• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    可攔截機(jī)動(dòng)目標(biāo)的終端角度約束制導(dǎo)律

    2015-01-16 01:49:12李憲強(qiáng)
    固體火箭技術(shù) 2015年5期
    關(guān)鍵詞:西北工業(yè)大學(xué)制導(dǎo)機(jī)動(dòng)

    李憲強(qiáng),周 軍

    (西北工業(yè)大學(xué)精確制導(dǎo)與控制研究所,西安 710072)

    0 Introduction

    In modern warfare,not only a small miss distance is required for the missiles,and in order to enhance the attacking effectiveness,but also certain impact angle constraints are also needed to be met[1].Such as inverse trajectory interception is always employed to enhance the matching efficiency of fuse and warhead.And the desired direction of the velocity vector of the missile should be opposite to that of the target.In order to enhance the penetration effect when attacked fortification,the missile needs to attack the target in vertically direction.

    The sliding mode control possesses the advantages of strong robustness and easy to implement,so it is widely used in the design of the guidance law with impact angle constraint.But for the guidance law with angle constraint designed based on the conventional sliding mode control,only asymptotical stability can be maintained.While the demand of the guidance law with finite-time stability is growing in modern warfare.For example,in the air-combat,the guidance laws with impact angle constraint with finite-time convergence is especially important[4-5].In this regard,some scholars developed lots of corresponding finite-time guidance law based on the terminal sliding mode control theory.For instance,in References[6-7]the conventional terminal sliding mode control theory is used in the development of the finite-time guidance law,while there are singularities in the guidance laws developed in References[6-7],and the guidance command may be saturated in the application.To tackle the singularity issue,the non-singular terminal sliding mode control theory is employed in the development of the finite-time guidance law with impact angle constraint in the References[4-8].However,the finite-time guidance laws,which are developed in the above references,are generally characterized with discontinuity.The discontinuity in the guidance law can cause chattering,which may reduce the guidance accuracy,and even lead to system instability[1].To alleviate the chattering,in Reference[9]a finite-time guidance law is designed based on the high-order sliding mode control theory.In the high-order sliding mode control theory,the control parameter should be chosen greater than the bound of the disturbance.And large control parameters will reduce the chattering suppression effect[10].While in practice,for safety reasons,the actual bound of the disturbance often is chosen larger,so the parameters of high-order sliding mode control are always selected larger.Thus the chattering suppression effect may be degraded.

    In this paper,a novel adaptive high-order sliding mode control is developed,in which the control parameters are adaptive to the disturbance.Thus the conservatism in choosing the control parameters can be greatly reduced.And the chattering of the sliding mode control will be greatly alleviated too.Moreover,in this paper the adaptive super-twisting algorithm is combined with the integral sliding mode surface for the first time.And based on this,a finite-time disturbance compensator is designed.Then the geometric homogeneous theory is employed to design a finite-time controller for the compensated system.The controller design method is then used in the designing of the guidance law with impact constraint angle,and a finitetime continuous guidance law is successfully developed.The effectiveness of the designed guidance law is also verified through three-dimension simulation.

    1 Preliminaries

    1.1 Design of the adaptive super-twisting algorithm

    Lemma 1.Super-twisting algorithm[11]Consider the system as following:

    in which,e1,e2∈R denote the states,ρ∈R denotes the disturbance,andThe states e1,e2will be globally finite-time stable,if k2>τ and>4k2.

    The super-twisting algorithm proposed in Lemma 1 belongs to the high-order sliding mode control theory,in which the discrete switching term hides in the integral part of the input,so the chattering of the sliding mode control can be effectively alleviated.Through analysis it can be concluded that the control parameters of the super-twisting algorithm need to be larger than the bound of the disturbance.However,the precise bound of the disturbance is difficult to be obtained in practice.And in controller design,the bound of the disturbance is always chosen much larger than the actual value of the disturbance.And then the control parameters of the super-twisting algorithm will be chosen much larger,which will makes the chattering alleviating effect become worse[10].To ensure the chattering alleviating effect,in this section,the super-twisting algorithm will be improved and an adaptive super-twisting algorithm will be developed,in which,the control parameters is adaptive to the disturbance.

    Theorem 1.Adaptive super-twisting algorithm

    Consider the system as follows:

    where,L(t)=r+l,l is a constant and l>0.

    where,γ>0,and

    in which,ε is a positive constant.When the parameters are chosen as those denoted by equation(3),e1(t)can converge to the intervalin finite time,in which,a is an arbitrary constant value and a>1.

    Proof.The lyapunove function is chosen as:

    here,

    According to equation(8),one can obtain

    According to equation(9),one has

    Noting equation(3)and

    then from equation(13),we have

    Form equation(10),we know

    Substituting(11),(13)and(16)into(7),yields

    (1)When L(t)=r+l≥τ,from(17)it can be concluded that≤0.

