance detection and quantification of patch size effects[J].Remote Sensing of Environment,2005,99(4):462-470.
[33]Schroeder T A,Wulder M A,Healey S P,et al.Detecting post-fire salvage logging from Landsat change maps and national fire survey data[J].Remote Sensing of Environment,2012,122:166-174.
[34]Hansen M C,DeFries R S,Townshend J R G,et al.Towards an operational MODIS continuous field of percent tree cover algorithm:Examples using AVHRR and MODIS data[J].Remote Sensing of Environment,2002,83(1/2):303-319.
[35]Hansen M C,DeFries R S,Townshend J R G,et al.Global percent tree cover at a spatial resolution of 500 meters:First results of the MODIS vegetation continuous fields algorithm[J].Earth Interact,2003,7(10):1-15.
[36]Potapov P,Hansen M C,Stehman S V,et al.Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss[J].Remote Sensing of Environment,2008,112(9):3708-3719.
[37]Eklundh L,Johansson T,Solberg S.Mapping insect defoliation in Scots pine with MODIS time-series data[J].Remote Sensing of Environment,2009,113(7):1566-1573.
[38]Vogelmann J E,Tolk B,Zhu Z L.Monitoring forest changes in the southwestern United States using multitemporal Landsat data[J].Remote Sensing of Environment,2009,113(8):1739-1748.
[39]R?der A,Hill J,Duguy B,et al.Using long time series of Landsat data to monitor fire events and post-fire dynamics and identify driving factors:A case study in the Ayora region(eastern Spain)[J].Remote Sensing of Environment,2008,112(1):259-273.
[40]R?der A,Udelhoven T,Hill J,et al.Trend analysis of Landsat-TM and-ETM+imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece[J].Remote Sensing of Environment,2008,112(6):2863-2875.
[41]Kennedy R E,Yang Z Q,Cohen W B.Detecting trends in forest disturbance and recovery using yearly Landsat time series:1.LandTrendr-Temporal segmentation algorithms[J].Remote Sensing of Environment,2010,114(12):2897-2910.
[42]Kennedy R E,Yang Z Q,Cohen W B,et al.Spatial and temporal patterns of forest disturbance and regrowth within the area of the Northwest Forest Plan[J].Remote Sensing of Environment,2012,122:117-133.
[43]Gómez C,White J C,Wulder M A.Characterizing the state and processes of change in a dynamic forest environment using hierarchical spatio-temporal segmentation[J].Remote Sensing of Environment,2011,115(7):1665-1679.
[44]楊辰,沈潤(rùn)平,郁達(dá)威,等.利用遙感指數(shù)時(shí)間序列軌跡監(jiān)測(cè)森林?jǐn)_動(dòng)[J].遙感學(xué)報(bào),2013,17(5):1246-1263. Yang C,Shen R P,Yu D W,et al.Forest disturbance monitoring based on the time-series trajectory of remote sensing index[J].Journal of Remote Sensing,2013,17(5):1246-1263.
[45]Hilker T,Wulder M A,Coops N C,et al.A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS[J].Remote Sensing of Environment,2009,113(8):1613-1627.
[46]Li M S,Huang C Q,Zhu Z L,et al.Assessing rates of forest change and fragmentation in Alabama,USA,using the vegetation change tracker model[J].Forest Ecology and Management,2009,257(6):1480-1488.
[47]Li A N,Huang C Q,Sun G Q,et al.Modeling the height of young forests regenerating from recent disturbances in Mississippi using Landsat and ICESat data[J].Remote Sensing of Environment,2011,115(8):1837-1849.
[48]Vogelmann J E,Kost J R,Tolk B,et al.Monitoring landscape change for landfire using multi-temporal satellite imagery and ancillary data[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2011,4(2):252-264.
[49]Wallace J F,Campbell H.Analysis of remotely sensed data[M]//Remote Sensing of Biosphere Functioning.New York:Springer-Verlag,1989:291-304.
[50]Hall R J.The roles of aerial photographs in forestry remote sensing image analysis[M]//Remote Sensing of Forest Environments.US:Springer,2003:47-75.
[52]Horler D N H,Ahern F J.Forestry information content of Thematic Mapper data[J].International Journal of Remote Sensing,1986,7(3):405-428.
[53]Lambert N J,Ard? J,Rock B N,et al.Spectral characterization and regression-based estimates of forest damage in Norway spruce stands in the Czech Republic using landsat thematic mapper data[J].International Journal of Remote Sensing,1995,16:1261-1287.
[54]Toomey M,Vierling L A.Multispectral remote sensing of landscape level foliar moisture:Techniques and applications for forest ecosystem monitoring[J].Canadian Journal of Forest Research,2005,35(5):1087-1097.
[55]Guyot G,Riom J.Review of Factors Affecting Remote Sensing of Forest Decline.Proceedings- seminar on Remote Sensing of Forest Decline Attributed to Air Pollution[M].Laxenburg,Austria,1988.
