盛衛(wèi)星,吳家森,徐建春,張少偉,蔡建榮
(1.浙江省建德市林業(yè)局,浙江 建德311600;2.浙江農(nóng)林大學(xué) 環(huán)境與資源學(xué)院,浙江 臨安311300;3.浙江省開(kāi)化縣林業(yè)局,浙江 開(kāi)化324300;4.浙江省建德市新安江林場(chǎng),浙江建德311600)
不同經(jīng)營(yíng)年限對(duì)山核桃林地土壤輕重組有機(jī)碳的影響
盛衛(wèi)星1,吳家森2,徐建春3,張少偉4,蔡建榮1
(1.浙江省建德市林業(yè)局,浙江 建德311600;2.浙江農(nóng)林大學(xué) 環(huán)境與資源學(xué)院,浙江 臨安311300;3.浙江省開(kāi)化縣林業(yè)局,浙江 開(kāi)化324300;4.浙江省建德市新安江林場(chǎng),浙江建德311600)
為探討不同集約經(jīng)營(yíng)歷史山核桃Carya cathayensis林地土壤輕重組有機(jī)碳的演變規(guī)律,在浙江省臨安市分別采集了集約經(jīng)營(yíng)歷史為5,10,15,20 a的山核桃林土壤樣品,并與天然山核桃-闊葉混交林(0 a)進(jìn)行比較。結(jié)果表明:天然混交林改造為山核桃純林并經(jīng)強(qiáng)度經(jīng)營(yíng)后,土壤有機(jī)碳的變化主要發(fā)生在表層(0~10 cm),表層土壤總有機(jī)碳(SOC),輕組有機(jī)碳(LFOC),重組有機(jī)碳(HFOC)質(zhì)量分?jǐn)?shù)均呈下降趨勢(shì),與0 a相比,經(jīng)過(guò)5 a經(jīng)營(yíng)后,土壤SOC,LFOC,HFOC分別下降了28.4%,59.3%和15.1%, 而20 a后,則分別下降了38.6%,68.2%和26.0%。經(jīng)營(yíng)前5 a,LFOC/SOC從23.0%下降為17.0%,而HFOC/SOC則從從70.0%上升到83.0%,在后期的經(jīng)營(yíng)過(guò)程中,輕重組有機(jī)碳占總有機(jī)碳的比例保持相對(duì)穩(wěn)定。圖3表2參26
森林土壤學(xué);輕組有機(jī)碳;重組有機(jī)碳;山核桃
土壤有機(jī)碳(soil organic carbon,SOC)是土壤的重要組成部分,影響著土壤中養(yǎng)分的儲(chǔ)存與供應(yīng),其數(shù)量和分布反映了地表植物群落的空間分布、時(shí)間上的演替和人為干擾,在全球碳循環(huán)中也起著至關(guān)重要的作用[1]??刹捎梦锢矸椒?,將土壤有機(jī)碳分為輕組有機(jī)碳(light fraction organic carbon,LFOC)和重組有機(jī)碳(high fraction organic carbon,HFOC)。輕組有機(jī)碳是介于動(dòng)植物殘?bào)w和腐殖化有機(jī)質(zhì)之間的有機(jī)碳庫(kù),是土壤不穩(wěn)定有機(jī)碳庫(kù)的重要組成[2]。重組有機(jī)碳主要成分是礦質(zhì)顆粒,存在于有機(jī)-無(wú)機(jī)復(fù)合體中,受土壤礦物不同程度的物理和化學(xué)保護(hù),一定程度上反映了土壤保持有機(jī)碳的能力[3-4]。近年來(lái),關(guān)于土地利用變化對(duì)SOC的影響主要有土壤總有機(jī)碳[5]和活性有機(jī)碳[6],天然林轉(zhuǎn)變?yōu)榇紊只蛉斯ち趾螅寥烙袡C(jī)碳顯著降低,土壤LFOC降低尤為明顯[7-8]。耕作會(huì)導(dǎo)致LFOC迅速減少,但HFOC減少不顯著,而施入苜蓿Medicago sativs后2 a后,土壤LFOC增加量是SOC和HFOC的2~3倍[9],所以LFOC比SOC和HFOC對(duì)耕作、施肥等農(nóng)業(yè)生產(chǎn)措施的響應(yīng)更快[10],而對(duì)HFOC的研究則較少[11]。山核桃Carya cathayensis是中國(guó)特有的木本油料樹(shù)種和高檔干果,主要分布在浙皖交界的天目山系。