• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Synthetic neurosteroids on brain protection

    2015-01-21 14:46:21MarianaReyctorCoirini

    Mariana Rey, Héctor Coirini,

    1 Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, (C1428ADN) Ciudad Autónoma de Buenos Aires, Argentina

    2 Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina

    Synthetic neurosteroids on brain protection

    Mariana Rey1, Héctor Coirini1,2,*

    1 Laboratorio de Neurobiología, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Vuelta de Obligado 2490, (C1428ADN) Ciudad Autónoma de Buenos Aires, Argentina

    2 Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, Ciudad Autónoma de Buenos Aires, Argentina

    Neurosteroids, like allopregnanolone and pregnanolone, are endogenous regulators of neuronal excitability. Inside the brain, they are highly selective and potent modulators of GABAAreceptor activity. Their anticonvulsant, anesthetics and anxiolytic properties are useful for the treatments of several neurological and psychiatric disordersviareducing the risks of side effects obtained with the commercial drugs. The principal disadvantages of endogenous neurosteroids administration are their rapid metabolism and their low oral bioavailability. Synthetic steroids analogues with major stability or endogenous neurosteroids stimulation synthesis might constitute promising novel strategies for the treatment of several disorders. Numerous studies indicate that the 3α-hydroxyl confguration is the key for binding and activity, but modifcations in the steroid nucleus may emphasize different pharmacophores. So far, several synthetic steroids have been developed with successful neurosteroid-like effects. In this work, we summarize the properties of various synthetic steroids probed in trials throughout the analysis of several neurosteroids-like actions.

    allopregnanolone; synthetic steroids; GABAAreceptor; neuroprotection; cerebral cortex; hippocampus

    Funding:This work was supported by grants from Agencia Nacional de Promocion Cientifca y Tecnologica (ANPCYT, PICT-2006-727) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP-860).

    Rey M, Coirini H (2015) Synthetic neurosteroids on brain protection. Neural Regen Res 10(1):17-21.

    Natural neurosteroids and synthetic steroids

    Neurosteroids (NS), a term proposed by the physiologists Baulieu and Robel (1990), is widely used to refer to the steroids synthesized in the brain. Through their interaction with neuronal membrane receptors and ion channels, they are capable to modify the brain excitability (Lambert et al., 2003; Akk et al., 2009). Depending on its chemical structure, the steroids interactions with the GABAAreceptor may produce positive or negative modulations (Majewska, 1992; Reddy, 2003). Among the positive modulators of this receptor are two progesterone’s metabolites: the 5α-pregnane-3αol-20-one (allopregnanolone) and its isomer 5α-pregnane-3β-ol-20-one (pregnanolone; Gasior et al., 1999). The interest on these steroids arises from their potential activity as anticonvulsants, anesthetics, anxiolytic or sedative-hypnotic agents (Akk et al., 2007) useful for the treatment of several neurological and psychiatric disorders (Gasior et al., 1999). Also, various physiological and pathophysiological conditions have been associated with changes in allopregnanolone and pregnanolone levels (Akk et al., 2007).

    Although the natural NS can be used in epileptic patients (Herzog, 1999), certain properties, like their short biological half-life, avoid their clinical use. For that reason, synthetic steroids (SS), that exhibit better bioavailability and effcacy, have an important therapeutic potential in brain disorders, becoming an alternative for this kind of pathologies (Reddy and Kulkarni, 2000; Morrow, 2007).

    Therefore, there is a considerable interest around NS physiology and synthetic analogues development. The medicinal chemistry of neuroactive steroids (NAS) has been focused in the development of SS analogues preserving the absolute configuration of naturally occurring steroids. Structure/ activity studies indicate that the 3α-hydroxyl confguration is required for binding and activity (Purdy et al., 1990). However, modifcations of the steroid nucleus may emphasize different pharmacophores. For example, the 3β-methylated synthetic analog of allopregnanolone, ganaxolone (3α-hydroxy-3β-methyl-5α-prengan-20-one) is capable to overcome these limitations, showing effective anticonvulsant properties (Carter et al., 1997; Reddy and Woodward, 2004). In fact, until now, it is the only SS that has been proved in human clinical trials for epilepsy (Nohria et al., 2010).

    Neurosteroids and GABAAreceptor function

    GABA binding to its receptor gates an intrinsic anion-selective channel. According to the reversal potential of thepermeate ions, the postsynaptic GABA response can be excitatory or inhibitory (Akk et al., 2007). The binding of the convulsant t-butyl-bicyclophosphorothionate (TBPS) to the GABAAreceptor can be allosterically modulated by allopregnanolone and pregnanolone (Ramanjaneyulu and Ticku, 1984). When GABA is present, these metabolites have a significantly increased binding affinity, and under this condition, it is possible to refect the functional state of this receptor (Majewska, 1992; Hawkinson et al., 1994). Similarly, NAS can also stimulate the binding of funitrazepam or muscimol to the receptor (Majewska et al., 1986; Hawkinson et al., 1994). The NS exposure enhances the opening probability of the chloride channel, so that the mean time open is increased, resulting in a reduction of neuronal excitability.

    Harrison and Simmons (1984) demonstrated that alphaxalone (ALPX; 3α-hydroxy-5α-pregnane-11,20-dione), another allopregnanolone synthetic analogue, was able to enhance the GABA-evoked responses. Also, a positive allosteric modulation of GABAAreceptor was found with the SS ganaxolone (Carter et al., 1997; Gasior et al., 1997). Since then, several SS with different features have been developed. It has been described that at least two ent-16-ketosteroid synthetic analogues (3α-5α-androsten-16-one and 3α-5α-4methoxyandrosten-16-one; with an absolute opposite confguration to NAS), produced a more potent inhibition of the TBPS binding than ALPX (Qian et al., 2013). Moreover, we showed a decrease in TBPS binding and an increase in funitrazepam and muscimol binding by the administration of SS epoxies (analogues to allopregnanolone and pregnanolone) with an intramolecular oxygen bridge that keeps the A/B angle of the steroid nucleus in a controlled way (Veleiro and Burton, 2009; Rey et al., 2013).