    Based on the analysis above,we knownwhen e1is out of the interval,so e1is bounded.Defining a larger intervalaε},and in the interval<-? and ? is a positive constant which is relevant to the value of a.So e1can converge to the interval R1in finite time,and thenaε.The Theorem 1 is proved.

    1.2 A finite-time composite control law designed based on adaptive super-twisting algorithm

    Consider a system with disturbance as following:

    where,xidenote the states,u=u1+uf,u1denotes the controller of the nominal system,ufdenotes the compensation law,f denotes disturbance.

    For the system above,a compensator will be proposed in the following Theorem 2.

    Theorem 2.For the system denoted as(19),when the disturbance compensator is chosen as following:

    where,k1and k1are chosen as those in Theorem 1,and

    Then the sliding mode surface s1will converge to zero in finite time under the control of uf.And on the sliding mode surface,the disturbance is nearly fully compensated.So the system on the sliding mode surface can be viewed as a nominal system as following,which is without the disturbance.

    Proof.Firstly,the integral sliding mode surface is designed as following:

    Differentiating the equation(23)and combing with(19),we have

    According to Theorem 1,we known the reaching law as(25)is able to maintain s1which can converge to zero in finite time.When s1converges to zero,uf+f≈0 can be obtained from(24).And then the system(19)reduces to the nominal system as(22),which is without disturbance.

    Remark 1.If the initial value of x2can be obtained,the approaching process of the sliding mode surface can be eliminated.According to equation(23),the sliding mode surface is improved as following:

    It is obviously that in(26),the initial value of the sliding mode surface s1is zero,so the approaching process of the sliding mode surface is eliminated.

    Remark 2.Through compensation,the disturbed system(19)can reduce to the nominal system(22)in finite time.In the following,a finite-time control law will be designed for the nominal system(22).

    1.3 A finite-time controller designed based on geometric homogeneous theory

    Consider a kind of integral chain system as following:

    where,xi(i=1,2…,r)are the states,u denotes input.For the system as(27),the following lemma holds.

    Lemma 3[12].In equation(27),when the input is chosen as(28),then the states of the system(27)will converge to zero in finite time.

    here,vi∈(1-ε,1),ε∈(0,1).k1,…,krare positive constants which can maintain the polynomial pr+krpr-1+…+k2p+k1is Hurwitz.v1…visatisfyr}and vr+1=1,vr=vr.

    Remark 3.According to Theorem 2 and Lemma 3,we know if the input of(19)is designed as u=u1+uf,in which u1and ufare denoted as equation(20)and(28)separately,system(19)will be finite-time stable.

    2 Modeling

    2.1 Modeling of the engagement geometry

    The engagement geometry between the missile and the target can be shown as Fig 1.

    Fig.1 Engagement geometry

    According to the geometry in Fig.1,the modeling equation can be formulated as:

    where,θmdenotes the flight path angle of the missile,θtdenotes the flight path angle of the target.vmdenotes the velocity of the missile and vtdenotes the velocity of the target.R denotes the relative distance and q denotes the angle of the line of sight(LOS).

    2.2 Modeling of the impact angle constraint

    In the design of the guidance law with impact angle constraint,it is desired that the missile can intercept the target along with a desired direction.So at the impact time,the direction of the missile velocity vector shall meet the following constraint:

    where,θddenotes the desired flight path angle.If it is desired a head-on interception,then θd=θt-π.

    If it is assumed that qdis the desired angle of the LOS at the impact time,the following equation holds.

    Such that,one can uniquely determine the desired angle of sight,when the flight path angle of the target and the desired flight path angle of the missile are known.

    2.3 Modeling of the LOS rate

    Combing with the model above,and selecting the new states as,the equation of states can be established as follows when intercepting the maneuvering targets.

    3 Design of the guidance law

    Based on equation(32),the guidance law is designed as following:

    Under the control of the equation(33),the system(32)will reduce to the equation as following:

    In equation(34),it is assumed that ueqis the equivalent control law when the system is without disturbance.And it can ensure that the system is finite-time stable,ufis a compensator,which is used to compensate the disturbance f.

    3.1 Design of the compensator

    In this section,a compensator ufwill be designed,which can fully compensate the disturbance f in finite time.And then the system(34)will reduce to a nominal system without disturbance.Based on Theorem 2,the compensator can be designed as following:

    where,the parameters are selected according to Theorem 1.

    Then,according to Theorem 2,uf+f can converge to zero in finite time,such that the disturbance can be fully compensated in finite time.And then the system(19)can reduces to the nominal system as following:

    In the following,a finite-time stable control law uequwill be designed based on the nominal system.

    3.2 Controller design based on the geometric homogeneous theory

    in which,μ1=0.25,μ2=0.4.λ1and λ2are positive constants which can ensure that p2+λ2p+λ1is Hurwitz.

