宋 敏, 劉銀占, 井水水
河南大學生命科學學院, 開封 475004
土壤線蟲對氣候變化的響應研究進展
宋 敏*, 劉銀占, 井水水
河南大學生命科學學院, 開封 475004
全球變化對陸地生態(tài)系統(tǒng)功能具有重要而深遠的影響。陸地生態(tài)系統(tǒng)地下部分具有重要的生態(tài)功能,其組成及結構對氣候變化的響應將進一步減緩或加劇全球化進程。土壤線蟲在各類生態(tài)系統(tǒng)中分布十分廣泛,是地下食物網(wǎng)的重要組分,在維持土壤生物多樣性及營養(yǎng)物質循環(huán)過程中發(fā)揮重要作用,其組成及結構對不同氣候變化驅動因子的響應機制與模式不盡相同。增溫及降水格局變化主要是通過改變線蟲生境而直接影響其種群密度與結構,兩者通常表現(xiàn)為正效應且作用效果隨處理時間的延長而增強。CO2與大氣氮沉降主要是通過影響地上植被,凋落物質量,土壤理化性質等間接過程影響土壤線蟲。同時,不同的全球變化因子之間存在著復雜的交互作用,深入理解這些因子之間交互作用對線蟲群落的影響模式與機制對于探討未來氣候變化情景下生態(tài)統(tǒng)生物多樣性及養(yǎng)分循環(huán)過程具有重要的理論指導意義。
氣候變暖; 降水格局變化; 大氣CO2濃度升高; 氮沉降;線蟲群落
工業(yè)革命以來,伴隨著化石燃料的燃燒及土地利用方式的轉變,地球生態(tài)系統(tǒng)的物質循環(huán)也在不斷加速。以大氣二氧化碳濃度升高,氣候變暖,降水格局變化及大氣氮沉降為主要特征的全球變化正在對人們賴以生存的陸地生態(tài)系統(tǒng)產生重要而深遠的影響,如物種滅絕,多樣性喪失及由此引發(fā)的生態(tài)系統(tǒng)功能的改變[1-3]。
陸地生態(tài)系統(tǒng)由地上、地下兩部分組成,兩者相互依存,不可分割。一方面,地上植物通過凋落物及根際為地下生物提供碳源,另一方面,地下生物通過礦化作用將儲存于有機質中的養(yǎng)分釋放,用于植物生長。然而,由于研究方法等因素限制,過去對于全球變化對陸地生態(tài)系統(tǒng)影響的研究主要集中于地上部分,而對于地下生態(tài)系統(tǒng)研究相對較少[4-5]。土壤中含有植物根系、凋落物、微生物及土壤動物等眾多組分,其中土壤動物通過對凋落物進行破碎及取食微生物等方式影響土壤有機質的礦化過程[6-7]。對維持陸地生態(tài)系統(tǒng)的生物地球化學循環(huán)和生態(tài)系統(tǒng)功能至關重要。
線蟲是土壤動物的主要功能類群之一,分布廣泛,數(shù)量巨大,種類繁多[8-9],結構簡單,易于鑒定,處于食物網(wǎng)的多個營養(yǎng)級。同時,線蟲對環(huán)境變化十分敏感,是土壤營養(yǎng)元素循環(huán)過程的重要參與者與執(zhí)行者[10-11],其群落組成及結構的變化將對生態(tài)系統(tǒng)服務及功能產生重要影響,進而減緩或加劇氣候變化進程[12-14]。土壤線蟲群落動態(tài)主要受資源有效性及所處生境微環(huán)境變化的調控[15-16]。然而,不同全球變化驅動因子對土壤養(yǎng)分及環(huán)境影響的機制及幅度不同[17-19]。同時,線蟲的不同營養(yǎng)類群及種屬對氣候變化的敏感性也不盡相同[18,20-22](根據(jù)線蟲食物來源的不同,可分為食細菌性線蟲、食真菌線蟲、植物寄生線蟲、雜食性線蟲及捕食性線蟲)。線蟲群落動態(tài)調控因子的復雜性及其不同類群間的差異性導致目前對于土壤線蟲群落對不同氣候變化因子的響應模式與機制依然缺乏規(guī)律性認識。
本文通過歸納總結近年發(fā)表的土壤線蟲對氣候變化響應的研究結果,論述了土壤線蟲在群落水平、營養(yǎng)類群水平及種屬水平上對不同氣候變化驅動因子及其交互作用的響應。進一步綜合探討了這些響應模式在時間尺度及空間尺度上的差異,旨在加深全球變化對線蟲群落結構及功能影響的理解和認識,為未來全球變化情景下,土壤生物多樣性保護及土壤碳動態(tài)研究提供參考。
2011年,大氣中CO2濃度達到391 μL/L,比工業(yè)化前的1750年高了40%[1]。二氧化碳濃度升高可以通過改善地下資源有效性及微環(huán)境進而對土壤線蟲種群密度產生有利影響[23-29],例如,Yeates通過在一個放牧草地進行大氣CO2富集實驗(FACE),發(fā)現(xiàn)大氣CO2濃度增加能顯著提高表層土壤中線蟲數(shù)量[]30]。究其原因,一方面,CO2濃度升高可以促進植物的光合作用,提高植物凈初級生產力(NPP)并增加光合產物向地下的分配[31],促進細根生長,提高根際周轉速率并增加根際分泌[32-33]。這些可利用資源的增加將促進土壤微生物的生長與繁殖[34-35],并進一步通過上行效應影響土壤線蟲的種群密度[36]。另一方面, CO2濃度升高將降低植物氣孔導度,減少蒸騰作用,從而增加土壤濕度[37-39],對線蟲產生有利影響。
線蟲群落中,不同的營養(yǎng)類群對CO2濃度升高的響應不同。Eisenhauer在美國明尼蘇達Cedar Creek草地的研究發(fā)現(xiàn),13a的FACE實驗顯著增加了食真菌線蟲的數(shù)量,但降低了雜捕類線蟲的數(shù)量[40];而Hoeksema[27]及Neher[41]在森林FACE實驗中卻得出了完全相反的結論。土壤有機質含量的差異可能是造成線蟲群落結構在草地及森林生態(tài)系統(tǒng)中對二氧化碳濃度升高出現(xiàn)不一致響應的重要原因[35,42]。
另外,由于線蟲種類繁多,不同種屬線蟲在繁殖策略、生活史周期及體型大小方面存在諸多差異,傳統(tǒng)的按營養(yǎng)類群進行功能分類的方法往往會掩蓋線蟲個體生物學特征對環(huán)境變化的響應。Yeates對草地CO2富集實驗的研究發(fā)現(xiàn),CO2濃度升高顯著增加了Longidoruselongatus線蟲的種群密度[30],而Neher在北方森林的研究結果表明,在CO2升高處理下,Aphelenchoides線蟲種群密度明顯下降,而Filenchus線蟲種群密度明顯增加。線蟲種屬水平上對CO2濃度升高響應的差異將改變群落競爭關系,并引起線蟲群落結構的變化,進而影響其生態(tài)功能[18]。