    NAS and SS neuroprotective role

    Cumulative evidence indicates the existence of neuroprotective properties of NAS in a variety of experimental paradigms (Schumacher et al., 2004). They have a major infuence on the central nervous system (CNS) activity and are essential for growth and survival of neurons and glial cells (Wang et al., 2005; Melcangi et al., 2008). Studies in adult animals after brain injury indicate that NAS have an important role in repairing processes, enhancing myelination and reducing apoptotic processes (Ibanez et al., 2004). During pregnancy, stressful events which lead to transient hypoxia/ ischemia, stimulate NAS production in the brain providing further protection (Nguyen et al., 2004). This supports the importance of NAS in brain development and suggests that the exposure to normal NAS levels is critical. In traumatic brain injury, progesterone has the most important repair-promoting actions (He et al., 2004a) and it acts through its reduced metabolites like allopregnanolone (Djebaili et al., 2004; He et al., 2004b; Ardeshiri et al., 2006). The neuroprotective actions of allopregnanolone have been shown in hypoxia-induced brain injury models, where its levels increase in response to acute hypoxic stress, as a protective mechanism to reduce excitotoxicity (Hirst et al., 2006). In fact, we have described a protective effect of allopregnanolone on astrogliosis (Kruse et al., 2009) and neuronal damage (Kruse et al., 2010) caused by hypoxia in perinatal cultures of cerebral cortex and hippocampus of the rat. Studies with the SS mifepristone (RU486), reported that it acts as a neuroprotective agent against excitotoxicity and traumatic brain injury (Behl et al., 1997; McCullers et al., 2002) and protects Purkinje cells from cell death in postnatal rat and mouse cerebellum organotypic slice cultures (Ghoumari et al., 2003), through the reversion of chloride effux in the GABAAreceptor elicited by GABA (Rakotomamonjy et al., 2011). Other properties like antiprogestagen and antiglucorticoids, were observed with their administration. We have also demonstrated that two SS epoxies, (analogues of allopregnanolone and pregnanolone,) were capable to prevent the glial and neuronal damages in the perinatal cultures of cerebral cortex and hippocampus (Rey et al., 2013).

    In adults, the brain ischemic stroke is also considered a hypoxic event that compromises the brain functionality. During ischemia, the loss of energy supply by the mitochondrial dysfunction and posterior increased oxidative stress contributed to the neuronal injury. Therefore, a trend has been set in the development of steroid drugs that reduce the excitotoxicity and the oxidative stress, for treatments of acute brain injuries or chronic neurodegenerative diseases. Because the current therapies are still limited the promotion of novel neuroprotectants is essential for the ischemic stroke treatment. One example is the SS 5α-androst-3β,5,6β-triol showed a robust neuroprotective effects when it was testedin vitro(Chen et al., 2013).

    The Alzheimer’s disease (AD) produces a brain degenerative process, with neuronal losses and decreased synapses. Present therapies are focused on stopping the progression of the disease, but the major challenge remains, in restore cognitive function through the regeneration of lost neurons and neural circuitry. In aged and AD brains, the pool of neural stem cells, their proliferative potential and the allopregnanolone content are markedly diminished (Bernardi et al., 1998; Genazzani et al., 1998; Weill-Engerer et al., 2002). Studies using transgenic AD mice showed that allopregnanolone has neurogenic properties (Wang et al., 2008). Thesein vitroandin vivoneurogenic features, coupled to low molecular weight, easy blood brain barrier penetration and lack of toxicity, are the key elements required to consider the use of allopregnanolone as a neurogenic/regenerative therapy for neurons restoration in AD patients (Brinton and Wang, 2006; Irwin and Brinton, 2014). Estrogen has also showed neuroprotective properties, preventing the development of neurodegenerative disorders like AD. Hormonal therapy at menopause (to restore normal levels) appears to reduce the risks, but this kind of treatment has been associated with detrimental effects. Therefore, the development of SS with a selective agonist action is promising. Moreover, estrogen like neuroprotection effects were observed with the SS 4-estren-3α,17β-diol that differs structurally from estrogens only on the A ring (Kousteni et al., 2002; Cordey et al., 2005). In addition, similar neuroprotective actions have been described with the SS ent-steroid of 17β-estradiol (Covey, 2009).

    Neurosteroids synthesis: steroid effects on 3β-HSD activity

    Another important issue is the influence of the SS on the local natural NS synthesis. NAS are present in the nervous system and in other steroidogenic tissues, like gonads and adrenal glands. In the CNS, NS synthesis occurs in glial and neuronal cells. Within the mitochondrial matrix, the cholesterol is converted to pregnenolone by the cytochrome P450 side-chain cleavage enzyme (CYP450scc; Iwahashi et al., 1990). Then, the pregnenolone is oxidized to progesterone by the 3β-hydroxysteroid dehydrogenase enzyme (3β-HSD; Zwain and Yen, 1999) being this conversion an essential step in the biosynthesis of all steroid hormones. Allopregnanolone is synthesized from progesterone, by the sequential enzymatic steps of the type I 5α-reductase (5α-R) and the 3α-hydroxysteroid dehydrogenase enzymes (3α-HSD; Mellon et al., 2001). The rate-limiting step in neurosteroidogenesis is the unidirectional reduction of progesterone to the 5α-dihydroprogesterone (5α-DHP) by the 5α-R. Subsequently, the 3α-HSD catalyzes conversion of 5α-DHP into allopregnanolone. Functionally expression of these enzymes has been described in pluripotent progenitor cells (Melcangi et al., 1996).

    On the other hand, the expression of 3β-HSD enzyme has been demonstrated in several tissues like adrenal glands, gonads and CNS (Rheaume et al., 1991; Guennoun et al., 1995; Coirini et al., 2003). Moreover, pregnenolone conversion into progesterone has been demonstrated in rat homogenates from septum and amygdala (Weinfeld et al., 1980). The co-expression of 3β-HSD and GABAAreceptor subunits in different brain regions (Laurie et al., 1992; Wisden et al., 1992) gives an anatomo-functional support for the in situ production of progesterone and the GABAAreceptor modulation (Guennoun et al., 1995). Although regulatory mechanisms underlying the NS biosynthesis inside the brain remain unclear, it is well known the capacity of steroids of negatively modulate the 3β-HSD activity in different steroidogenic endocrine glands and in peripheral nervous system, like sciatic nerve (Guennoun et al., 1995; Coirini et al., 2003). Among SS, the RU486 caused an impact on the 3β-HSD enzyme activity in rat adrenal gland (Albertson et al., 1994) but not in gonads (Sanchez et al., 1989). In our work, we described that SS epoxies caused a dose-dependent decrease on the 3β-HSD activity. In fact, the analogues of pregnanolone produced less inhibition than those with the conformation allopregnanolone-like (Rey et al., 2013).