山核桃生產(chǎn)具有很高的經(jīng)濟(jì)效益,因此,林農(nóng)將大面積的山核桃-闊葉混交林改造為山核桃純林,在生產(chǎn)過(guò)程中將林下灌木、雜草除盡,造成林地土壤有機(jī)碳質(zhì)量分?jǐn)?shù)低于相同區(qū)域的次生闊葉林[12]。山核桃的強(qiáng)度經(jīng)營(yíng),也造成林地土壤有機(jī)碳質(zhì)量分?jǐn)?shù)下降[13],而生草栽培則提高了土壤有機(jī)碳質(zhì)量分?jǐn)?shù)[14],但集約經(jīng)營(yíng)過(guò)程中土壤輕、重組有機(jī)碳的質(zhì)量分?jǐn)?shù)和比例是如何變化的?本研究通過(guò)空間代替時(shí)間的方法,研究不同經(jīng)營(yíng)年限對(duì)山核桃林地土壤輕重組有機(jī)碳質(zhì)量分?jǐn)?shù)的影響,以期為山核桃土壤的科學(xué)管理提供依據(jù)。
1.1 研究區(qū)概況
研究區(qū)位于浙江省臨安市昌化鎮(zhèn)(30°03′02′′N,119°08′54′′E),屬亞熱帶季風(fēng)氣候區(qū),年均氣溫為16.4℃,極端最高氣溫41.7℃,極端最低氣溫-13.3℃,年均有效積溫5 774.0℃,年降水量1 628.0 mm,年日照時(shí)數(shù)1 774.0 h,無(wú)霜期235.0 d。土壤為發(fā)育于板巖的巖性土。試驗(yàn)林分位于海拔200~260 m,坡度20°左右,林下無(wú)灌木生長(zhǎng),僅有少量草本植物。每年5月和9月上旬共施復(fù)合肥[m(氮N)∶m(磷P2O5)∶m(鉀K2O)=15∶15∶15]600 kg·hm-2,同時(shí)施用除草劑[13]。
1.2 試驗(yàn)設(shè)計(jì)與取樣
2012年1月,根據(jù)森林資源經(jīng)營(yíng)檔案,在昌化鎮(zhèn)石坎村的3個(gè)小流域,分別選擇經(jīng)營(yíng)5,10,15,20 a的山核桃純林各1塊,同時(shí)在樣地周圍選擇山核桃-闊葉混交林作為對(duì)照(0 a),1個(gè)小流域作為1個(gè)區(qū)組,同一區(qū)組中樣地的坡向、坡度和土壤類型相同,面積1.0 hm2[13]。樣地林分的基本特征和0~10 cm土壤理化性質(zhì)如表1~2所示。
表1 樣地林分基本特征Table 1 Basic characteristics of sample plots
表2 樣地土壤基本理化性質(zhì)(0~10 cm)Table 2 Soil physiochemical characters of sample plots(0-10 cm)
在各樣地中,按 “S”型布點(diǎn),分別采集5個(gè)0~10 cm,10~30 cm土樣,將其分別混合,然后采用四分法分取樣品1.0 kg左右。采集后帶回實(shí)驗(yàn)室,去除石塊和植物根系等雜物,置于室內(nèi)風(fēng)干,過(guò)2 mm篩后混勻,備用。
1.3 分析方法
利用相對(duì)密度分組法分離土壤輕組、重組有機(jī)碳,得到輕組有機(jī)碳和重組有機(jī)碳;輕組、重組有機(jī)碳及總有機(jī)碳均采用重鉻酸鉀-硫酸外加熱法測(cè)定[15]。
1.4 成數(shù)據(jù)處
采用SPSS 13.0軟件進(jìn)行數(shù)據(jù)處理。采用單因素方差分析(one-way ANOVA)和新復(fù)極差法(SSR)比較不同數(shù)據(jù)組間的差異(α=0.05)。
2.1 林地土壤有機(jī)碳質(zhì)量分?jǐn)?shù)