    In summary,combing equations(33),(35),(36)with(38),the guidance law can be obtained as:

    In this section,a controller will be designed based on the geometric homogeneous theory.The controller should ensure that the system is asymptotically stable and possesses suitable negative homogeneous degree.And the finite time stability of the system(32)will be achieved when the system(32)is asymptotically stable and possesses suitable negative homogeneous degree.The corresponding controller is designed as follows based on Lemma 3.

    From the guidance law(39),we know that it is continuous nonsingular and finite-time stable.So the saturation cased by singularity can be avoided.And the chattering cased by non-discontinuous sliding mode control can also be avoided.Moreover,the parameters of the compensator are adaptive in guidance law(39),thus it can avoid the performance degradation caused by improperly selected parameters.

    4 Simulation

    In this section,the guidance law proposed in this paper(ISMCFTGL)will be simulated.And for comparison,the guidance law with impact angle constraint(SMCGL)proposed in reference[1],which is designed based on sliding mode control,will be also simulated.The SMCGL is denoted as:

    In the following,both the case of intercepting constant velocity target and the case of intercepting the maneuvering target will be simulated.

    4.1 Simulation for non-maneuvering target

    It is desired that the missile can intercept the target along the invere trajectory of the target.In simulation,the position of the interceptor is selected as xm=0,ym=0,zm=0.The parameters relevant to the velocity of the interceptor are selected as vm=400,θ=45°,ψm=-40°.The position of the interceptor is selected as xt=7 500,yt=5 000,zt=4 330.The parameters relevant to the velocity of the target are selected as vt=300 m/s,θt=150°,ψt=150°.

    The parameters of ISMCFTG used in longitudinal channel and lateral channel are the same.And they are λ1=4,λ2=4,r(0)=0.5,l=0.6,ε=0.001,γ=15.The parameters of SMCGL in longitudinal channel and lateral channel are the same too.And they are λ=3,k=4,ε=1.

    The comparison simulation resultes are decipited as Table 1 and Fig.2 ~ Fig.5.

    Table 1 Miss distance and the angle tracking error when intercepting the non-maneuvering target

    Fig.2 Comparison of the trajectories,when intercepting the non-maneuvering target

    Fig.3 Comparison of the payloads,when intercepting the non-maneuvering target

    Fig.4 Comparison of the velocity of the line-of-sight,when intercepting the non-maneuvering target

    From Fig.4,it can be concluded that,when intercepting the non-maneuvering target,ISMCFTGL can effectively control the LOS rate converge to the neighborhood of zero,while the LOS rate under the control of SMCGL diverges slowly.Therefore,it is verified that the guidance performance of ISMCFTGL is better than that of SMCGL.The advantage of ISMCFTGL is also reflected in Fig.3 and Table 1.Such that,the needed overload of ISMCFTGL,at the impact time,is smaller than that of SMCGL(see Fig.3),so that the miss distance is smaller and the tracking accuracy to the desired LOS angle is also higher than that of SMCGL(see Table 1).

    Fig.5 Comparison of the true values and the estimates of the disturbance

    In Fig.5,it shows a comparison of the estimated value and the true value of the disturbance in equation(31).Through simulaton results,it can be concluded that the disturbance can be estimated accurately,thus it can maitains the guidance law controls the LOS rate effectively.

    4.2 Simulation for maneuvering target

    In this section it is also desired that the missile can intercept the target along the invere trajectory of the target.The longitudinal acceleration of the target is atz=50sin(0.8t),and the lateral acceleration is atc=50sin(0.8t).The other parameters are selected the same as those in section 4.1.the simulation results are decipited as Fig.6 ~ Fig.9 and Table 2.

    Fig.6 Comparison of the trajectories,when intercepting the maneuvering target

    Fig.7 Comparison of the payloads,when intercepting the maneuvering target

    Fig.8 Comparison of the velocities of the line-of-sight,when intercepting the maneuvering target

    Fig.9 Comparison of the true values and the estimates of the disturbance

    Table 2 Miss distance and the angle tracking error when intercepting the maneuvering target

    According to the simulation results,it can be concluded that the performance of ISMCFTGL in suppressing the LOS rate,in the last paragraph of the interception,is better than that of SMCGL(Fig.8).And the overload of ISMCFTGL is much smaller(Fig.7),which effectively reduce the miss distance and the tracking error to the desired LOS angle(Table 2).The reason to obtain such a goog effect is that ISMCFTGL can precisely eatimate the disturbance caused by the accelaration of the target and other factors(Fig.9).And the infulunce to the LOS rate caused by the disturbance can be nearly eliminated completely.Moreover,in the modelling of the LOS rate,the speed characteristic of the target is also fully considered,thus the proposed guidance law ISMCFTGL can effectively intercept the maneuvering target with high speed.