    Conclusion

    NS are endogenous regulators of neuronal excitability (Lambert et al., 2003; Akk et al., 2009). Within the brain, reduced steroids (like allopregnanolone and pregnanolone) are highly selective and potent modulators of the GABAAreceptor functions (Gasior et al., 1999). Thus, their anticonvulsant, anesthetics and anxiolytic properties are useful in the treatment of several neurological and psychiatric disorders (Schüle et al., 2011). Neuroprotective effects against adverse early life events (Patchev et al., 1997) and neurogenic effects on neurodegenerative diseases, like AD (Brinton and Wang, 2006), have been observed with allopregnanolone administration. Steroids with similar activity like this progesterone metabolite provide big opportunities for therapeutic treatments reducing hormonal side effects (Morrow, 2007; Reddy, 2010). The principal disadvantage of endogenous NS administration is their poor bioavailability caused by their rapid in vivo metabolism. Thus, endogenous NS stimulation synthesis or synthetic steroids analogues (Poisbeau et al., 2014) might constitute promising novel strategies for several disorders treatments. The current medicinal chemistry around NAS is focused on the development of new SS analogues, having the absolute confguration of natural steroids. Several studies indicate that the 3α-hydroxyl confguration is the key for binding and activity, but modifcations in the steroid nucleus may emphasize different pharmacophores. Among the SS developed are ganaxolone and ALPX which have anesthetic and anticonvulsant properties. Until now, ganaxolone is the only one SS that has been used on human clinical trials for epilepsy (Nohria et al., 2010). On the other hand, the SS ent-neurosteroids produced more potent inhibition of TBPS binding from the GABAA receptor than ALPX (Qian et al., 2013). Moreover, we found that some SS epoxies reduce the TBPS binding and stimulate the funitrazepam and muscimol binding in a dose-dependent manner (Rey et al., 2013). On the other hand, anxiolytic effects are mediated by GABAA receptors (Reddy and Kulkarni, 1997). Therefore NS modulation of this receptor can be traduced in SS anxiolytic properties. This type of effects was observed with the synthetic allopregnanolone analogue Co 2-6749 (GMA-839; WAY-141839; 3α,21-dihydroxy-3β-trifluoromethyl-19-nor-5β-pregnan-20-one; Vanover et al., 2000). In fact, neurosteroidogenic agents, that lack benzodiazepine-like side effects, are promising for the treatment of anxiety and depression (Reddy, 2010).

    Neuroprotective effects have been described with several SS in hypoxia-induced brain injury models. Among others, the SS RU486 was able to protect against excitotoxicity and traumatic brain injury (Behl et al., 1997; McCullers et al., 2002) and the 5α-androst-3β,5,6β-triol showed a neuroprotective action in an ischemic stroke modelin vitro(Chen et al., 2013). Moreover, in perinatal brain tissues submitted to hypoxic conditions, restricted analogues from allopregnanolone or pregnanolone showed similar properties preventing the glial and neuronal damage (Rey et al., 2013). On the other hand, neurogenic properties on AD were observed with the 4-estren-3α,17β-diol and ent-steroid of 17β-estradiol administrations (Kousteni et al., 2002; Covey, 2009).

    Another issue to take in consideration for the development of SS is related to the presence of all the enzymes necessary for NS synthesis in the brain (Mensah-Nyagan et al., 1999; Agis-Balboa et al., 2006; Do Rego et al., 2009). Although regulatory mechanisms around NS biosynthesis are still unclear, it is well known the capacity of steroids to negatively modulate the 3β-HSD activity (in almost all steroidogenic tissues) and the importance of a minor effect on these activities bythe SS administration.

    Specifc enzymes and nuclear hormone receptors for endogenous steroids have structurally defined binding sites. It is important that the SS should be developed lacking the possibility to bind with high affnity to these proteins. Therefore the SS drugs might not strongly interfere with the natural steroids biosynthesis or their specifc receptors. It would be also advantageous that the half-life of these new SS might be quite different and potentially longer, than those of steroid already used as anticonvulsants, anxiolytics, or another neuroactive-neurogenic agents. Thus, it is likely that the development of new SS for therapeutical use will continue requiring a great deal of effort with the attendant generation of new knowledge.

    Author contributions:MR was responsible for writing the first draft of the manuscript and contributed to its editing and revision. HC was responsible for the review conception, and contributed to the design of the manuscript, writing and editing. Both authors approved the final version of this review.

    Conficts of interest:None declared.

    Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 103:14602-14607.

    Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2007) Mechanisms of neurosteroid interactions with GABAAreceptors. Pharmacol Ther 116:35-37.

    Akk G, Covey DF, Evers AS, Steinbach JH, Zorumski CF, Mennerick S (2009) The influence of the membrane on neurosteroid actions at GABA(A) receptors. Psychoneuroendocrinology 34:S59-S66.

    Albertson BD, Hill RB, Sprague KA, Wood KE, Nieman LK, Loriaux DL (1994) Effect of the antiglucocorticoid RU486 on adrenal steroidogenic enzyme activity and steroidogenesis. Eur J Endocrinol 130:195-200.

    Ardeshiri A, Kelley MH, Korner IP, Hurn PD, Herson PS (2006) Mechanism of progesterone neuroprotection of rat cerebellar Purkinje cells following oxygen-glucose deprivation. Eur J Neurosci 24:2567-2574.

    Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37:395-403.

    Behl C, Trapp T, Skutella T, Holsboer F (1997) Protection against oxidative stress-induced neuronal cell death-a novel role for RU486. Eur J Neurosci 9:912-920.

    Bernardi F, Salvestroni C, Casarosa E, Nappi RE, Lanzone A, Luisi S, Purdy RH, Petraglia F, Genazzani AR (1998) Aging is associated with changes in allopregnanolone concentrations in brain, endocrine glands and serum in male rats. Eur J Endocrinol 138:316-321.

    Bialer M, Johannessen SI, Levy RH, Perucca E, Tomson T, White HS (2010) Progress report on new antiepileptic drugs: a summary of the Tenth Eilat Conference (EILAT X). Epilepsy Res 92:89-124.

    Brinto RD, Wang JM (2006) Preclinical analyses of the therapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in transgenic mouse model of Alzheimer’s disease. Curr Alzheimer Res 3:11-17.

    Carter RB, Wood PL, Wieland S, Hawkinson JE, Belelli D, Lambert JJ, White HS, Wolf HH, Mirsadeghi S, Tahir SH, Bolger MB, Lan NC, Gee KW (1997) Characterization of the anti convulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a selective, high-affnity, steroid modulator of the gamma- aminobutyricacid (A) receptor. J Pharmacol Exp Ther 280:1284-1295.