如圖1所示:表層(0~10 cm)土壤有機(jī)碳(SOC)質(zhì)量分?jǐn)?shù)隨著經(jīng)營(yíng)年限的延長(zhǎng)而下降,特別是改造初期(前5 a),其質(zhì)量分?jǐn)?shù)下降了28.4%,差異達(dá)顯著水平,后期經(jīng)營(yíng)過(guò)程中(5~20 a)土壤總有機(jī)碳質(zhì)量分?jǐn)?shù)總體呈下降趁勢(shì),但不同經(jīng)營(yíng)年限之間的差異性并不顯著,經(jīng)過(guò)20 a的經(jīng)營(yíng),SOC質(zhì)量分?jǐn)?shù)下降了38.6%;林地表下層(10~30 cm)土壤總有機(jī)碳質(zhì)量分?jǐn)?shù)在改造初期有所下降,經(jīng)營(yíng)前5 a,有機(jī)碳質(zhì)量分?jǐn)?shù)下降了18.3%,但隨著經(jīng)營(yíng)年限的延長(zhǎng)而緩慢上升,在整個(gè)經(jīng)營(yíng)過(guò)程中保持相對(duì)穩(wěn)定,差異性不顯著性,經(jīng)過(guò)20 a的經(jīng)營(yíng),SOC質(zhì)量分?jǐn)?shù)僅降低了1.8%。不同經(jīng)營(yíng)年限山核桃林地土壤有機(jī)碳質(zhì)量分?jǐn)?shù)在剖面上的分布均隨著土壤深度增加而減小。
圖1 不同經(jīng)營(yíng)年限山核桃林地土壤有機(jī)碳質(zhì)量分?jǐn)?shù)Figure 1 Soil organic carbon content under various intensive management period of Carya cathayensis
2.2 林地土壤輕組、重組有機(jī)碳質(zhì)量分?jǐn)?shù)
從圖2中可知:不同經(jīng)營(yíng)年限山核桃林地土壤輕組、重組有機(jī)碳質(zhì)量分?jǐn)?shù)均隨著土層深度的增加而降低,表層(0~10 cm)土壤輕組、重組有機(jī)碳質(zhì)量分?jǐn)?shù)均高于表下層(10~30 cm)。
山核桃林地表層土壤輕組、重組有機(jī)碳質(zhì)量分?jǐn)?shù)隨著經(jīng)營(yíng)年限的延長(zhǎng)而下降,與天然混交林(0 a)相比,經(jīng)過(guò)5 a強(qiáng)度經(jīng)營(yíng),輕組有機(jī)碳質(zhì)量分?jǐn)?shù)降低了59.3%,差異性達(dá)到顯著水平,而重組有機(jī)碳質(zhì)量分?jǐn)?shù)只下降了15.1%,差異性并不顯著;集約經(jīng)營(yíng)20 a后,土壤輕組、重組有機(jī)碳質(zhì)量分?jǐn)?shù)分別下降了68.2%和26.0%,不同經(jīng)營(yíng)年限之間的差異并不顯著。
山核桃林地表下層土壤輕組、重組有機(jī)碳量質(zhì)量分?jǐn)?shù)在不同經(jīng)營(yíng)年限之間的差異不明顯,分別介于1.63~2.04,9.55~11.52 g·kg-1。
2.3 林地土壤輕組、重組有機(jī)碳占總有機(jī)碳的比例
土壤輕組、重組有機(jī)碳占總有機(jī)碳的比例如圖3所示,林地表層土壤輕組有機(jī)碳占總有機(jī)碳的比例隨著經(jīng)營(yíng)年限的延長(zhǎng)而下降,經(jīng)營(yíng)5 a后,LFOC/SOC從23.0%下降到17.0%,差異達(dá)顯著水平,但在后期的經(jīng)營(yíng)過(guò)程中,LFOC/SOC保持相對(duì)穩(wěn)定,其值保持在15.5%~19.1%。而重組有機(jī)碳的表現(xiàn)規(guī)律則與輕組相反,經(jīng)營(yíng)5 a后,HFOC/SOC從70.0%上升到83.0%,差異達(dá)顯著水平,在后期的經(jīng)營(yíng)中,HFOC/ SOC保持相對(duì)穩(wěn)定,其值在81.0%~85.5%。
不同經(jīng)營(yíng)年限林地表下層土壤輕組、重組有機(jī)碳占總有機(jī)碳的比例則保持相對(duì)穩(wěn)定,變化不明顯,LFOC/TOC保持在13.2%~15.1%,HFOC/TOC在84.9%~86.9%。
圖3 山核桃林地土壤輕組、重組有機(jī)碳占總有機(jī)碳的比例Figure 3 Composition of LFOC/SOC and HFOC/SOC under various intensive management period of Carya cathayensis forest