土壤線蟲對CO2濃度升高的響應與生態(tài)系統(tǒng)類型無關,且CO2濃度升高的正效應隨處理時間的延長而減弱。Sonnemann[28]通過研究溫帶草原地下食物網(wǎng)對二氧化碳濃度升高的響應發(fā)現(xiàn),土壤線蟲種群密度在實驗處理第1年顯著增加,然而,實驗處理第3年時線蟲種群密度重新回歸到處理前水平。這一結果與Blankinship利用整合分析方法得出的結論相一致[43]。究其原因,一方面可能是由于長期[CO2]升高導致諸如氮元素更多流向植物體內和土壤有機質中,而通過凋落物分解返還到土壤中的氮素減少,以及固氮作用的下降[44]等,結果最終導致地下生態(tài)系統(tǒng)由最初的碳限制轉變?yōu)榈拗芠45],這種“漸進性氮限制”通過改變土壤微生物群落組成及結構進而影響土壤線蟲群落構成。另一方面,長期[CO2]升高還會導致土壤離子流失及土壤酸化[46]并進一步影響土壤線蟲的數(shù)量及取食活性[47]。
1880—2012 年全球平均溫度已升溫0.85℃。溫度是調節(jié)陸地生態(tài)系統(tǒng)生物地球化學過程的重要環(huán)境因子。碳循環(huán)的關鍵過程如植物光合作用、凋落物分解、土壤呼吸、微生物及土壤動物活性等都受環(huán)境溫度的調控[47-50],是線蟲群落結構變化的重要驅動因子[15,51]。
諸多研究發(fā)現(xiàn),溫度升高處理下,土壤線蟲的種群密度顯著降低而種群多樣性及勻均度顯著增加,Simmons 等[52]研究發(fā)現(xiàn),在南極州干谷,增溫通過直接或間接改變土壤微環(huán)境顯著降低了線蟲的種群密度。而Matute[47]對位于美國阿肯色州一處農場研究也發(fā)現(xiàn),土壤線蟲表現(xiàn)出明顯的畏熱性(thermophobic)。雖然有研究認為,增溫促進了植物特別是細根的生長,增加了異養(yǎng)呼吸的底物供應[53], 有利于線蟲種群密度的擴增,然而,另一方面,溫度升高可導致蒸騰作用增強,加重土壤水分流失[54-55]及熱應激[17,56],從而影響土壤線蟲群落。Dong對農田生態(tài)系統(tǒng)土壤線蟲對溫度升高響應的研究發(fā)現(xiàn),線蟲群落物種多樣性與溫度呈正相關關系[57], Bakonyi對半干旱草原的研究也得出了相似結論[15]。
土壤線蟲群落中不同營養(yǎng)類群及種屬對增溫的響應不盡相同。Ruess等[51]認為,食細菌類線蟲及食真菌類線蟲的種群密度與土壤溫度呈負相關而植食性線蟲的種群密度則不受溫度變化的影響。而Stevnbak[58]的研究結果表明,溫度升高1℃后,線蟲種群密度顯著下降,特別是植食性線蟲,降低幅度達50%,并且群落構成上以世代周期較長的種屬占優(yōu)勢。Bakonyi 及Papatheodorou等[15,21]發(fā)現(xiàn)在屬的水平上,小桿屬線蟲(Rhabditida)及滑刃屬線蟲(Tylenchida)對低溫敏感;麗突(Acrobeles)、擬麗突(Acrobeloides),繞線(plectus)屬線蟲與溫度呈正相關,而頭葉屬線蟲(Cephalobus)與溫度呈負相關。Bakonyi等[15]的研究結果則顯示出擬麗突屬線蟲(Acrobeloide)與溫度呈負相關。Anderson[59]發(fā)現(xiàn)擬麗突Acrobeloides具有很寬的生態(tài)幅(12—35℃),這似乎可以解釋以上實驗結果的差異。Sohlenius等[20]同樣也發(fā)現(xiàn)了不同屬線蟲對溫度變化的響應不同的現(xiàn)象,但他認為這一結論的前提是所有種屬共同出現(xiàn)。然而,由于復雜的種間關系的存在,人們無法判斷某一特定屬線蟲對溫度變化的響應,同時,也很難將溫度變化的直接影響與其間接影響區(qū)分開來。
土壤線蟲對氣溫升高的響應與當?shù)鼐唧w的氣候類型密切相關。Ruess通過極地土壤增溫實驗發(fā)現(xiàn),土壤線蟲與溫度之間存在顯著的正相關關系[51],而Simmons對南極州干谷的研究卻得出了相反的結論[52]。同時,一些對北方森林、農田及沙漠土壤的研究則顯示,增溫對土壤線蟲的群落組成及結構無顯著影響[60-61]。這些矛盾的結果說明,線蟲對增溫的響應受不同的生態(tài)系統(tǒng)類型及地區(qū)氣候條件的控制。Blankinship等[43]采用整合分析的方法對不同生態(tài)系統(tǒng)類型下土壤動物對氣溫升高響應研究發(fā)現(xiàn),土壤動物對增溫處理的響應與類群、體型及生態(tài)系統(tǒng)類型無關,主要受年均溫度與年均降水量的影響,在氣溫較低及降水較少區(qū)域,增溫顯著降低了土壤線蟲的數(shù)量,在年降水量超過626mm時,增溫對土壤動物的數(shù)量表現(xiàn)為正效應。同時,土壤動物對增溫的響應與增溫幅度無關,而與增溫的持續(xù)時間成負相關,其原因主要是由于增溫減少了土壤可利用水分含量,限制了土壤生物的生長和繁殖[62]。
工業(yè)革命以來,由于化石燃料的燃燒及土地利用方式的改變,大氣氮(N)沉降現(xiàn)象日趨嚴重,成為目前人類面臨的重要全球變化因子[63-64]。大氣氮沉降通過影響植物生長[42,65],改變種間競爭關系[66-67];影響土壤理化性質[68-69],減少根系分泌及抑制微生物胞外酶活性[70-71]等方式影響土壤線蟲的資源有效性及棲息地微環(huán)境。然而,目前只有少數(shù)通過氮素添加模擬大氣氮沉降的野外控制實驗用以研究大氣氮沉降對土壤線蟲群落組成及結構的影響[19,72-74]。而這些研究的結果還存在諸多不確定性。