    Chen J, Leng T, Chen W, Yan M, Yin W, Huang Y, Lin S, Duan D, Lin J, Wu G, Zhang J, Yan G (2013) A synthetic steroid 5α-androst-3β,5,6β-triol blocks hypoxia/reoxygenation-induced neuronal injuries via protection of mitochondrial function. Steroids 78:996-1002.

    Coirini H, Gouézou M, Delespierre B, Liere P, Pianos A, Eychenne B, Schumacher M, Guennoun R (2003) Characterization and regulation of the 3β-hydroxysteroid dehydrogenase isomerase enzyme in the rat sciatic nerve. J Neurochem 84:119-126.

    Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ (2005) The synthetic estrogen 4-stren-3 alpha,17 beta-diol (estren) induces estrogen-like neuroprotection. Neurobiol Dis 19:331-339.

    Covey DF (2009) ent-Steroids: novel tools for studies of signaling pathways. Steroids 74:577-585.

    Djebaili M, Hoffman SW, Stein DG (2004) Allopregnanolone and progesterone decrease cell death and cognitive defcits after a contusion of the rat pre-frontal cortex. Neuroscience 123:349-359.

    Do Rego JL, Seong JY, Burel D, Leprince J, Luu-The V, Tsutsui K, Tonon MC, Pelletier G, Vaudry H (2009) Neurosteroid biosynthesis: enzymatic pathways and neuroendocrine regulation by neurotransmitters and neuropeptides. Front Neuroendocrinol 30:259-301.

    Gasior M, Carter RB, Goldberg SR, Witkin JM (1997) Anticonvulsant and behavioral effects of neuroactive steroids alone and in conjunction with diazepam. J Pharmacol Exp Ther 282:543-553.

    Gasior M, Carter RB, Witkin JM (1999) Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci 20:107-111.

    Genazzani AR, Petraglia F, Bernardi F, Casarosa E, Salvestroni C, Tonetti A, Nappi RE, Luisi S, Palumbo M, Purdy RH, Luisi M (1998) Circulating levels of allopregnanolone in humans: gender, age, and endocrine infuences. J Clin Endocrinol Metab 83:2099-2103.

    Ghoumari AM, Dusart I, El-Etr M, Tronche F, Sotelo C, Schumacher M, Baulieu EE (2003) Mifepristone (RU486) protects Purkinje cells from cell death in organotypic slice cultures of postnatal rat and mouse cerebellum. Proc Natl Acad Sci U S A 100:7953-7958.

    Guennoun R, Fiddes RJ, Gouézou M, Lombès M, Baulieu EE (1995) A key enzyme in the biosynthesis of neurosteroids; 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD) is expressed in rat brain. Brain Res Mol Brain Res 30:287-300.

    Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287-292.

    Hawkinson JE, Kimbrough CL, Belelli D, Lambert JJ, Prurdy RH, Lan NC (1994) Correlation of neuroactive steroid modulation of [35S] t-butylbicyclophosphorothionate and [3H]-flunitrazepam binding and gamma-aminobutyric acid receptor function. Mol Pharmacol 46:977-985.

    He J, Evans O, Hoffman SW, Oyesiku NM, Stein DG (2004a) Progesterone and allopregnanolone reduce inflammatory cytokines after traumatic brain injury. Exp Neurol 189:404-412.

    He J, Hoffman SW, Stein DG (2004b) Allopregnanolone, a progesterone metabolite, enhances behavioral recovery and decreases neuronal loss after traumatic brain injury. Restor Neurol Neurosci 22:19-31.

    Herzog AG (1999) Progesterone therapy in women with epilepsy, a 3-year follow-up. Neurology 52:1917-1918.

    Hirst JJ, Yawno T, Nguyen P, Walker DW (2006) Stress in pregnancy activates neurosteroid production in the fetal brain. Neuroendocrinology 84:264-274.

    Ibanez C, Shields SA, El-Etr M, Baulieu EE, Schumacher M, Franklin RJ (2004) Systemic progesterone administration results in a partial reversal of the age-associated decline in CNS remyelination following toxin-induced demyelination in male rats. Neuropathol Appl Neurobiol 30:80-89.

    Irwin RW, Brinton RD (2014) Allopregnanolone as regenerative therapeutic for Alzheimer’s disease: Translational development and clinical promise. Prog Neurobiol 113:40-55.

    Iwahashi K, Ozaki H S, Tsubaki M, Ohniski J, Taheuchi Y, Ichikawa Y (1990) Studies of the immunohistochemical and biochemical localization of the cytochrome P-450-scclinked monooxygenase system in the adult rat brain. Biochem Biophys Acta 1035:182-189.

    Kousteni S, Chen JR, Bellido T, Han L, Ali AA, O’Brien CA, Plotkin L, Fu Q, Mancino AT, Wen Y, Vertino AM, Powers CC, Stewart SA, Ebert R, Parftt AM, Weinstein RS, Jilka RL, Manolagas SC (2002) Reversal of bone loss in mice by non genotropic signaling of sex steroids. Science 298:843-846.

    Kruse MS, Rey M, Barutta J, Coirini H (2009) Allopregnanolone effects on astrogliosis induced by hypoxia in organotypic cultures of striatum, hippocampus and neocortex. Brain Res 1303:1-7.

    Kruse MS, Rey M, Veleiro AS, Burton G, Coirini H (2010) Hypoxia impairs the morphology of neurons in cortex and hippocampus organotypic cultures. Biocell 34:A97.

    Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAAreceptors. Prog Neurobiol 71:67-80.

    Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAAreceptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 11:4151-4172.

    Majewska MD (1992) Neurosteroids: endogenous bimodal modulators of the GABAAreceptor. Mechanism of action and physiological signifcance. Prog Neurobiol 38:379-395.

    Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABAAreceptor. Science 232:1004-1007.

    McCullers DL, Sullivan PG, Scheff SW, Herman JP (2002) Mifepristone protects CA1 hippocampal neurons following traumatic brain injury in rat. Neuroscience 109:219-230.

    Melcangi RC, Froelichsthal P, Martini L, Vescovi AL (1996) Steroid metabolizing enzymes in pluripotential progenitor central nervous system cells: effect of differentiation and maturation. Neuroscience 72:467-475.

    Melcangi RC, Garcia-Segura LM, Mensah-Nyagan AG (2008) Neuroactive steroids: state of the art and new perspectives. Cell Mol Life Sci 65:777-797.

    Mellon SH, Griffn LD, Compagnone NA (2001) Biosynthesis and action of neurosteroids. Brain Res Brain Res Rev 37:3-12.