    5 Conclusion

    In this paper,an adaptive algrithom is firstly proposed through improving the super-twisting algrithom.Then a novel finite-time composite control method is designed through combing with the integral sliding mode surface and geometric homogeneous theory.And the composite control method is then used in designing of the guidance law with impact angle constraint.The proposed guidance law possesses some characteristics as following:

    (1)It can not only effectively intercept the non-maneuvering target,but it can also effectively intercept the high maneuvering target.

    (2)The guidance law is finite-time stable.

    (3)The guidance law is continuous and the parameters are also adaptive.Thus the chattering of the sliding mode conrol is alleviated and the guidance precesion is improved.

    [1] CAI Hong,HU zhen-dong,CAO Yuan.A survey of guidance law with terminal impact angle constraints[J].Journal of Astronautics,2010,31(2):315-323.

    [2] Kim B S,Lee J G,Han H S,et al.Homing guidance with terminal angular constraint against non-maneuvering and maneuvering targets[R].AIAA-97-3474,1997.

    [3] JIA Qing-zhong,LIU Yong-shan,LIU Zao-zhen.Variablestructure backstepping guidance law with terminal angular constraint for video-guided penetrating bomb[J].Journal of Astronautics,2008,29(1):208-214.

    [4] Shashi Ranjan Kumar,Sachit Rao,Debasish Ghose.Nonsingular terminal sliding mode guidance with Impact angle constraints[J].Journal of Guidance,Control,and Dynamics,2014,37(4):1114-1130.

    [5] Kumar S R,Rao S,Ghose D.Sliding mode guidance and control for all-aspect Interceptor with terminal angle constraints[J].Journal of Guidance,Control,and Dynamics,2012,35(4):1230-1246.

    [6] Zhang Y,Sun M,Chen Z.Finite-time convergent guidance law with Impact angle constraint based on sliding-mode control[J].Nonlinear Dynamics,2012,70(1):619-625.

    [7] ZHANG Yun-xi,SUN Ming-wei,CHEN Zeng-qiang.Slidingmode varialble structure finite-time convergence guidance law[J].Control Theory & Applications,2012,29(11):1413-1418.

    [8] WANG Hong-qiang,F(xiàn)ANG Yang-wang,WU You-li.Research on terminal guidance law of missiles based on nonsigngular terminal sliding mode[J].Systems Engineering and Electronics,2009,31(6):1391-1395.

    [9] DOU Rong-bin,ZHANG Ke.Reserch on termianl guidance for Re-entry vehicle based on second-order sliding mode control[J].Journal of Astronautics,2011,32(10):2109-2114.

    [10] Yuri Shtessel,Mohammed Taleb,F(xiàn)ranck Plestan.A novel adaptive-gain supertwisting sliding mode controller:Methodology and application [J].Automatica 2012,48(2):759-769.

    [11] Jaime A M.Strict lyapunov functions for the super-twisting algorithm[J].IEEE Transactions on Automatic Control,2012,57(4):1035-1040.

    [12] Bhat S P,Bernstein D S.Geometric homogeneity with application to finite-time stability[J].Mathematics of Control,Signals and Systems,2005,17(2):101-127.