大氣氮沉降對土壤線蟲群落表現(xiàn)出明顯的負效應,降低了種群密度及物種多樣性,使群落結構趨于簡單化。雖然Sjursen[75]等認為,低水平的氮素添加因減緩了生態(tài)系統(tǒng)的氮限制,促進了植物生長,增加了地下生物量,從而提高了土壤線蟲的種群密度。然而,諸多森林、草地、農田實驗研究中,氮素的添加顯著降低了線蟲的種群數(shù)量及物種多樣性[76]。Liang研究中國北方地區(qū)長期氮素添加對土壤線蟲的影響發(fā)現(xiàn),氮素添加顯著降低了線蟲種群密度及物種豐富度[77],Eisenhauer[40]在明尼蘇達州草原生態(tài)系統(tǒng)的研究也得到了相似的結論,究其原因,一方面,長期較高濃度的N 沉降能造成土壤酸化[14 ], 而pH 值是土壤線蟲分布的重要限制性因素, 大多數(shù)土壤線蟲適宜在微酸和中性條件下生活, 因而土壤pH值的變化將影響土壤線蟲的種群密度[78-79]。另一方面,氮添加導致土壤中銨鹽濃度增高,產生的銨毒性對線蟲種群特別是根食性線蟲具有較強的抑制作用。直接接觸這些銨毒性物質可以引起土壤線蟲機體衰弱, 成長速度減緩、繁殖能力減退,數(shù)量減少,甚至導致其死亡[19]。氮添加還可通過降低根際分泌,減少植物光合產物向地下的分配[74],改變植物群落構成進而間接影響土壤線蟲群落。土壤線蟲通過植物根系及凋落物獲得碳源[80-81],因此,植物物種構成及多樣性的改變將導致其碳輸入數(shù)量及質量的變化,并間接影響土壤線蟲的群落結構和功能[82]。
不同線蟲營養(yǎng)類群及種屬對氮素添加的響應方向與程度不盡相同。Sun[83]對森林生態(tài)系統(tǒng)研究發(fā)現(xiàn),氮素添加顯著降低了群落中食真菌性線蟲、根食性線蟲及雜食-捕食類線蟲的種群密度。這種變化主要是由于氮添加對土壤真菌的抑制作用導致了食真菌性線蟲種群密度的降低。雜-捕類線蟲多為r策略線蟲,更易受氮添加引起的環(huán)境攪動影響[19,84]。Gruber[85]及 Papanikolaou[86]等研究表明,根食性線蟲,特別是Geocenamusarcticus屬線蟲及食真菌線蟲豐度與土壤中銨態(tài)氮及硝態(tài)濃度呈顯著負相關,表明了施氮對土壤線蟲的直接影響。
氮素添加的效應與生態(tài)系統(tǒng)類型無關。Sun[83]對森林生態(tài)系統(tǒng)研究發(fā)現(xiàn),土壤線蟲群落對氮素添加的響應模式受降水的影響。氮循環(huán)的諸多過程如凋落物分解,有機氮礦化及有效氮淋溶等都與降水條件密切相關[87],另外Liang[77]研究發(fā)現(xiàn),線蟲群落對氮素添加的響應隨處理持續(xù)時間的不同而不同,表現(xiàn)為處理初期,根食性線蟲種群密度顯著降低,而隨著處理時間的延長,其種群密度逐漸恢復。因此,在研究氮素添加對土壤線蟲生態(tài)效應時應充分考慮不同地區(qū)的降水格局及實驗處理持續(xù)時間的影響。
據(jù)聯(lián)合國政府間氣候變化專門委員會第一工作組第五次評估報告(IPCC 2013)預測,到21世紀末,高緯度地區(qū)和熱帶太平洋區(qū)域的年降水量將會增加;許多中緯度的潮濕地區(qū),平均降水也將增加。但在中緯度干燥地區(qū)、副熱帶的干燥地區(qū)平均降水將減少。在全球持續(xù)變暖的趨勢下,到21世紀末,中緯度大部分陸地區(qū)域與熱帶區(qū)域的濕區(qū),極端降水事件將很可能更劇烈并更頻繁[1]。線蟲生活在土壤孔隙水中,降水格局的變化將對土壤線蟲產生重要影響。
大多數(shù)實驗研究表明,在一定濕度范圍內,土壤線蟲種群密度與土壤濕度呈顯著的正相關關系。Ruan對中國北方半干旱草原土壤線蟲研究發(fā)現(xiàn),增加降水顯著增了線蟲的種群密度[88]。Landesman對美國新澤西州森林土壤線蟲的研究也得出了相似的結論[87]。水分對土壤線蟲種群密度的正效應一方面是增加降水有利于線蟲的攝食、運動、生長及繁殖[55]。另一方面,降水的增加促進植物生長,增加植物凈初級生長力[89],促進氮礦化,提高土壤有效氮含量[90],增加微生物量進而提高土壤線蟲的種群密度。
不同營養(yǎng)類群及種屬線蟲對增加降水及干旱的響應不同。濕潤環(huán)境利于食細菌性線蟲的生長繁殖而干燥環(huán)境更利于食真菌線蟲種群擴增。Ruan對內蒙草原的研究發(fā)現(xiàn),增加降水處理,增加了植食性線蟲數(shù)量而降低了細菌性及雜捕類線蟲的數(shù)量[88]。Landesman的研究發(fā)現(xiàn),所有營養(yǎng)類群線蟲均對干旱敏感,食細菌性線種表現(xiàn)最為明顯,特別是plectidae的數(shù)量在干旱處理下顯著降低,然而,對于同樣屬于食細菌性線蟲的Cephalobidae和qudsianematidae則對干旱處理無響應[87]。Sohlenius[91]通過實驗室培養(yǎng)實驗發(fā)現(xiàn)擬麗突線蟲Acrobeloides與水分呈正相關,滑刃屬線蟲Tylenchida與水分呈負相關。他認為這是由于兩種線蟲間的競爭關系導致的。然而,由于這兩種線蟲的食性不同,因此這種差異也可能是由于資源有效性所導致的。Bakonyi[15]認為麗突(Acrobeles)與擬麗突(Acrobeloides)屬線蟲種群密度與水分條件無關,而Griffiths等發(fā)現(xiàn)擬麗突屬線蟲(Acrobeloides)更適合于干燥環(huán)境。另一項田間實驗與證明了繞線屬線蟲(Plectus)在干燥環(huán)境中密度增加[92]。植食性線蟲中不同種屬對土壤水分條件變化的響應也不盡相同[15,93-96],Griffin研究發(fā)現(xiàn)矮化屬線蟲(Tylenchorhynchusacutoides)及劍屬線蟲(Xiphinemaamericanum)對濕度變化比短針屬線蟲(Pratylenchusneglectus)更敏感。對于雜捕類線蟲,Porazinska等通過農田灌溉實驗發(fā)現(xiàn)除孔咽屬線蟲(Aporcelaimellus)和真矛屬線蟲(Eudorylaimus)與灌溉呈正相關外,其它種屬線蟲的種群密度不受土壤水分條件的影響[97]。線蟲種屬水平上對降水格局變化的響應不同導致其群落組成及結構的變化, 并影響其生態(tài)功能。