[56]Ekstrand S.Assessment of forest damage with Landsat TM:Correction for varying forest stand characteristics[J].Remote Sensing of Environment,1994,47(3):291-302.
[57]Vogelmann J E,Rock B N.Assessing forest damage in high-elevation coniferous forests in vermont and new hampshire using thematic mapper data[J].Remote Sensing of Environment,1988,24(2):227-246.
[58]Hunt E R Jr,Rock B N.Detection of changes in leaf water content using near-and middle-infrared reflectances[J].Remote Sensing of Environment,1989,30(1):43-54.
[59]Fiorella M,Ripple W J.Analysis of conifer forest regeneration using Landsat thematic mapper data[J].Photogrammetric Engineering and Remote Sensing,1993,59(9):1383-1388.
[60]Crist E P,Cicone R C.A physically-based transformation of thematic mapper data-the TM tasseled cap[J].IEEE Transactions on Geoscience and Remote Sensing,1984,22(3):256-263.
[61]Kauth R J,Thomas G S.The tasselled cap-a graphic description of the spectral-temporal development of agricultural crops as seen by Landsat[J].Laboratory for Applications of Remote Sensing,1976:4B41-4B51.
[62]Cohen W B,Spies T A.Estimating structural attributes of Douglas-Fir/Western Hemlock forest stands from Landsat and SPOT imagery[J].Remote Sensing of Environment,1992,41(1):1-17.
[63]Cohen W B,Spies T A,Fiorella M.Estimating the age and structure of forests in a multi-ownership landscape of western Oregon,U S A[J].International Journal of Remote Sensing,1995,16(4):721-746.
[64]Jin S M,Sader S A.Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances[J].Remote Sensing of Environment,2005,94(3):364-372.
[65]Wulder M A,Dymond C C,White J C,et al.Surveying mountain pine beetle damage of forests:A review of remote sensing opportunities[J].Forest Ecology and Management,2006,221(1-3):27-41.
[66]Kuzera K,Rogan J,Eastman J R.Monitoring vegetation regeneration and deforestation using change vector analysis:Mt St Helens study area[C]//ASPRS Annual Conference.Baltimore,Maryland,2005.
[67]Wulder M A,Skakun R S,Kurz W A,et al.Estimating time since forest harvest using segmented Landsat ETM+imagery[J].Remote Sensing of Environment,2004,93(1/2):179-187.
[68]Huete A R.A soil-adjusted vegetation index(SAVI)[J].Remote Sensing of Environment,1988,25(3):295-309.
[69]Asrar G,Fuchs M,Kanemasu E T,et al.Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat[J].Agronomy Journal,1983,76(2):300-306.
[70]Turner D P,Cohen W B,Kennedy R E,et al.Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites[J].Remote Sensing of Environment,1999,70(1):52-68.
[71]Maselli F.Monitoring forest conditions in a protected Mediterranean coastal area by the analysis of multiyear NDVI data[J].Remote Sensing of Environment,2004,89(4):423-433.
[72]付安民,孫國(guó)清,過(guò)志峰,等.基于MODIS數(shù)據(jù)的東北亞森林時(shí)序變化分析[J].北京大學(xué)學(xué)報(bào):自然科學(xué)版,2010,46(5):835-843. Fu A M,Sun G Q,Guo Z F,et al.Forest changes detection in the northeastern Asia using MODIS imagery[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2010,46(5):835-843.
[73]Hardisky M A,Klemas V,Smart R M,et al.The influence of soil salinity,growth form,and leaf moisture on the spectral radiance of Spartina alterniflora canopies[J].Photogrammetric Engineering and Remote Sensing,1983,49(1):77-83.
[74]Wilson E H,Sader S A.Detection of forest harvest type using multiple dates of Landsat TM imagery[J].Remote Sensing of Environment,2002,80(3):385-396.
[75]Sader S A,Bertrand M,Wilson E H.Satellite change detection of forest harvest patterns on an industrial forest landscape[J].Forest Science,2003,49(3):341-353.
[76]Skakun R S,Wulder M A,Franklin S E.Sensitivity of the thematic mapper enhanced wetness difference index to detect mountain pine beetle red-attack damage[J].Remote Sensing of Environment,2003,86(4):433-443.
[77]Hais M,Joná?ová M,Langhammer J,et al.Comparison of two types of forest disturbance using multitemporal Landsat TM/ETM+imagery and field vegetation data[J].Remote Sensing of Environment,2009,113(4):835-845.
[78]Huang C Q,Thomas N,Goward S N,et al.Automated masking of cloud and cloud shadow for forest change analysis using Landsat images[J].International Journal of Remote Sensing,2010,31(20):5449-5464.
[79]Miller J D,Thode A E.Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio(dNBR)[J].Remote Sensing of Environment,2007,109(1):66-80.
[80]Soverel N O,Perrakis D D B,Coops N C,et al.Estimating burn severity from Landsat dNBR and RdNBR indices across western Canada[J].Remote Sensing of Environment,2010,114(9):1896-1909.