    猜你喜歡
    西北工業(yè)大學(xué)制導(dǎo)機(jī)動(dòng)
    裝載機(jī)動(dòng)臂的疲勞壽命計(jì)算
    12萬畝機(jī)動(dòng)地不再“流浪”
    機(jī)動(dòng)三輪車的昨天、今天和明天
    作品三
    作品一
    西北工業(yè)大學(xué)學(xué)報(bào)2016年第34卷總目次(總第157期~總第162期(2016年)
    基于MPSC和CPN制導(dǎo)方法的協(xié)同制導(dǎo)律
    基于在線軌跡迭代的自適應(yīng)再入制導(dǎo)
    帶有攻擊角約束的無抖振滑模制導(dǎo)律設(shè)計(jì)
    海上機(jī)動(dòng)之師
    av网站免费在线观看视频| 又大又爽又粗| 欧美日韩福利视频一区二区| 国产精品欧美亚洲77777| 亚洲天堂av无毛| 99香蕉大伊视频| 18禁裸乳无遮挡动漫免费视频| 国产精品成人在线| 日韩大片免费观看网站| 亚洲中文日韩欧美视频| 精品少妇一区二区三区视频日本电影| av线在线观看网站| 成年人免费黄色播放视频| 久久99一区二区三区| 亚洲熟女精品中文字幕| 亚洲成国产人片在线观看| 91精品国产国语对白视频| 曰老女人黄片| 国产亚洲精品第一综合不卡| 国产欧美日韩精品亚洲av| 纵有疾风起免费观看全集完整版| 久久久久久亚洲精品国产蜜桃av| 日日爽夜夜爽网站| 999精品在线视频| 免费少妇av软件| 亚洲精品美女久久久久99蜜臀 | 国产人伦9x9x在线观看| 五月天丁香电影| 国产成人欧美| 免费在线观看完整版高清| 亚洲av国产av综合av卡| 亚洲国产av新网站| bbb黄色大片| 日本a在线网址| 女人爽到高潮嗷嗷叫在线视频| 青青草视频在线视频观看| 国精品久久久久久国模美| 国产成人精品久久二区二区免费| 亚洲欧美日韩高清在线视频 | 成年动漫av网址| 国产av一区二区精品久久| 欧美老熟妇乱子伦牲交| 国产又色又爽无遮挡免| 国产精品香港三级国产av潘金莲 | 亚洲美女黄色视频免费看| 777米奇影视久久| 黄色毛片三级朝国网站| 少妇粗大呻吟视频| 国产成人一区二区在线| 十八禁人妻一区二区| 国产人伦9x9x在线观看| 日韩中文字幕欧美一区二区 | 最黄视频免费看| 国产人伦9x9x在线观看| 一边摸一边抽搐一进一出视频| 亚洲图色成人| 啦啦啦 在线观看视频| 婷婷色综合大香蕉| 久久99热这里只频精品6学生| 亚洲欧美中文字幕日韩二区| av欧美777| 99精国产麻豆久久婷婷| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 亚洲精品在线美女| 深夜精品福利| 久久人妻熟女aⅴ| 在线av久久热| 又黄又粗又硬又大视频| 久久久国产欧美日韩av| 国产精品九九99| 国产精品久久久久久人妻精品电影 | 一级片免费观看大全| 菩萨蛮人人尽说江南好唐韦庄| 亚洲情色 制服丝袜| 久久精品久久精品一区二区三区| 亚洲精品乱久久久久久| 欧美黄色淫秽网站| av天堂久久9| 午夜日韩欧美国产| 欧美人与性动交α欧美软件| 久久 成人 亚洲| 黄片播放在线免费| 两人在一起打扑克的视频| 中文字幕人妻熟女乱码| 亚洲av成人精品一二三区| 亚洲欧美成人综合另类久久久| 久久这里只有精品19| 国产成人91sexporn| 国产精品99久久99久久久不卡| 亚洲精品一卡2卡三卡4卡5卡 | 中文字幕色久视频| 大片电影免费在线观看免费| 亚洲精品久久午夜乱码| 好男人视频免费观看在线| 99久久99久久久精品蜜桃| 国产99久久九九免费精品| 欧美日韩福利视频一区二区| 成人手机av| 汤姆久久久久久久影院中文字幕| 一级,二级,三级黄色视频| 啦啦啦视频在线资源免费观看| 亚洲中文日韩欧美视频| 曰老女人黄片| 国产一级毛片在线| 自线自在国产av| 日本五十路高清| 久久精品熟女亚洲av麻豆精品| 人人妻人人爽人人添夜夜欢视频| 国产又色又爽无遮挡免| 九草在线视频观看| 久久狼人影院| 丝袜喷水一区| 免费看av在线观看网站| 好男人电影高清在线观看| 亚洲第一青青草原| 肉色欧美久久久久久久蜜桃| 欧美日本中文国产一区发布| 婷婷色综合www| 久久久久网色| 久久久精品区二区三区| av线在线观看网站| 成人午夜精彩视频在线观看| 亚洲,欧美精品.