森林生態(tài)系統(tǒng)土壤線蟲更易受降水格局變化影響,增加降水的正效應隨處理時間的延長而增強,土壤線蟲群落對干旱的響應強于增加降水的響應。Eisenhauer 對美國明尼蘇達州草原土壤研究發(fā)現(xiàn),線蟲群落對夏季干旱無響應。Landesman[82]等在森林生態(tài)系統(tǒng)得出的結論與這一結果相反。由于土壤生物對環(huán)境具有一定的適應能力,因此,相對于干旱,碳源是土壤線蟲更重要的限制因子。在美國新澤西州森林進行的為期1a的降水控制實驗結果表明,干旱對線蟲群落的影響強于增加降水[98],這可能是與干旱對凋落物層及礦質土層影響程度不同有關[99],另外,水分不足情況下,由于植被與土壤動物之間對于水分的競爭能力亦不相同[100],因此導致了土壤線蟲對干旱的響應強于增加降水。
根據(jù)不同全球變化驅動因子對線蟲群落影響機制與模式繪制模式圖如下。
圖1 土壤線蟲對不同氣候變化驅動因子(二氧化碳濃度升高;氣候變暖;大氣氮沉降;降水格局變化)的響應Fig.1 The responses of soil nematode to global change (elevated CO2; warming; nitrogen deposition; changing precipitation)虛線表示長期效應; “↑”表示增高,“↓”表示降低
全球變化是以大氣CO2濃度上升,氣候變暖,大氣氮沉降及降水格局變化為主要特征的多個驅動因子共同作用的結果,各個驅動因子之間存在復雜的交互作用。如氣候變暖,可通過改變土壤呼吸速率及大氣環(huán)流而影響大氣CO2濃度及降水格局,并進一步影響植物群落及土壤微環(huán)境,并從資源與環(huán)境兩方面影響土壤線蟲群落。因此,前期的單因子控制實驗結果無法準確模擬未來氣候變化情境下土壤線蟲群落的真實響應[101-102],近年來,關于不同全球變化因子間的交互作用對地下生態(tài)系統(tǒng)結構與功能影響的野外控制實驗陸續(xù)開展[88,103-104],Kardol[105]發(fā)現(xiàn)自然CO2濃度下增溫和干旱表現(xiàn)出對線蟲群落的負效應,而在增高CO2的處理中,增溫及干旱對線蟲群落無影響。Chung[106]認為土壤動物群落的組成及結構受植物多樣性、CO2濃度及氮素水平的共同影響;Hoeksema[27]及Li[107] 的實驗結果表明,土壤線蟲的種群密度及多樣性受CO2和氮素添加間交互作用的影響。Fu2功能團線蟲對CO2及氮肥的交互作用響應最顯著[108]??傊?,各種全球變化因子通過復雜的交互作用共同調節(jié)地上植物群落及土壤微環(huán)境,進而改變土壤線蟲食物資源有效性及生境穩(wěn)定性,觸發(fā)養(yǎng)分介導的“上行效應”及種間關系介導的“下行效應”,共同改變土壤線蟲群落的組成及結構。作為地下食物網(wǎng)的重要組分,線蟲群落的變化將引起整個地下食物網(wǎng)結構與功能的變化,進而改變土壤養(yǎng)分循環(huán)過程,對陸地生態(tài)系統(tǒng)結構與功能造成廣泛而深遠的影響[109]。
土壤線蟲是地下食物網(wǎng)的重要組成部分,在維持生態(tài)系統(tǒng)生物多樣性及營養(yǎng)元素循環(huán)過程中發(fā)揮重要作用,是研究未來氣候變化情景下地下生態(tài)系統(tǒng)結構、功能變化的重要指示性生物。然而,目前,在研究線蟲群落組成及結構對全球變化響應方面還存在諸多不足,主要表現(xiàn)在:
(1)對于線蟲的生態(tài)學功能認識不足。以往研究,特別是在傳統(tǒng)農牧業(yè)管理措施中,線蟲往往被作為害蟲加以防控,直到近年來,線蟲在土壤質量評估、生境穩(wěn)定性檢測,環(huán)境污染、人為及自然干擾強度及物質循環(huán)等過程中的作用才逐漸引起人們的重視。
(2)研究方法落后,研究尺度較窄。目前對土壤線蟲的研究主要沿習傳統(tǒng)的形態(tài)學鑒定方法,這一方法雖然具有簡便、準確等優(yōu)點,但鑒定速度較慢,不適用于大尺度、大樣本量研究。同時,形態(tài)學鑒定只能反映線蟲群落的組成及結構變化,無法反應不同營養(yǎng)級間的物質及能量流通情況。分子生物學及同位素示蹤技術可有效彌補形態(tài)學鑒定方法的不足,在未來,現(xiàn)代生物學技術與傳統(tǒng)方法相結合成為必然的趨勢。
(3)關于土壤線蟲在全球變化領域中的作用研究有待細化。目前,在全球變化研究領域,土壤線蟲的作用越來越受到生態(tài)學家的重視,然而,其研究內容往往主要集中于土壤線蟲種群密度、營養(yǎng)類群組成的變化等方面。土壤線蟲類群極其豐富,簡單地按食性進行功能群劃分往往會掩蓋不同屬線蟲的個體生物學差異,因此,有必要對不同屬線蟲的繁殖策略,生境選擇,對干擾的抵抗力與恢復力,種間競爭關系等問題進行深入細致的研究。
(4)全球變化是由諸多驅動因子共同作用的結果,各個驅動因子之間存在復雜的交互作用。因此,前期的單因子控制實驗結果無法準確模擬未來氣候變化情景下地下食物網(wǎng)的真實響應,然而,受經費及人力等因素制約,目前包括以上四種變化因子的大型、長期野外控制實驗平臺還十分有限。
(5)目前關于全球變化對土壤線蟲群落影響的研究多限于2—3a的短期實驗,而氣候變化所導致的如植被構成、土壤理化性質的變化是一個長期的漸變過程,因此迫切需要建立長期野外控制實驗以揭示土壤線蟲對氣候變化的真實響應。
[1] Intergovernmental Panel on Climate Change (IPCC). 2013. Working groupⅠcontribution to the IPCC fifth assessment report, climate change 2013:the physical science basis.