    Mensah-Nyagan AG, Do-Rego JL, Beaujean D, Luu-The V, Pelletier G, Vaudry H (1999) Neurosteroids: expression of steroidogenic enzymes and regulation of steroid biosynthesis in the central nervous system. Pharmacol Rev 51:63-81.

    Morrow AL (2007) Recent developments in the signifcance and therapeutic relevance of neuroactive steroids-Introduction to the special issue. Pharmacol Ther 116:1-6.

    Nguyen PN, Yan EB, Castillo-Melendez M, Walker DW, Hirst JJ (2004) Increased allopregnanolone levels in the fetal sheep brain following umbilical cord occlusion. J Physiol 560:593-602.

    Patchev VK, Montkowski A, Rouskova D, Koranyi L, Holsboer F, Almeida OF (1997) Neonatal treatment of rats with the neuroactive steroid tetrahydrodeoxycorticosterone (THDOC) abolishes the behavioral and neuroendocrine consequences of adverse early life events. J Clin Invest 99: 962-966.

    Poisbeau P, Keller AF, Aouad M, Kamoun N, Groyer G, Schumacher M (2014) Analgesic strategies aimed at stimulating the endogenous production of allopregnanolone. Front Cell Neurosci 8:174.

    Purdy RH, Morrow AL, Blinn JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572-1581.

    Qian M, Krishnan K, Kudova E, Li P, Manion BD, Taylor A, Elias G, Akk G, Evers AS, Zorumski CF, Mennerick S, Covey DF (2013) Neurosteroid analogues. 18. Structure-activity studies of ent-steroid potentiators of γ-aminobutyric acid type A receptors and comparison of their activities with those of alphaxalone and allopregnanolone. J Med Chem 57:171-190.

    Rakotomamonjy J, Levenes C, Baulieu EE, Schumacher M, Ghoumari AM (2011) Novel protective effect of mifepristone on detrimental GABAAreceptor activity to immature Purkinje neurons. FASEB J 25:3999-4010.

    Ramanjaneyulu R, Ticku MK (1984) Binding characteristics and interactions of depressant drugs with [35S]t-butylbicyclophosphorothionate; a ligand that binds to the picrotoxin site. J Neurochem 42:221-229.

    Reddy DS (2003) Is there a physiological role for the neurosteroid THDOC in stress-sensitive conditions? Trends Pharmacol Sci 24:103-106.

    Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113-137.

    Reddy DS, Kulkarni SK (1997) Differential anxiolytic effects of neurosteroids in the mirrored chamber behavior test in mice. Brain Res 752:61-71.

    Reddy DS, Kulkarni SK (2000) Development of neurosteroid-base novel psychotropic drugs. Prog Med Chem 37:135-175.

    Reddy DS, Woodward R (2004) Ganaxolone, a prospective overview. Drugs Future 29:227-242.

    Rey M, Kruse MS, Alvarez LD, Ghini AA, Veleiro AS, Burton G, Coirini H (2013) Neuroprotective action of synthetic steroids with oxygen bridge. Activity on GABAAreceptor. Exp Neurol 249:49-58.

    Rheaume E, Lachance Y, Zhao HF, Breton N, Dumont M, de Launoit Y, Trudel C, Luu-The V, Simard J, Labrie F (1991) Structure and expression of a new complementary DNA encoding the almost exclusive 3 beta-hydroxysteroid dehydrogenase/delta 5-delta 4-isomerase in human adrenals and gonads. Mol Endocrinol 5:1147-1157.

    Sanchez PE, Ryan MA, Kridelka F, Gielen I, Ren SG, Albertson B, Malozowski S, Nieman L, Cassorla F (1989) RU-486 inhibits rat gonadal steroidogenesis. Horm Metab Res 21:369-371.

    Schüle C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R (2011) Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs? Neuroscience 191:55-77.

    Schumacher M, Guennoun R, Robert F, Carelli C, Gago N, Ghoumari A, Gonzalez Deniselle MC, Gonzalez SL, Ibanez C, Labombarda F, Coirini H, Baulieu EE, De Nicola AF (2004) Local synthesis and dual actions of progesterone in the nervous system: neuroprotection and myelination. Growth Horm IGF Res 14:S18-S33.

    Vanover KE, Rosenzweig-Lipson S, Hawkinson JE, Lan NC, Belluzzi JD, Stein L, Barrett JE, Wood PL, Carter RB (2000) Characterization of the anxiolytic properties of a novel neuroactive steroid, Co 2-6749 (GMA-839; WAY-141839; 3alpha, 21-dihydroxy-3beta-trifuoromethyl-19-nor-5beta-pregnan-20-one), a selective modulator of gamma-aminobutyric acid(A) receptors. J Pharmacol Exp Ther 295:337-345.

    Veleiro AS, Burton G (2009) Structure-activity relationships of neuroactive steroids acting on the GABAAreceptor. Curr Med Chem 16:1-18.

    Wang JM, Johnston PB, Ball BG, Brinton RD (2005) The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci 25:4706-4718.

    Wang JM, Liu L, Irwin RW, Chen S, Brinton SD (2008) Regenerative potential of allopregnanolone. Brain Res Rev 57:398-409.

    Weill-Engerer S, David JP, Sazdovitch V, Liere P, Eychenne B, Pianos A, Schumacher M, Delacourte A, Baulieu EE, Akwa Y (2002) Neurosteroid quantifcation in human brain regions: comparison between Alzheimer’s and nondemented patients. J Clin Endocrinol Metab 87:5138-5143.

    Weinfeld J, Siegel RA, Chowers I (1980) In vitro conversion of pregnenolone to progesterone by discrete brain areas of the male rat. J Steroid Biochem 13:961-963.

    Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAAreceptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 3:1040-1062.

    Zwain IH, Yen SS (1999) Neurosteroidogenesis in astrocytes, oligodendrocytes, and neurons of cerebral cortex of rat brain. Endocrinology 140:3843-3852.

    *Correspondence to: Héctor Coirini, Ph.D., hcoirini@ibyme.conicet.gov.ar.