土地利用變化及人為經(jīng)營(yíng)措施影響著土壤的碳過(guò)程,對(duì)土壤有機(jī)碳的質(zhì)量分?jǐn)?shù)、組成會(huì)產(chǎn)生顯著影響[16-17]。常闊葉林改造成板栗Castanea mollissima林10 a后,土壤有機(jī)碳質(zhì)量分?jǐn)?shù)下降了45.5%[18],毛竹Phyllostachys edulis從粗放經(jīng)營(yíng)轉(zhuǎn)為集約經(jīng)營(yíng)20 a后,土壤有機(jī)碳質(zhì)量分?jǐn)?shù)也下降了34.7%[19]。隨著栽植年限的增加,臍橙Citrus sinensis和柑橘Citrus reticulata園土壤有機(jī)碳質(zhì)量分?jǐn)?shù)呈增加的趨勢(shì)[20-21]。本研究結(jié)果表明:與天然混交林(0 a)相比,經(jīng)過(guò)5 a的強(qiáng)度經(jīng)營(yíng),山核桃林地表層(0~10 cm)土壤總有機(jī)碳質(zhì)量分?jǐn)?shù)降低了28.4%,而經(jīng)過(guò)20 a經(jīng)營(yíng)后,土壤SOC質(zhì)量分?jǐn)?shù)下降了38.6%。這主要是由于天然混交林改造為山核桃純林后,受到人為強(qiáng)度干擾,灌木層和草本層缺失,有機(jī)質(zhì)輸入明顯減少,凋落物現(xiàn)存量?jī)H為混交林的一半[22]。同時(shí)山核桃林相結(jié)構(gòu)的改變,土壤溫差大,有機(jī)質(zhì)分解速度快;并且山核桃純林水土流失嚴(yán)重,造成林地土壤有機(jī)碳大量流失,從而導(dǎo)致土壤有機(jī)碳質(zhì)量分?jǐn)?shù)明顯下降。相關(guān)研究也表明,造成森林土壤有機(jī)碳降低的主要原因是森林凋落物歸還數(shù)量及其質(zhì)量改變,以及水土流失和經(jīng)營(yíng)措施對(duì)土壤的擾動(dòng)引起土壤有機(jī)質(zhì)加速分解或流失等[7-8]。
土壤輕組有機(jī)碳對(duì)耕作比較敏感,是反映不同措施下土壤質(zhì)量變化的較好指標(biāo),對(duì)于評(píng)價(jià)耕作影響土壤碳過(guò)程具有重要意義[23]。與傳統(tǒng)小麥Triticum aestivum-玉米Zea mays農(nóng)田土壤相比較,果園土壤輕組有機(jī)碳質(zhì)量分?jǐn)?shù)提高了136.4%[24]。隨著栽培年限的延長(zhǎng),日光溫室土壤LFOC質(zhì)量分?jǐn)?shù)顯著增加,而土壤HFOC增長(zhǎng)緩慢[25]。與上述研究結(jié)果相反,經(jīng)過(guò)5 a強(qiáng)度經(jīng)營(yíng),山核桃林地輕組有機(jī)碳質(zhì)量分?jǐn)?shù)降低了59.3%,LFOC/TOC從23.0%下降到17.0%,差異達(dá)顯著水平,集約經(jīng)營(yíng)20 a后,輕組有機(jī)碳質(zhì)量分?jǐn)?shù)則下降了68.2%,這主要是經(jīng)營(yíng)措施不同,有機(jī)物歸還的大小差異所造成的。
經(jīng)營(yíng)干擾對(duì)土壤有機(jī)碳的影響主要體現(xiàn)在表層[26]。20世紀(jì)50年代栽植的果園0~20 cm和20~40 cm土層輕組有機(jī)碳質(zhì)量分?jǐn)?shù)比20世紀(jì)80年代栽植的果園提高了23.6%和3.6%[21]。本研究也表明:不同經(jīng)營(yíng)年限山核桃林地土壤有機(jī)碳的變化主要發(fā)生在表層(0~10 cm),而表下層(10~30 cm)土壤不同組分有機(jī)碳在整個(gè)經(jīng)營(yíng)過(guò)程保持相對(duì)穩(wěn)定。
[1] 李鑒霖,江長(zhǎng)勝,郝慶菊.縉云山不同土地利用方式下土壤有機(jī)碳組分特征[J].生態(tài)學(xué)報(bào),2015,35(11):1-13.