[2] Cox P M, Betts R A, Jones C D, Spall S A, Totterdell L J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408(6809):184-187.
[3] Frank D C, Esper J, Raible C C, Büntgen U, Trouet V, Stocker B, Joos F. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 2010, 463(7280):527-530.
[4] Xia J Y, Wan S Q. Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 2013, 111(6):1207-1217.
[5] Liang J Y, Xia J Y, Liu L L, Wan S Q. Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 2013, 6(6):437-447.
[6] Wardle D A, Bardgett RD, Klironomos J N, Set?l? H, van der Putten W H, Wall D H. Ecological linkages between aboveground and belowground biota. Science, 2004, 304(5677):1629-1633.
[7] Kostenko O, van de Voorde T F J, Mulder P P J, van der Putten W H, Martijn Bezemer T. Legacy effects of aboveground-belowground interactions. Ecology Letters, 2012, 15(8):813-821.
[8] Wu T H, Ayres E, Bardgett R D, Wall D H, Garey J R. Molecular study of worldwide distribution and diversity of soil animals. The Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(43):17720-17725.
[9] Yeates G W. Nematodes as soil indicators:functional and biodiversity aspects. Biology and Fertility of Soils, 2003, 37(4):199-210.
[10] Freckman D W, Caswell E P. The ecology of nematodes in agroecosystems. Annual Review of Phytopathology, 1985, 23:275-296.
[11] Bardgett R. The Biology of Soil:A Community and Ecosystem Approach. Oxford:Oxford University Press, 2005.
[12] Bushby H V A,Marshall K C. Some factors affecting the survival of root-nodule bacteria on desiccation. Soil Biology and Biochemistry, 1997, 9(3):143-147.
[13] Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal O W, Dhillion S. Soil function in a changing world:the role of invertebrate ecosystem engineers. European Journal of Soil Biology, 1997, 33(4):159-193.
[14] Bradford M A, Tordoff G M, Eggers T, Jones T H, Newington J E.Microbiota, fauna, and mesh size interactions in litter decomposition. Oikos, 2002, 99(2):317-323.
[15] Bakonyi G, Nagy P. Temperature-and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland-patterns and mechanisms. Global Change Biology, 2000, 6(6):697-707.
[16] Keith A M, Brooker R W, Osler G H R, Chapman S J, Burslem D F R P, van der Wal R. Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biology and Biochemistry, 2009, 41(6):1060-1065.
[17] Briones M J I, Ostle N J, Mcnamara N P, Poskitt J. Functional shifts of grassland soil communities in response to soil warming. Soil Biology and Biochemistry, 2009, 41(2):315-322.
[18] Neher D A, Weicht T R. Nematode genera in forest soil respond differentially to elevated CO2. Journal of Nematology, 2013, 45(3):214-222.
[19] Wei C Z, Zheng H F, LI Q, Lü X T, Yu Q, Zhang H Y, Chen Q S, He N P, Kardol P, Liang W J, Han X G. Nitrogen addition regulates soil nematode community composition through ammonium suppression. PloS ONE, 2012, 7(8):e43384.
[20] Sohlenius B, Bostr?m S. Effects of climate change on soil factors and metazoan microfauna (nematodes, tardigrades and rotifers) in a Swedish tundra soil-a soil transplantation experiment. Applied Soil Ecology, 1999, 12(2):113-128.
[21] Papatheodorou E M, Argyropoulou M D, Stamou G P. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. Applied Soil Ecology, 2004, 25(1):37-49.
[22] Bakonyi G, Nagy P, Edit K L, Kovács E, Barabás S, Répási V, Seres A. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland. Applied Soil Ecology, 2007, 37(1):31-40.
[23] Newton P C D, Clark H, Bell C C, Glasgow E M, Tate K R, Ross D J, Yeates G W, Saggar S. Plant growth and soil processes in temperate grassland communities at elevated CO2. Journal of Biogeography, 1995, 22(2/3):235-240.
[24] Klironomos J N, Rillig M C, Allen M F. Below-ground microbial and microfaunal responses to Artemisia tridentate grown under elevated atmospheric CO2. Functional Ecology, 1996, 10(4):527-534.
[25] Yeates G W, Tate K R, Newton P C D. Response of the fauna of a grassland soil to doubling of atmospheric carbon dioxide concentration. Biology and Fertility of Soils, 1997, 25(3):307-315.
[26] Jones T H, Thompson L J, Lawton J H, Bezemer T M, Bardgett R D, Blackburn T M, Bruce K D, Cannon P F, Hall G S, Hartley S E, Howson G, Jones C G, Kampichler C, Kandeler E, Ritchie D A. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science, 1998, 280(5362):441-443.
[27] Hoeksema J D, Lussenhop J, Teeri J A. Soil nematodes indicate food web responses to elevated atmospheric CO2. Pedobiologia, 2000, 44(6):725-735.