    10.4103/1673-5374.150640

    http://www.nrronline.org/

    Accepted: 2014-12-17

    cao死你这个sao货| 老熟妇乱子伦视频在线观看| 国产又黄又爽又无遮挡在线| 99久久精品国产亚洲精品| 欧美在线一区亚洲| 亚洲aⅴ乱码一区二区在线播放| 90打野战视频偷拍视频| 精品国产美女av久久久久小说| 波多野结衣高清无吗| 国产极品精品免费视频能看的| 国产亚洲av高清不卡| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲 欧美一区二区三区| 人妻丰满熟妇av一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产99精品国产亚洲性色| 久久久久性生活片| 中亚洲国语对白在线视频| 日本a在线网址| 叶爱在线成人免费视频播放| 天天添夜夜摸| 19禁男女啪啪无遮挡网站| 国产欧美日韩一区二区三| 国产精品香港三级国产av潘金莲| 亚洲美女黄片视频| 日韩精品青青久久久久久| 九九在线视频观看精品| 白带黄色成豆腐渣| 超碰成人久久| 欧美乱码精品一区二区三区| 色综合婷婷激情| 国产成人精品久久二区二区免费| 国内精品久久久久精免费| 天堂网av新在线| 狂野欧美激情性xxxx| 久久这里只有精品19| 99在线视频只有这里精品首页| 青草久久国产| 午夜福利视频1000在线观看| 久久精品91无色码中文字幕| 国产精品久久久久久人妻精品电影| 叶爱在线成人免费视频播放| 俄罗斯特黄特色一大片| 九九热线精品视视频播放| 国产一区二区在线av高清观看| 88av欧美| 丰满的人妻完整版| 久久这里只有精品中国| 在线观看一区二区三区| 草草在线视频免费看| 久久婷婷人人爽人人干人人爱| avwww免费| 国产精品香港三级国产av潘金莲| 午夜福利欧美成人| av国产免费在线观看| 国产一区在线观看成人免费| 欧美日本亚洲视频在线播放| 亚洲真实伦在线观看| 12—13女人毛片做爰片一| 国产高清视频在线播放一区| 99久久久亚洲精品蜜臀av| 午夜福利在线观看免费完整高清在 | 午夜亚洲福利在线播放| 99热只有精品国产| 国产精品,欧美在线| 一进一出好大好爽视频| 一区福利在线观看| 热99在线观看视频| 国产精品一及| 精品乱码久久久久久99久播| 岛国视频午夜一区免费看| 日本精品一区二区三区蜜桃| 天堂动漫精品| 五月玫瑰六月丁香| 女生性感内裤真人,穿戴方法视频| 亚洲中文av在线| 久久久久久国产a免费观看| 叶爱在线成人免费视频播放| 国产伦人伦偷精品视频| av视频在线观看入口| 国产黄色小视频在线观看| 最近最新中文字幕大全免费视频| 日韩欧美免费精品| 偷拍熟女少妇极品色| 日本免费a在线| 欧美成人性av电影在线观看| 欧美黑人巨大hd| 欧美xxxx黑人xx丫x性爽| 日韩高清综合在线| 国产亚洲av嫩草精品影院| 黄片大片在线免费观看| 别揉我奶头~嗯~啊~动态视频| 一级作爱视频免费观看| 99久久国产精品久久久| 很黄的视频免费| 久久久国产成人精品二区| 色av中文字幕| 精品久久久久久久久久久久久| 久久热在线av| 脱女人内裤的视频| 中文字幕av在线有码专区| 欧美乱码精品一区二区三区| 老司机在亚洲福利影院| 一区二区三区激情视频| 999久久久国产精品视频| 国产野战对白在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产伦精品一区二区三区视频9 | 欧美日韩国产亚洲二区| 亚洲最大成人中文| 女同久久另类99精品国产91| 不卡一级毛片| 日韩精品青青久久久久久| 国产成人系列免费观看| 国内揄拍国产精品人妻在线| 欧美午夜高清在线| 一二三四社区在线视频社区8| 噜噜噜噜噜久久久久久91| 久久久久久久精品吃奶| 男人的好看免费观看在线视频| 给我免费播放毛片高清在线观看| 国产成人av教育| 国产成人欧美在线观看| 法律面前人人平等表现在哪些方面| 最新美女视频免费是黄的| 一级毛片精品| 国产成+人综合+亚洲专区| 色老头精品视频在线观看| 小说图片视频综合网站| 日本五十路高清| 少妇丰满av| 美女黄网站色视频| 色综合站精品国产| 欧美zozozo另类| 男插女下体视频免费在线播放| 国产成人av教育| 国产精品 欧美亚洲| 看免费av毛片| 又黄又粗又硬又大视频| 一个人看的www免费观看视频| 亚洲电影在线观看av| 国产乱人视频| 搡老岳熟女国产| 美女黄网站色视频| 极品教师在线免费播放| 精品久久久久久久末码| 精品一区二区三区视频在线 | 18禁裸乳无遮挡免费网站照片| 99riav亚洲国产免费| 精品一区二区三区四区五区乱码| 色av中文字幕| 男女那种视频在线观看| 中文字幕高清在线视频| 特级一级黄色大片| 亚洲熟女毛片儿| 身体一侧抽搐| 久久久国产欧美日韩av| 久久中文看片网| 久久久精品欧美日韩精品| 国产成人精品久久二区二区91| 亚洲精品久久国产高清桃花| 热99re8久久精品国产| 色综合欧美亚洲国产小说| 最近最新中文字幕大全电影3| 亚洲av片天天在线观看| 老熟妇乱子伦视频在线观看| 欧美在线一区亚洲| 久久天躁狠狠躁夜夜2o2o| 亚洲五月婷婷丁香| 99久国产av精品| 国产精品一区二区免费欧美| 中文字幕高清在线视频| 免费无遮挡裸体视频| 1000部很黄的大片| 精品久久久久久,| 日韩欧美三级三区| 一个人免费在线观看电影 | 不卡av一区二区三区| 成人特级黄色片久久久久久久| 日韩精品青青久久久久久| avwww免费| 欧美性猛交黑人性爽| 一边摸一边抽搐一进一小说| 国产麻豆成人av免费视频| 人妻久久中文字幕网| 怎么达到女性高潮| 日韩精品中文字幕看吧| 999久久久国产精品视频| 国产一区二区在线观看日韩 | 久久国产精品影院| 好男人电影高清在线观看| 国产一区在线观看成人免费| 综合色av麻豆| 久久精品91无色码中文字幕| 国内精品久久久久久久电影| 黄色丝袜av网址大全| 国产亚洲精品av在线| 在线观看66精品国产| 午夜福利在线在线| 午夜a级毛片| 视频区欧美日本亚洲| a在线观看视频网站| 免费看日本二区| 亚洲欧美日韩高清在线视频| 