| 90打野战视频偷拍视频| 国产免费福利视频在线观看| 欧美日韩亚洲综合一区二区三区_| 国产成人精品在线电影| 男女下面插进去视频免费观看| 中国美女看黄片| 日本午夜av视频| 欧美人与性动交α欧美精品济南到| 波多野结衣一区麻豆| 99热网站在线观看| 国产亚洲欧美精品永久| 成人影院久久| 日日摸夜夜添夜夜爱| 真人做人爱边吃奶动态| 欧美精品啪啪一区二区三区 | 在线看a的网站| 最新在线观看一区二区三区 | av在线app专区| 老汉色av国产亚洲站长工具| 又大又黄又爽视频免费| 午夜福利影视在线免费观看| 午夜免费男女啪啪视频观看| 观看av在线不卡| 日日爽夜夜爽网站| 欧美+亚洲+日韩+国产| 午夜福利免费观看在线| 国产成人免费观看mmmm| 国产亚洲av高清不卡| 宅男免费午夜| 国产国语露脸激情在线看| 午夜福利视频精品| 日本91视频免费播放| 国产在线免费精品| 国产极品粉嫩免费观看在线| 99久久综合免费| 欧美成人午夜精品| 精品久久久久久久毛片微露脸 | 视频区图区小说| 一区二区三区四区激情视频| 午夜福利视频在线观看免费| 黄频高清免费视频| 国产精品免费大片| 亚洲精品国产av蜜桃| 亚洲中文av在线| 黄色片一级片一级黄色片| 王馨瑶露胸无遮挡在线观看| 亚洲国产看品久久| 麻豆国产av国片精品| 一区二区三区四区激情视频| 丁香六月天网| 久久久亚洲精品成人影院| 黑人欧美特级aaaaaa片| 丰满饥渴人妻一区二区三| 19禁男女啪啪无遮挡网站| 国产成人av教育| 9191精品国产免费久久| 精品亚洲成国产av| 欧美xxⅹ黑人| 欧美精品av麻豆av| 亚洲精品一区蜜桃| 亚洲av国产av综合av卡| netflix在线观看网站| 精品人妻1区二区| 波野结衣二区三区在线| 国产成人欧美在线观看 | 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 精品少妇内射三级| 亚洲 国产 在线| 成人亚洲欧美一区二区av| 中文字幕色久视频| 韩国高清视频一区二区三区| 人体艺术视频欧美日本| 狠狠婷婷综合久久久久久88av| bbb黄色大片| 久久精品亚洲熟妇少妇任你| 久久久国产欧美日韩av| 日韩av在线免费看完整版不卡| 午夜免费鲁丝| 91成人精品电影| 欧美精品一区二区大全| 日本av手机在线免费观看| 亚洲精品中文字幕在线视频| www.av在线官网国产| 操美女的视频在线观看| av国产久精品久网站免费入址| 欧美成人午夜精品| 国产日韩欧美亚洲二区| 老汉色av国产亚洲站长工具| 大话2 男鬼变身卡| 亚洲精品久久久久久婷婷小说| 爱豆传媒免费全集在线观看| 国产精品一区二区免费欧美 | 黄色毛片三级朝国网站| 黄网站色视频无遮挡免费观看| 天天影视国产精品| 久久久国产精品麻豆| 国产色视频综合| 男女国产视频网站| 欧美国产精品va在线观看不卡| 男人舔女人的私密视频| 宅男免费午夜| 大型av网站在线播放| bbb黄色大片| 无限看片的www在线观看| 久久久欧美国产精品| 99精品久久久久人妻精品| 亚洲欧美清纯卡通| 欧美人与善性xxx| 欧美人与性动交α欧美精品济南到| 中文字幕av电影在线播放| 午夜免费成人在线视频| 国产黄频视频在线观看| 咕卡用的链子| 日韩欧美一区视频在线观看| 视频区图区小说| 一级a爱视频在线免费观看| 精品人妻熟女毛片av久久网站| 七月丁香在线播放| 亚洲av综合色区一区| 国产一区二区激情短视频 | 男的添女的下面高潮视频| 黄色片一级片一级黄色片| 国产成人av激情在线播放| 建设人人有责人人尽责人人享有的| 久久亚洲精品不卡| 香蕉丝袜av| 女人精品久久久久毛片| 国产成人a∨麻豆精品| 亚洲av综合色区一区| 人妻一区二区av| 又大又爽又粗| 欧美中文综合在线视频| 2021少妇久久久久久久久久久| 精品人妻一区二区三区麻豆| www.av在线官网国产| 满18在线观看网站| 操美女的视频在线观看| 91精品伊人久久大香线蕉| 免费在线观看影片大全网站 | av天堂久久9| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 精品久久久精品久久久| 久久久欧美国产精品| 精品一区二区三区四区五区乱码 | 亚洲精品美女久久av网站| 在线av久久热| 91字幕亚洲| 在线观看免费日韩欧美大片| 一区二区三区四区激情视频| 赤兔流量卡办理| 日韩制服骚丝袜av| 一级a爱视频在线免费观看| 精品少妇黑人巨大在线播放| 国产成人欧美在线观看 | 人体艺术视频欧美日本| 欧美日韩视频高清一区二区三区二| 丝袜喷水一区| 18禁黄网站禁片午夜丰满| 一边摸一边做爽爽视频免费| 国产成人精品在线电影| 精品第一国产精品| 国产免费又黄又爽又色| 久久久精品国产亚洲av高清涩受| 丰满饥渴人妻一区二区三| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 免费少妇av软件| 欧美日韩视频精品一区| 久久精品亚洲熟妇少妇任你| 老汉色av国产亚洲站长工具| svipshipincom国产片| 国产深夜福利视频在线观看| 国产精品偷伦视频观看了| 中文字幕高清在线视频| 