LI Jianlin,JIANG Changsheng,HAO Qingju.Distribution characteristics of soil organic carbon and its physical fractions under the different land uses in Jinyun Mountain[J].Acta Ecol Sin,2015,35(11):1-13.
[2] CHRISTENSEN B T.Physical fractionation of soil and organic matter in primary particle size and density separates[J].Adv Soil Sci,1992,20(1):1-90.
[3] SIX J,ELLIOTT E T,PAUSTIAN K,et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J].Soil Sci Soc Am J,1998,62(5):1367-1377.
[4] BARRIOS E,BURESH,R J,KWESIGA F,et al.Light fraction soil organic matter and available nitrogen following trees and maize[J].Soil Sci Soc Am J,1997,61(3):826-831.
[5] 唐國(guó)勇,李昆,孫永玉,等.土地利用方式對(duì)土壤有機(jī)碳和碳庫(kù)管理指數(shù)的影響[J].林業(yè)科學(xué)研究,2011,24(6):754-759.
TANG Guoyong,LI Kun,SUN Yongyu,et al.Effects of land uses on soil organic carbon and carbon pool management index[J].For Res,2011,24(6):754-759.
[6] 藍(lán)家程,傅瓦利,袁波,等.巖溶山區(qū)土地利用方式對(duì)土壤活性有機(jī)碳及其分布的影響[J].中國(guó)巖溶,2011,30(2):175-180.
LAN Jiacheng,FU Wali,YUAN Bo,et al.Impact of land use type on soil active organic carbon and its distribution in karst mountain[J].Carsol Sin,2011,30(2):175-180.
[7] 楊玉盛,謝錦升,盛浩,等.中亞熱帶山區(qū)土地利用變化對(duì)土壤有機(jī)碳儲(chǔ)量和質(zhì)量的影響[J].地理學(xué)報(bào),2007,62(11):1123-1131.
YANG Yusheng,XIE Jinsheng,SHENG Hao,et al.The impact of land use/cover change on soil organic carbon stocks and quality in mid-subtropical mountainous area of southern China[J].Acta Geogr Sin,2007,62(11):1123-1131.
[8] LUAN Junwei,LIU Shirong,ZHU Xueling,et al.Soil carbon stock and flux in a warm-temperate oak chronosequence in China[J].Plant Soil,2011,347(1/2):243-253.
[9] BLAIR G J,LEFROY R D B,LISLE L.Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J].Aust J Agric Res,1995,46(7):1459-1466.
[10] BrEMER E,ELLERT B H,JANZEN H H.Total and light-fraction carbon dynamics during four decades after cropping changes[J].Soil Sci Soc Am J,1995,59(5):1398-1403.
[11] 王發(fā)剛,王啟基,王文穎.土壤有機(jī)碳研究進(jìn)展[J].草業(yè)科學(xué),2008,25(2):48-54. WANG Fagang,WANG Qiji,WANG Wenying.Research progress on soil organic matter[J].Pratac Sci,2008,25(2):48-54.
[12] 吳家森,張金池,黃堅(jiān)欽,等.浙江省臨安市山核桃產(chǎn)區(qū)林地土壤有機(jī)碳分布特征[J].浙江大學(xué)學(xué)報(bào):農(nóng)業(yè)與生命科學(xué)版,2013,39(4):413-420.
WU Jiasen,ZHANG Jinchi,HUANG Jianqin,et al.Distribution characteristics of soil organic carbon in Carya cathayensis producing regions of Lin’an City,Zhejiang Province[J].J Zhejiang Univ Agric&Life Sci,2013,39(4):413-420.
[13] 吳家森.山核桃人工林土壤有機(jī)碳變化特征[D].南京:南京林業(yè)大學(xué),2014.
WU Jiasen.Study on the Characteristics of Soil Organic Carbon under Carya cathayensis Stands[D].Nanjing:Nan-Jing Forestry University,2014.
[14] 錢進(jìn)芳,吳家森,黃堅(jiān)欽.生草栽培對(duì)山核桃林地土壤肥力和微生物功能多樣性的影響[J].生態(tài)學(xué)報(bào),2014,34(15):4324-4332.