亚洲欧美日韩东京热| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 俄罗斯特黄特色一大片| 亚洲色图 男人天堂 中文字幕| 国产69精品久久久久777片 | 国内揄拍国产精品人妻在线| 国产午夜精品久久久久久| 成人无遮挡网站| 国产v大片淫在线免费观看| 日韩欧美在线乱码| 国产99白浆流出| 搡老岳熟女国产| 亚洲国产欧美人成| 国产成人影院久久av| 老司机午夜福利在线观看视频| 美女被艹到高潮喷水动态| 日本成人三级电影网站| 伊人久久大香线蕉亚洲五| 色吧在线观看| 男女视频在线观看网站免费| 中文字幕精品亚洲无线码一区| 久久午夜综合久久蜜桃| 亚洲国产精品合色在线| 免费在线观看影片大全网站| 天天躁狠狠躁夜夜躁狠狠躁| 九九热线精品视视频播放| 青草久久国产| 亚洲欧美精品综合久久99| 亚洲av中文字字幕乱码综合| 国产精品久久久久久久电影 | 91字幕亚洲| 在线永久观看黄色视频| 日韩欧美免费精品| 99久久国产精品久久久| 观看免费一级毛片| 国产黄片美女视频| 国产不卡一卡二| 色综合站精品国产| 精品一区二区三区视频在线 | 熟女少妇亚洲综合色aaa.| 一区二区三区国产精品乱码| 国产极品精品免费视频能看的| 少妇丰满av| 日本免费a在线| bbb黄色大片| 久久久精品大字幕| 国产精品亚洲一级av第二区| 搡老岳熟女国产| 黄色视频,在线免费观看| 最近在线观看免费完整版| 伦理电影免费视频| 成人高潮视频无遮挡免费网站| 神马国产精品三级电影在线观看| 久久天堂一区二区三区四区| 99久久无色码亚洲精品果冻| 亚洲欧美激情综合另类| 成人一区二区视频在线观看| 欧美日韩综合久久久久久 | 超碰成人久久| 国产三级中文精品| 淫秽高清视频在线观看| 久久久久九九精品影院| 国产高清videossex| 成人永久免费在线观看视频| 久久欧美精品欧美久久欧美| 亚洲熟妇中文字幕五十中出| 欧美xxxx黑人xx丫x性爽| 校园春色视频在线观看| 欧美乱色亚洲激情| av中文乱码字幕在线| 麻豆国产97在线/欧美| 午夜精品在线福利| 精品久久久久久久久久久久久| 国产乱人伦免费视频| 最近在线观看免费完整版| 午夜久久久久精精品| 欧美日韩精品网址| 成人三级黄色视频| 91av网站免费观看| 夜夜夜夜夜久久久久| 日日夜夜操网爽| 熟女电影av网| 亚洲激情在线av| 十八禁人妻一区二区| 国内久久婷婷六月综合欲色啪| 日本熟妇午夜| 啦啦啦免费观看视频1| 性色av乱码一区二区三区2| 三级毛片av免费| 一区二区三区国产精品乱码| 97碰自拍视频| 亚洲av日韩精品久久久久久密| 亚洲成人久久爱视频| 日日夜夜操网爽| 大型黄色视频在线免费观看| 视频区欧美日本亚洲| 女警被强在线播放| 亚洲av中文字字幕乱码综合| 国产精品影院久久| 国产精品自产拍在线观看55亚洲| 精品熟女少妇八av免费久了| 中文字幕久久专区| 黄色 视频免费看| 老汉色av国产亚洲站长工具| 后天国语完整版免费观看| 亚洲人成网站高清观看| 九九在线视频观看精品| 久久中文看片网| 给我免费播放毛片高清在线观看| 欧美大码av| 一区二区三区激情视频| 丰满人妻一区二区三区视频av | 色噜噜av男人的天堂激情| av视频在线观看入口| 色综合欧美亚洲国产小说| www日本在线高清视频| 午夜a级毛片| 免费看十八禁软件| 久久热在线av| 午夜福利在线观看免费完整高清在 | 亚洲午夜理论影院| 精品人妻1区二区| 亚洲九九香蕉| 久久久久国产一级毛片高清牌| 国产精品99久久久久久久久| 亚洲成人中文字幕在线播放| 免费人成视频x8x8入口观看| 99热这里只有精品一区 | www.自偷自拍.com| 亚洲av日韩精品久久久久久密| bbb黄色大片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品sss在线观看| 一夜夜www| 制服人妻中文乱码| 老汉色∧v一级毛片| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 亚洲自偷自拍图片 自拍| 国产一区二区在线观看日韩 | 久久精品夜夜夜夜夜久久蜜豆| 91久久精品国产一区二区成人 | 69av精品久久久久久| 午夜成年电影在线免费观看| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看| 国产伦精品一区二区三区视频9 | 久久精品夜夜夜夜夜久久蜜豆| 久久精品91无色码中文字幕| 久久人妻av系列| 色哟哟哟哟哟哟| 欧美一区二区国产精品久久精品| 99久久精品国产亚洲精品| 日本熟妇午夜| 国产精品av视频在线免费观看| 99riav亚洲国产免费| 亚洲欧美日韩高清在线视频| 999久久久国产精品视频| 国产亚洲欧美在线一区二区| 国产视频内射| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产在线精品亚洲第一网站| 嫩草影视91久久| 国产高清有码在线观看视频| 高清在线国产一区| 亚洲中文字幕一区二区三区有码在线看 | 免费电影在线观看免费观看| 亚洲欧美日韩高清专用| 亚洲av中文字字幕乱码综合| 一a级毛片在线观看| 男人的好看免费观看在线视频| 久久久精品大字幕| 91字幕亚洲| а√天堂www在线а√下载| 国内久久婷婷六月综合欲色啪| 午夜福利在线观看免费完整高清在 | 国产99白浆流出| 日本免费a在线| 久久伊人香网站| 亚洲成人久久性| 香蕉丝袜av| www.