[81]Sunderman S O,Weisberg P J.Remote sensing approaches for reconstructing fire perimeters and burn severity mosaics in desert spring ecosystems[J].Remote Sensing of Environment,2011,115(9):2384-2389.
[82]Mannstein H.Surface energy budget,surface temperature and thermal inertia[M]//Remote Sensing Applications in Meteorology and Climatology.Netherlands:Springer,1987:391-410.
[83]Sellers P J,Hall F G,Asrar G,et al.The first ISLSCP field experiment(FIFE)[J].Bulletin of the American Meteorological Society,1988,69(1):22-27.
[84]Friedl M A,Davis F W.Sources of variation in radiometric surface temperature over a tallgrass prairie[J].Remote Sensing of Environment,1994,48(1):1-17.
[85]Goetz S J.Multi-sensor analysis of NDVI,surface temperature and biophysical variables at a mixed grassland site[J].International Journal of Remote Sensing,1997,18(1):71-94.
[86]Nemani R,Running S W.Land cover characterization using multitemporal red,near-IR,and thermal-IR data from NOAA/AVHRR[J].Ecological Applications,1997,7(1):79-90.
[87]Price J C.Using spatial context in satellite data to infer regional scale evapotranspiration[J].IEEE Transactions on Geoscience and Remote Sensing,1990,28(5):940-948.
[88]Smith R C G,Choudhury B J.Analysis of normalized difference and surface temperature observations over southeastern Australia[J].International Journal of Remote Sensing,1991,12(10):2021-2044.
[89]Wan Z,Zhang Y,Zhang Q,et al.Quality assessment and validation of the MODIS global land surface temperature[J].International Journal of Remote Sensing,2004,25(1):261-274.
[90]Mildrexler D J,Zhao M S,Heinsch F A,et al.A new satellite-based methodology for continental-scale disturbance detection[J].Ecological Applications,2007,17(1):235-250.
[91]Mildrexler D J,Zhao M S,Running S W.Testing a MODIS global disturbance index across North America[J].Remote Sensing of Environment,2009,113(10):2103-2117.
[92]Coops N C,Wulder M A,Iwanicka D.Large area monitoring with a MODIS-based Disturbance Index(DI)sensitive to annual and seasonal variations[J].Remote Sensing of Environment,2009,113(6):1250-1261.
[93]尤慧,劉榮高,祝善友,等.加拿大北方森林火燒跡地遙感分析[J].地球信息科學(xué)學(xué)報(bào),2013,15(4):597-603. You H,Liu R G,Zhu S Y,et al.Burned area detection in the Canadian boreal forest using MODIS imagery[J].Journal of Geo-information Science,2013,15(4):597-603.
[94]Schroeder T A,Wulder M A,Healey S P,et al.Mapping wildfire and clearcut harvest disturbances in boreal forests with Landsat time series data[J].Remote Sensing of Environment,2011,115(6):1421-1433.
(責(zé)任編輯: 刁淑娟)
Progress in the study of forest disturbance by remote sensing
YANG Chen1,2, SHEN Runping3
(1.ShanghaiMeteorologicalDisasterProtectionTechnologyCenter,Shanghai200030,China; 2.ShanghaiLightningProtectionCenter,Shanghai200030,China; 3.SchoolofRemoteSensing,NanjingUniversityofInformationScienceandTechnology,Nanjing210044,China)
Forest ecosystems, which constitute a major part of the terrestrial biosphere, play an important role in terrestrial carbon cycling and storage. However, the accuracy of regional forest carbon-flux estimation is greatly influenced by the lack of forest disturbance data. After reviewing the monitoring methods and index, the authors compared several disturbance monitoring indices. The current study of forest disturbance based on long time series is mainly conducted by North America countries, and China’s research work in this aspect is very rare. Therefore, on account of characteristics of China’s forest change, it is of important theoretic significance and application value to develop a disturbance monitoring method applicable to China’s forest by combining a long time series disturbance analysis method and a appropriate monitoring index.
forest disturbance; monitoring method; monitoring indexes
2013-10-18;
2014-03-20
上海市氣象局面上項(xiàng)目(編號(hào): MS201408)和國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)項(xiàng)目(編號(hào): 2010CB950701)共同資助。
10.6046/gtzyyg.2015.01.01
楊辰,沈潤(rùn)平.森林?jǐn)_動(dòng)遙感監(jiān)測(cè)研究進(jìn)展[J].國(guó)土資源遙感,2015,27(1):1-8.(Yang C,Shen R P.Progress in the study of forest disturbance by remote sensing[J].Remote Sensing for Land and Resources,2015,27(1):1-8.)
TP 79
A
1001-070X(2015)01-0001-08
楊辰(1988-),男,碩士,研究方向?yàn)樯鷳B(tài)環(huán)境遙感及氣象災(zāi)害風(fēng)險(xiǎn)分析。Email: yangc@lightning.sh.cn。
沈潤(rùn)平(1963-),男,教授,博士生導(dǎo)師,主要從事遙感建模與分析研究。Email: rpshen@nuist.edu.cn。