欧美变态另类bdsm刘玥| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷色av中文字幕| 久久免费观看电影| av不卡在线播放| 亚洲成av片中文字幕在线观看| 两人在一起打扑克的视频| 一边摸一边做爽爽视频免费| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 国产免费又黄又爽又色| 桃花免费在线播放| 精品人妻一区二区三区麻豆| 别揉我奶头~嗯~啊~动态视频 | 午夜免费成人在线视频| 一区在线观看完整版| 国产成人a∨麻豆精品| 久久精品国产a三级三级三级| av有码第一页| 精品第一国产精品| 男人添女人高潮全过程视频| 久久久精品国产亚洲av高清涩受| 欧美 日韩 精品 国产| 嫁个100分男人电影在线观看 | 免费观看av网站的网址| 啦啦啦在线免费观看视频4| 成人午夜精彩视频在线观看| 各种免费的搞黄视频| 亚洲专区中文字幕在线| 久久九九热精品免费| 亚洲国产精品成人久久小说| 狠狠婷婷综合久久久久久88av| 国产精品一区二区免费欧美 | 在线亚洲精品国产二区图片欧美| 美女脱内裤让男人舔精品视频| 欧美精品av麻豆av| 美女午夜性视频免费| 亚洲av成人精品一二三区| 不卡av一区二区三区| 视频区欧美日本亚洲| √禁漫天堂资源中文www| 精品亚洲乱码少妇综合久久| 精品国产乱码久久久久久小说| 亚洲精品在线美女| 汤姆久久久久久久影院中文字幕| 中文字幕高清在线视频| 成人亚洲欧美一区二区av| xxxhd国产人妻xxx| 亚洲av美国av| 欧美中文综合在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 男人操女人黄网站| 成年人午夜在线观看视频| 亚洲,欧美,日韩| 一边亲一边摸免费视频| 亚洲精品成人av观看孕妇| 日本a在线网址| 日本av手机在线免费观看| 考比视频在线观看| 国产一区亚洲一区在线观看| 欧美精品高潮呻吟av久久| 国产欧美日韩综合在线一区二区| 亚洲国产欧美日韩在线播放| 99香蕉大伊视频| 国产亚洲av高清不卡| 日韩大码丰满熟妇| 999精品在线视频| 男人操女人黄网站| 好男人电影高清在线观看| 国产成人av教育| 韩国精品一区二区三区| 在线av久久热| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 巨乳人妻的诱惑在线观看| 午夜激情久久久久久久| 亚洲人成网站在线观看播放| 两个人看的免费小视频| 久久精品国产亚洲av涩爱| 久久99热这里只频精品6学生| 亚洲国产日韩一区二区| 好男人视频免费观看在线| 黑丝袜美女国产一区| 大片免费播放器 马上看| 国产高清不卡午夜福利| 老司机深夜福利视频在线观看 | 18在线观看网站| 一二三四在线观看免费中文在| 国产免费福利视频在线观看| 夜夜骑夜夜射夜夜干| 女性生殖器流出的白浆| 好男人视频免费观看在线| av有码第一页| 国产av国产精品国产| av视频免费观看在线观看| 精品欧美一区二区三区在线| av在线app专区| 精品福利永久在线观看| 精品国产国语对白av| 捣出白浆h1v1| 一级毛片女人18水好多 | 在线观看国产h片| 午夜福利乱码中文字幕| 亚洲欧洲日产国产| 久热这里只有精品99| 性少妇av在线| 国产爽快片一区二区三区| 久久精品亚洲av国产电影网| 黄色视频在线播放观看不卡| 久久精品成人免费网站| av电影中文网址| 天天添夜夜摸| 精品一区二区三区av网在线观看 | 国产视频首页在线观看| 精品国产一区二区三区四区第35| 色婷婷av一区二区三区视频| videos熟女内射| 国产成人91sexporn| 久久精品国产a三级三级三级| 伊人亚洲综合成人网| 一级毛片我不卡| 亚洲人成77777在线视频| 久久综合国产亚洲精品| 亚洲精品一二三| 久久久久久亚洲精品国产蜜桃av| 欧美+亚洲+日韩+国产| 精品国产乱码久久久久久小说| 老司机靠b影院| 这个男人来自地球电影免费观看| 丰满饥渴人妻一区二区三| 欧美日韩成人在线一区二区| 亚洲成人免费电影在线观看 | 亚洲精品第二区| 日韩人妻精品一区2区三区| 亚洲精品日本国产第一区| 精品国产乱码久久久久久男人| 成年人午夜在线观看视频| 国产福利在线免费观看视频| 国产亚洲精品久久久久5区| 99久久综合免费| 亚洲人成77777在线视频| 色播在线永久视频| 久久女婷五月综合色啪小说| 老司机深夜福利视频在线观看 | 人人妻人人爽人人添夜夜欢视频| 99国产精品99久久久久| 色网站视频免费| 好男人视频免费观看在线| 亚洲人成77777在线视频| 2021少妇久久久久久久久久久| 日本a在线网址| 老司机影院成人| 国产成人精品久久久久久| 校园人妻丝袜中文字幕| 