精华液| 我的老师免费观看完整版| or卡值多少钱| 欧美中文综合在线视频| 亚洲 欧美 日韩 在线 免费| 综合色av麻豆| 成熟少妇高潮喷水视频| 亚洲熟女毛片儿| 久久久久亚洲av毛片大全| 桃红色精品国产亚洲av| 亚洲va日本ⅴa欧美va伊人久久| 巨乳人妻的诱惑在线观看| 性色avwww在线观看| 亚洲av片天天在线观看| 色噜噜av男人的天堂激情| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 黄色日韩在线| 久久精品国产清高在天天线| 午夜激情欧美在线| 国产精品一区二区三区四区免费观看 | 搡老熟女国产l中国老女人| 男女下面进入的视频免费午夜| 禁无遮挡网站| 少妇的逼水好多| 男女做爰动态图高潮gif福利片| 真人一进一出gif抽搐免费| 中文资源天堂在线| 日韩 欧美 亚洲 中文字幕| 真人一进一出gif抽搐免费| 国产精品亚洲美女久久久| 男女床上黄色一级片免费看| 久久这里只有精品19| 白带黄色成豆腐渣| 长腿黑丝高跟| 美女扒开内裤让男人捅视频| 日本黄大片高清| 亚洲欧美日韩卡通动漫| 淫妇啪啪啪对白视频| 亚洲精品在线观看二区| 老鸭窝网址在线观看| 国产探花在线观看一区二区| 亚洲自拍偷在线| 桃红色精品国产亚洲av| 欧美日韩国产亚洲二区| 国产蜜桃级精品一区二区三区| 18禁黄网站禁片午夜丰满| 国产精品一区二区三区四区免费观看 | 免费看美女性在线毛片视频| 美女扒开内裤让男人捅视频| av在线蜜桃| 亚洲欧美日韩卡通动漫| 啦啦啦韩国在线观看视频| 国产成人系列免费观看| 高清毛片免费观看视频网站| 91在线观看av| 久久99热这里只有精品18| 麻豆成人午夜福利视频| 天天一区二区日本电影三级| 亚洲熟妇熟女久久| 国产视频内射| 国产精品久久久久久久电影 | 亚洲av美国av| 在线看三级毛片| 国产精品98久久久久久宅男小说| 天堂动漫精品| 国产成人欧美在线观看| 身体一侧抽搐| www.熟女人妻精品国产| 操出白浆在线播放| 小说图片视频综合网站| 黄色视频,在线免费观看| 日韩欧美国产在线观看| 日韩成人在线观看一区二区三区| 黄片大片在线免费观看| 欧美日韩国产亚洲二区| 国产欧美日韩精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| ponron亚洲| 国产精品久久久久久人妻精品电影| 99国产精品99久久久久| 他把我摸到了高潮在线观看| 国内精品久久久久久久电影| 久久香蕉精品热| 日韩欧美免费精品| 欧美最黄视频在线播放免费| 亚洲国产看品久久| x7x7x7水蜜桃| 精品国产超薄肉色丝袜足j| 亚洲欧美日韩卡通动漫| 99久久精品一区二区三区| 欧美午夜高清在线| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 国产精品久久久久久人妻精品电影| 天堂av国产一区二区熟女人妻| 十八禁网站免费在线| 国产成人啪精品午夜网站| 亚洲精品一区av在线观看| 亚洲欧美日韩高清专用| 国产乱人伦免费视频| av在线天堂中文字幕| 亚洲在线自拍视频| 少妇丰满av| 在线看三级毛片| 999久久久精品免费观看国产| 亚洲av熟女| 91九色精品人成在线观看| 国产私拍福利视频在线观看| 91麻豆av在线| 成人国产一区最新在线观看| 给我免费播放毛片高清在线观看| 免费无遮挡裸体视频| 最近视频中文字幕2019在线8| 人妻丰满熟妇av一区二区三区| 国内揄拍国产精品人妻在线| 国产亚洲欧美98| 国产高清视频在线播放一区| 国产成人影院久久av| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| 国产精品久久久人人做人人爽| 婷婷丁香在线五月| 亚洲精品在线观看二区| tocl精华| 夜夜看夜夜爽夜夜摸| 国产成人精品无人区| 韩国av一区二区三区四区| 久久久久久久午夜电影| 国内久久婷婷六月综合欲色啪| 国产一区在线观看成人免费| 非洲黑人性xxxx精品又粗又长| 身体一侧抽搐| 久久久久九九精品影院| 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 一级毛片女人18水好多| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 亚洲成人精品中文字幕电影| 亚洲欧美激情综合另类| 精品电影一区二区在线| 毛片女人毛片| 在线a可以看的网站| 日本a在线网址| 91在线观看av| 久久久国产精品麻豆| 免费电影在线观看免费观看| 黑人欧美特级aaaaaa片| 国产精品久久久久久精品电影| 色综合欧美亚洲国产小说| 国产精品久久久av美女十八| 老司机午夜十八禁免费视频| 一进一出抽搐gif免费好疼| 午夜精品在线福利| 国产午夜福利久久久久久| 国产成人影院久久av| 亚洲欧美精品综合一区二区三区| 精品免费久久久久久久清纯| 欧美日韩国产亚洲二区| 成在线人永久免费视频| 看片在线看免费视频| 国产成人福利小说| 欧美最黄视频在线播放免费| 99精品欧美一区二区三区四区| 色尼玛亚洲综合影院| 男女做爰动态图高潮gif福利片| 欧美日韩亚洲国产一区二区在线观看| 巨乳人妻的诱惑在线观看| 成人鲁丝片一二三区免费| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 大型黄色视频在线免费观看| 女警被强在线播放| 亚洲 国产 在线| 成人性生交大片免费视频hd| 久久久久久人人人人人| 1024手机看黄色片| 国产午夜福利久久久久久| 欧美成狂野欧美在线观看| 欧美三级亚洲精品| 十八禁人妻一区二区| 亚洲熟女毛片儿| 美女cb高潮喷水在线观看 | 91在线精品国自产拍蜜月 | 国产精品乱码一区二三区的特点| 性色av乱码一区二区三区2| 亚洲va日本ⅴa欧美va伊人久久| 少妇裸体淫交视频免费看高清| 亚洲一区二区三区不卡视频| av在线天堂中文字幕| 搡老熟女国产l中国老女人| 嫩草影院精品99| 91九色精品人成在线观看| 99国产综合亚洲精品| 又黄又粗又硬又大视频| 观看美女的网站| 又黄又爽又免费观看的视频| 69av精品久久久久久| h日本视频在线播放| 精品久久久久久久末码| 麻豆成人av在线观看| 桃红色精品国产亚洲av| 夜夜看夜夜爽夜夜摸| 午夜精品在线福利| 12—13女人毛片做爰片一| 欧美日韩一级在线毛片| 午夜福利高清视频| 国产日本99.免费观看| 日韩成人在线观看一区二区三区| 免费看日本二区| 色噜噜av男人的天堂激情| 亚洲国产精品久久男人天堂| 国产精品一及| 亚洲欧美日韩高清在线视频| 国产黄a三级三级三级人| 99国产精品99久久久久| 最近视频中文字幕2019在线8| 欧美乱色亚洲激情| av视频在线观看入口| 一个人看的www免费观看视频| 欧美xxxx黑人xx丫x性爽| 欧美三级亚洲精品| 午夜精品久久久久久毛片777|