[28] Sonnemann I, Wolters V. The microfood web of grassland soils responds to a moderate increase in atmospheric CO2. Global Change Biology, 2005, 11(7):1148-1155.
[29] Eisenhauer N, Cesarz S, Koller R, Worm K, Rich P B. Global change belowground:impacts of elevated CO2, nitrogen, and summer drought on soil food webs and biodiversity. Global Change Biology, 2011, 18(2):435-447.
[30] Yeates G W, Newton P C D. Long-term changes in topsoil nematode populations in grazed pasture under elevated atmospheric carbon dioxide. Biology and Fertility of Soils, 2009, 45(8):799-808.
[31] Norby R J, Luo Y Q. Evaluating ecosystem responses to rising atmospheric CO2and global warming in a multi-factor world. New Phytologist, 2004, 162(2):281-293.
[32] Rogers H H, Runion G B, Krupa S V. Plant response to atmospheric CO2with emphasis on roots and the rhizosphere. Environmental Pollution, 1994, 83(1/2):155-189.
[33] K?rner C. Biosphere responses to CO2enrichment. Ecological Applications, 2000, 10(6):1590-1619.
[34] Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y. Elevated atmospheric CO2increases microbial growth rates in soil:results of three CO2enrichment experiments. Global Change Biology, 2010, 16(2):836-848.
[35] Drigo B, Pijl A S, Duyts H, Kielaka A M, Gampera H A, Houtekamerd M J, Boschkerd H T S, Bodeliere P L E, Whiteleyf A S, van Veena J A, Kowalchuka G A. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. The Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(24):10938-10942.
[36] Gregor W, Yeates, Paul C D. Newton Long-term changes in topsoil nematode populations in grazed pasture under elevated atmospheric carbon dioxide. Biology and Fertility of Soils, 2009, 45(8):799-808.
[37] Lee T D, Barrott S H, Reich P B. Photosynthetic responses of 13 grassland species across 11 years of free-air CO2enrichment is modest, consistent and independent of N supply. Global Change Biology, 2011, 17(9):2893-2904.
[38] Reich P B. Elevated CO2reduces losses of plant diversity caused by nitrogen deposition. Science, 2009, 326(5958):1399-1402.
[39] Adair E C, Reich P B, Hobbie S E, Knops J M H. Interactive effects of time, CO2, N and diversity on total belowground carbon allocation and ecosystem carbon storage in a grassland community. Ecosystems, 2009, 12(6):1037-1052.
[40] Eisenhauer N, DobiesT, Cesarz S. Plant diversity effects on soil food webs are stronger than those of elevated CO2and N deposition in a long-term grassland experiment. The Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17):6889-6894.
[41] Neher D A, Weicht T R, Moorhead D L, Sinsabaugh R L. Elevated CO2alters functional attributes of nematode communities in forest soils. Functional Ecology, 2004, 18(4):584-591.
[42] Reich P B, Knops J, Tilman D, Craine J, Ellsworth D, Tjoelker M, Lee T, Wedin D, Naeem S, Bahauddin D, Hendrey G, Jose S, Wrage K, Goth J, Bengston W. Plant diversity enhances ecosystem responses to elevated CO2and nitrogen deposition. Nature, 2001, 410(6830):809-812.
[43] Blankinship J C, Niklaus P A, Hungate B A. A meta-analysis of responses of soil biota to global change. Oecologia, 2011, 165(3):553-565.
[44] Hungate B A, Stiling P D, Dijkstra P, Johnson D W, Ketterer M E, Hymus G J, Hinkle C R, Drake B G. CO2elicits long-term decline in nitrogen fixation. Science, 2004, 304:1291-1291.
[45] Luo Y Q. Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. BioScience, 2004, 54(8):731-739.
[46] Cheng L, Zhu L, Chen G, Zheng X, Oh N H, Rufty T W, Richter D de B, Hu S. Atmospheric CO2enrichment facilitates cation release from soil. Ecology Letters, 2010, 13(3):284-291.
[47] Matute M M. Soil nematodes of Brassica rapa:influence of temperature and pH. Advances in Natural Science, 2013, 6(4):20-26.
[48] Weltzin J F, Bridgham S D, Pastor J, Chen J Q, Harth C. Potential effects of warming and drying on peatland plant community composition. Global Change Biology, 2003, 9(2):141-151.
[49] Schuur E A G, Crummer K G, Vogel J G, Mack M C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems, 2007, 10(2):280-292.
[50] Bai W M, Wan S Q, Niu S L, Liu W X, Chen Q S, Wang Q B, Zhang W H, Han X G, Li L H. Increased temperature and precipitation interact to affect root production, mortality and turnover in a temperate steppe:implications for ecosystem C cycling. Global Change Biology, 2009, 16(4):1306-1316.
[51] Ruess L, Michelsen A, Schmidt I K, Jonasson S. Simulated climate change affecting microorganisms, nematode density and biodiversity in subarctic soils. Plant and Soil, 1999, 212(1):63-73.
[52] Simmons B L, Wall D H, Adams B J, Ayres E, Barrett J E, Virginia R A. Long-term experimental warming reduces soil nematode populations in the McMurdo Dry Valleys, Antarctica. Soil Biology and Biochemistry, 2009, 41(10):2052-2060.
[53] Briones M J I, Ineson P, Sleep D. Use of13C to determine food selection in collembolan species. Soil Biology and Biochemistry, 1999, 31(6):937-940.
[54] Hodkinson I D, Healey V, Coulson S. Moisture relationships of the high arctic collembolan Onychiurus arcticus. Physiological Entomology, 1994, 19(2):109-114.
[55] Kardol P, Nicholas Reynolds W, Norby R J, Classen A T. Climate change effects on soil microarthropod abundance and community structure. Applied Soil Ecology, 2011, 47(1):37-44.
[56] Bokhorst S, Huikes A, Convey P, van Bodegom P M, Aerts R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biology & Biochemistry, 2008, 40(7):1547-1556.
[57] Dong Z K, Hou R X, Chen Q Y, Ouyang Z, Ge F. Response of soil nematodes to elevated temperature in conventional and no-tillage cropland systems. Plant and Soil, 2013, 373(1/2):907-918.