精品少妇黑人巨大在线播放| 黄色毛片三级朝国网站| 搡老岳熟女国产| 国产片内射在线| av视频免费观看在线观看| 欧美精品av麻豆av| 成年动漫av网址| 多毛熟女@视频| 少妇被粗大的猛进出69影院| 一区二区三区四区激情视频| 波野结衣二区三区在线| 久久 成人 亚洲| 男女之事视频高清在线观看 | 高清视频免费观看一区二区| 久久久久久久久免费视频了| 亚洲男人天堂网一区| 午夜激情久久久久久久| 成人国产一区最新在线观看 | 一二三四社区在线视频社区8| 桃花免费在线播放| 丝袜在线中文字幕| 夫妻性生交免费视频一级片| 欧美日韩视频高清一区二区三区二| 美女中出高潮动态图| 美女主播在线视频| 一级黄片播放器| 男女之事视频高清在线观看 | 欧美乱码精品一区二区三区| 1024香蕉在线观看| 一区二区av电影网| 又紧又爽又黄一区二区| 午夜福利在线免费观看网站| 久久久精品94久久精品| 在线观看人妻少妇| 别揉我奶头~嗯~啊~动态视频 | xxxhd国产人妻xxx| 两个人免费观看高清视频| 操美女的视频在线观看| 99国产综合亚洲精品| 亚洲色图综合在线观看| 日韩视频在线欧美| 久久久精品国产亚洲av高清涩受| 一级a爱视频在线免费观看| 美女脱内裤让男人舔精品视频| 久久精品国产综合久久久| 精品免费久久久久久久清纯 | 波多野结衣av一区二区av| 伦理电影免费视频| 午夜福利,免费看| 啦啦啦在线免费观看视频4| 夫妻性生交免费视频一级片| 天天躁日日躁夜夜躁夜夜| 在线看a的网站| 一级黄色大片毛片| 男女边摸边吃奶| 久久人人97超碰香蕉20202| 日韩大片免费观看网站| 一区二区日韩欧美中文字幕| 黑人欧美特级aaaaaa片| 岛国毛片在线播放| 亚洲国产精品成人久久小说| 十八禁人妻一区二区| 国产高清视频在线播放一区 | 黑人欧美特级aaaaaa片| 黄色一级大片看看| 天天躁日日躁夜夜躁夜夜| 在线看a的网站| 老司机在亚洲福利影院| 日韩伦理黄色片| 亚洲成人免费av在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 91麻豆精品激情在线观看国产 | 国产精品免费大片| 国产欧美日韩一区二区三 | 精品一区二区三区av网在线观看 | 亚洲精品av麻豆狂野| 夫妻性生交免费视频一级片| 亚洲欧美日韩另类电影网站| 亚洲熟女精品中文字幕| 精品人妻一区二区三区麻豆| 精品第一国产精品| 免费观看人在逋| 另类精品久久| 国产成人欧美在线观看 | 少妇粗大呻吟视频| 两人在一起打扑克的视频| 亚洲成人国产一区在线观看 | 又大又爽又粗| 精品亚洲成a人片在线观看| 国产人伦9x9x在线观看| 久久中文字幕一级| 亚洲av综合色区一区| 久久久久国产一级毛片高清牌| www.999成人在线观看| 亚洲自偷自拍图片 自拍| 午夜av观看不卡| av在线老鸭窝| 日本av手机在线免费观看| 国产福利在线免费观看视频| 纯流量卡能插随身wifi吗| 国产精品三级大全| 夫妻性生交免费视频一级片| 日韩中文字幕欧美一区二区 | 欧美黄色片欧美黄色片| 国产精品久久久久成人av| 一区在线观看完整版| avwww免费| 久久 成人 亚洲| 男女边摸边吃奶| 女人高潮潮喷娇喘18禁视频| 久久久久久久久免费视频了| 亚洲国产精品一区二区三区在线| 亚洲精品国产av蜜桃| 丰满人妻熟妇乱又伦精品不卡| 成人亚洲精品一区在线观看| 亚洲专区国产一区二区| 七月丁香在线播放| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说| 国产国语露脸激情在线看| 久久久欧美国产精品| 最近手机中文字幕大全| 国产一区二区三区av在线| 国产精品香港三级国产av潘金莲 | 一级片免费观看大全| 亚洲国产精品国产精品| 久久综合国产亚洲精品| 大型av网站在线播放| 亚洲图色成人| 国产精品一区二区免费欧美 | √禁漫天堂资源中文www| 久久国产精品大桥未久av| 国产精品国产三级国产专区5o| 女人精品久久久久毛片| 久久久久精品人妻al黑| 亚洲欧美精品综合一区二区三区| 亚洲免费av在线视频| 欧美激情 高清一区二区三区| 日本欧美国产在线视频| 视频区图区小说| 欧美激情 高清一区二区三区| 国产精品熟女久久久久浪| 亚洲欧美成人综合另类久久久| 欧美激情 高清一区二区三区| 五月天丁香电影| 精品久久久久久电影网| 国产精品二区激情视频| 欧美精品亚洲一区二区| 日韩大片免费观看网站| 国产在线免费精品| 亚洲三区欧美一区| 日韩中文字幕视频在线看片| 黄色视频不卡| 一边摸一边做爽爽视频免费| 色综合欧美亚洲国产小说| 精品久久久久久久毛片微露脸 | 在线观看一区二区三区激情| 少妇猛男粗大的猛烈进出视频| 只有这里有精品99| 成年动漫av网址| 国产在视频线精品|