[58] Stevnbak K S, Maraldo K, Georgieva S, Strandmark L B, Beier C, Schmidt I K, Christensen S. Suppression of soil decomposers and promotion of long-lived, root herbivorous nematodes by climate change. European Journal of Soil Biology, 2012, 52:1-7.
[59] Anderson R V, Coleman D C. Nematode temperature responses:a niche dimension in population of bacterial-feeding nematodes. Journal of Nematology, 1982, 14(1):69-76.
[60] Haimi J, Laamanen J, Penttinen R, Mika R, Seppo K, Seppo K. Impacts of elevated CO2and temperature on the soil fauna in boreal forests. Applied Soil Ecology, 2005, 30(2) 104-112.
[61] Darby B J, Neher D A, Housman D C, Belnap J. Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro-and meso-fauna. Soil Biology and Biochemistry, 2011, 43(7):1474-1481.
[62] Aerts R. The freezer defrosting:global warming and litter decomposition rates in cold biomes. Journal of Ecology, 2006, 94(4):713-724.
[63] Reay D S, Dentener F, Smith P, Grace1 J, Feely R A. Global nitrogen deposition and carbon sinks. Nature Geoscience, 2008, 1(7):430-437.
[64] Vitousek P M, Aber J D, Howarth RW, Likens G E, Matson P A, Schindler D W, Schlesinger W G, Tilman D G. Human alteration of the global nitrogen cycle:Sources and consequences. Ecological Applications, 1997, 7(3):737-750
[65] Reich P B, Hobbie S E, Lee T, Ellsworth D S, West J B, Tilman D, Knops J M H, Naeem S, Trost J. Nitrogen limitation constrains sustainability of ecosystem response to CO2. Nature, 2006. 440:922-925.
[66] Yang H, Jiang L, Li L, Li A, Wu M, Wan S. Diversity-dependent stability under mowing and nutrient addition:evidence from a 7-year grassland experiment. Ecology Letters, 2012, 15(6):619-626.
[67] Yang H J, Li Y, Wu M Y, Zhang Z, Li L H, Wan S Q. Plant community responses to nitrogen addition and increased precipitation:the importance of water availability and species′ traits. Global Change Biology, 2011, 17(9):2936-2944.
[68] Niu S L, Wu M Y, Han Y, Xia J Y, Zhang Z, Yang H J, Wan S Q. Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Global Change Biology, 2010, 16(1):144-155.
[69] Contosta A R, Frey S D, Cooper A B. Seasonal dynamics of soil respiration and N mineralization in chronically warmed and fertilized soils. Ecosphere, 2011, 2(3):1-21.
[70] Dijkstra F A, Hobbie S E, Reich P B, Knops J M H. Divergent effects of elevated CO2, N fertilization, and plant diversity on soil C and N dynamics in a grassland field experiment. Plant and Soil, 2005, 272(1/2):41-52.
[71] DeForest J L, Zak D R, Pregitzer K S, Burton A J. Atmospheric nitrate deposition, microbial community composition, and enzyme activity in northern hardwood forests. Soil Science Society of America Journal, 2004, 68(1):132-138.
[72] Sarathchandra S U, Ghani A, Yeates G W, Burch G, Cox N R. Effect of nitrogen and phosphate fertilisers on microbial and nematode diversity in pasture soils. Soil Biology and Biochemistry, 2001, 33(7):953-964.
[73] Qi L, Yong J, Wen J L, Yi L L, Zhang E P, Liang C H. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology, 2010, 46(1):111-118.
[74] Hogberg M N, Maria J, Briones I, Keel S G, Metcalfe D B. Quantification of effects of season and nitrogen supply on tree below-ground carbon transfer to ectomycorrhizal fungi and other soil organisms in a boreal pine forest. New Phytologist, 2010, 187(2):485-493.
[75] Sjursen H, Michelsen A, Jonasson S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Applied Soil Ecology, 2005, 30(3):148-161.
[76] Berg M P, Verhoef H A. Ecological characteristics of a nitrogen saturated coniferous forest in The Netherlands. Biology and Fertility of Soils, 1998, 26(4):258-267.
[77] Liang W J, LouY L, Li Q, Zhong S, Zhang X K, Wang J K. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in northeast China. Soil Biology and Biochemistry, 2009, 41(5):883-890.
[78] 錢復生, 王宗英. 水東棗園土壤動物與土壤環(huán)境的關系. 應用生態(tài)學報, 1995, 6(1):44-50.
[79] 殷秀琴, 李健東. 羊草草原土壤動物群落多樣性的研究. 應用生態(tài)學報, 1998, 9(2):186-188.
[80] Eissfeller V, Beyer F, Valtanen K, Hertel D, Maraun M, Polle A, Scheu S. Incorporation of plant carbon and microbial nitrogen into the rhizosphere food web of beech and ash. Soil Biology and Biochemistry, 2013, 62:76-81.
[81] Elfstrand S, Lagerlo J, Hedlund K, M?rtensson A. Carbon routes from decomposing plant residues and living roots into soil food webs assessed with13C labeling. Soil Biology and Biochemistry, 2008, 40(10):2530-2539.
[82] Eisenhauer N, Migunova V D, Ackermann M, Ruess L, Scheu S. Changes in plant species richness induce functional shifts in soil nematode communities in experimental grassland. PLoS ONE, 2011, 6(9):e24087..
[83] Sun X, Zhang X K, Zhang S X, Dai G H, Han S J, Liang W J. Soil nematode responses to increases in nitrogen deposition and precipitation in a Temperate Forest. PLoS ONE, 2013, 8(12):e82468.
[84] Hu C H, Zheng L Z. The effect of acid deposition on soil fauna. Hubei Forest Technology, 1999, 2:41.
[85] Gruber N, Galloway J N. An earth-system perspective of the global nitrogen cycle. Nature, 2008, 451(7176):293-296.
[86] Papanikolaou N, Britton A J, Helliwell R C, Johnson D. Nitrogen deposition, vegetation burning and climate warming act independently on microbial community structure and enzyme activity associated with decomposing litter in low-alpine heath. Global Change Biology, 2010, 16(11):3120-3132.
[87] Landesman W J, Treonis A M, Dighton J. Effects of a one-year rainfall manipulation on soil nematode abundances and community composition. Pedobiologia, 2011, 54(2):87-91.
[88] Ruan W B, Yuan S, Chen Q. The response of soil nematode community to nitrogen, water, and grazing history in the Inner Mongolian Steppe, China. Ecosystems, 2012, 15(7):1121-1133.
[89] Bai Y F, Wu J G, Xing Q, Pan Q M, Huang J H, Yang D L, Han X G. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology, 2008, 89(8):2140-2153.
[90] Wang C H, Wan S Q, Xing X R, Zhang L, Han X G. Temperature and soil moisture interactively affected soil net N mineralization in temperate grassland in Northern China. Soil Biology and Biochemistry, 2006, 38(5):1101-1110.
[91] Sohlenius B. Influence of climatic conditions on nematode coexistence:a laboratory experiment with a coniferous forest soil. Oikos, 1985, 44(3):430-438.
[92] Griffiths B S, Neilson R, Bengough A G. Soil factors determined nematode community composition in a 2 year pot experiment. Nematology, 2003, 5(6):889-897.
[93] Horton W H. Factors affecting population trends of plant-parasitic nematodes on rangeland grasses. Nematology, 1996, 28(1):107-114.
[94] Verschoor B C, de Goede R G M, de Vries F W, Brussaard L. Changes in the composition of the plant-feeding nematode community in grasslands after cessation of fertiliser application. Appl. Applied Soil Ecology, 2001, 17(1):1-17.
[95] Todd T C, Blair J M, Milliken G A. Effects of altered soil-water availability on a tallgrass prairie nematode community. Applied Soil Ecology, 1999, 13(1):45-55.
[96] Smolik J D, Dodd J L. Effect of water and nitrogen, and grazing on nematodes in a shortgrass prairie. Journal of Range Management, 1983, 36(6):744-748.
[97] Porazinska D L, McSorley R, Duncan L W, Graham J H, Wheaton T A, Parsons L R. Nematode community composition under various irrigation schemes in a citrus soil ecosystem. Nematology, 1998, 30(2):170-178.
[98] Landesman W J, Dighton J. Response of soil microbial communities and the production of plant-available nitrogen to a two-year rainfall manipulation in the New Jersey Pinelands. Soil Biology and Biochemistry, 2010, 42(10):1751-1758.
[99] Keith D M, Johnson E A, Valeo C. Moisture cycles of the forest floor organic layer (F and H layers) during drying. Water Resources Research, 2010, 46(7):W07529, doi:10.1029/2009WR007984.
[100] Odhiambo H O, Ong C K, Deans J D, Wilson J, Khan A A H, Sprent J I. Roots, soil water and crop yield:tree crop interactions in a semi-arid agroforestry system in Kenya. Plant and Soil, 2001, 235(2):221-233.
[101] Luo Y Q, Gerten D, le Maire G, Parton W J, Weng E S, Zhou Z H, Keough C, Beier C, Ciais P, Cramer W, Dukes J S, Emmett B, Hanson P J, Knapp A, Linder S, Nepstad D, Rustad L. Modeled interactive effects of precipitation, temperature, and CO2on ecosystem carbon and water dynamics in different climatic zones. Global Change Biology, 2008, 14(9):1986-1999.
[102] Butenschoen O, Scheu S, Eisenhauer N. Interactive effects of warming, soil humidity and plant diversity on litter decomposition and microbial activity. Soil Biology and Biochemistry, 2011, 43(9):1902-1907.
[103] Emmerson M, Bezemer M, Hunter M D, Jones T H. Global change alters the stability of food webs. Global Change Biology, 2005, 11(3):490-501.
[104] Nielsen, Wall U N, Diana H. The future of soil invertebrate communities in polar regions:different climate change responses in the Arctic and Antarctic? Ecology Letters, 2013, 16(3):409-413.
[105] Kardol P, Cregger M A, Campany C E, Classen A T. Soil ecosystem functioning under climate change:plant species and community effects. Ecology, 2010, 91(3):767-781.
[106] Chung H, Zak D, Reich P B, Ellsworth D S. Plant species richness, elevated CO2, and atmospheric N deposition alter soil microbial community composition and function. Global Change Biology, 2007, 13(5):980-989.
[107] Li Q, Liang W J, Jiang Y, Neher D A. Effects of elevated CO2and N fertilization on soil nematode abundance and diversity in a wheat field. Applied Soil Ecology, 2007, 36(1):63-69.
[108] 鮑雪蓮, 李琪, 梁文舉, 朱建國. 大氣CO2濃度升高和氮肥管理對稻麥輪作系統(tǒng)土壤線蟲群落組成的影響. 中國農業(yè)科學, 2011, 44(22):4627-4635.
[109] Bardgett R D, Wardle D A. Aboveground-Belowground Linkages:Biotic Interactions, Ecosystem Processes, and Global Change. Oxford Series in Ecology and Evolution). New York:Oxford University Press, 2010.
Response of soil nematodes to climate change:a review
SONG Min*, LIU Yinzhan, JING Shuishui
CollegeofLifeSciences,HenanUniversity,Kaifeng475004,China
Global climate change constitutes an important influence on terrestrial ecosystem functions. Soil nematodes exist widely in diverse ecological systems. As an important component of the soil food web, the soil nematode is crucial in maintaining biodiversity and regulating soil nutrient cycling. The various factors driving global change affect the soil nematode community via diverse mechanisms. Changes in temperature and precipitation directly affect soil nematode populations by changing the habitat. In addition, the positive effects would increase with time. CO2enrichment and atmospheric nitrogen deposition can indirectly affect soil nematode communities via changes in vegetation, litter quality, and soil physiochemical properties (e.g. soil moisture, pH, ammonium concentration). At the same time, a better understanding of the complex interactions among the drivers of global change, and of how these interactions influence soil nematode communities, is required to predict how terrestrial ecosystems will respond to future climate changes.
warming; changing precipitation regime; elevated CO2concentration; nitrogen deposition; soil nematode community
博士后基金資助項目(2012M520066, 2013T 60699)
2014-04-22; < class="emphasis_bold">網(wǎng)絡出版日期:
日期:2014-12-18
10.5846/stxb201404220796
*通訊作者Corresponding author.E-mail: smsm2000@163.com
宋敏, 劉銀占, 井水水.土壤線蟲對氣候變化的響應研究進展.生態(tài)學報,2015,35(20):6857-6867.
Song M, Liu Y Z, Jing S S.Response of soil nematodes to climate change:a review.Acta Ecologica Sinica,2015,35(20):6857-6867.