QIAN Jinfang,WU Jiasen,HUANG Jianqin.Effects of sod-cultural practices on soil nutrients and microbial diversity in the Carya cathayensis forest[J].Acta Ecol Sin,2014,34(15):4324-4332.
[15] 魯如坤.土壤農(nóng)業(yè)化學(xué)分析方法[M].北京:中國(guó)農(nóng)業(yè)科技出版社,1999:108,116-118.
[16] BATLLE-BAYER L,BATJES N H,BINDRABAN P S.Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado:a review[J].Agric Ecosyt&Environ,2010,137(1/2):47-58.
[17] AREVALO C B M,BHATTI J S,CHANG S X,et al.Ecosystemcarbon stocks and distribution under different landuse in north central Alberta,Canada[J].For Ecol Manage,2009,257(8):1776-1785.
[18] WU Jiasen,JIANG Peikun,CHANG S X,et al.Dissolved soil organic carbon and nitrogen were affected by conversion of native forests to plantations in subtropical China[J].Can J Soil Sci,2010,90(1):27-36.
[19] 周國(guó)模,徐建明,吳家森,等.毛竹林集約經(jīng)營(yíng)過(guò)程中土壤活性有機(jī)碳庫(kù)的演變[J].林業(yè)科學(xué),2006,42(6):124-128.
ZHOU Guomo,XU Jianming,WU Jiasen,et al.Changes in soil active organic carbon with history of intensive management of Phyllostachy pubescens forest[J].Sci Silv Sin,2006,42(6):124-128.
[20] 郭恢財(cái),廖鵬飛,陳伏生.臍橙果園土壤養(yǎng)分動(dòng)態(tài)與酶活性的季節(jié)變化[J].生態(tài)學(xué)雜志,2010,29(4):754-759.
GUO Huicai,LIAO Pengfei,CHEN Fusheng.Seasonal changes of soil nutrient supply and enzyme activities in navel orange orchards of south Jiangxi[J].Chin J Ecol,2010,29(4):754-759.
[21] 王義祥,葉菁,王成己,等.不同經(jīng)營(yíng)年限對(duì)柑橘果園土壤有機(jī)碳及其組分的影響[J].生態(tài)環(huán)境學(xué)報(bào),2014, 23(10):1574-1580.
WANG Yixiang,YE Jing,WANG Chengji,et al.Effect of different cultivation years on soil organic carbon pools in citrus orchards[J].Ecol Environ Sci,2014,23(10):1574-1580.
[22] 吳家森,錢進(jìn)芳,童志鵬,等.山核桃林集約經(jīng)營(yíng)過(guò)程中土壤有機(jī)碳和微生物功能多樣性的變化[J].應(yīng)用生態(tài)學(xué)報(bào),2014,25(9):2486-2492.
WU Jiasen,QIAN Jinfang,TONG Zhipeng,et al.Changes in soil organic carbon and soil microbial functional diversity of Carya cathayensis plantations under intensive managements[J].Chin J Appl Ecol,2014,25(9):2486-2492.
[23] CHAN K Y,HEENAN D P,OATES A.Soil carbon fractions and relationship to soil quality under different tillage and stubble management[J].Soil Tillage Res,2002,63(3/4):133-139.
[24] 楊長(zhǎng)明,歐陽(yáng)竹,楊林章,等.農(nóng)業(yè)土地利用方式對(duì)華北平原土壤有機(jī)碳組分和團(tuán)聚體穩(wěn)定性的影響[J].生態(tài)學(xué)報(bào),2006,26(12):4148-4155.
YANG Changming,OUYANG Zhu,YANG Linzhang,et al.Organic carbon fractions and aggregate stability in an aquatic soil as influenced by agricultural land uses in the Northern China Plain[J].Acta Ecol Sin,2006.26(12):4148-4155.
[25] 郭冉,梁成華,杜立宇,等.栽培年限對(duì)日光溫室土壤團(tuán)聚體有機(jī)碳含量與組分的影響[J].中國(guó)土壤與肥料,2013(5):24-28.
GUO Ran,LIANG Chenghua,DU Liyu,et al.The content and components of different fractions in aggregates soil organic carbon of solar greenhouse at different planted years[J].Soil Fert Sci China,2013(5):24-28.
[26] 蔡立群,齊鵬,張仁陟,等.不同保護(hù)性耕作措施對(duì)麥—豆輪作土壤有機(jī)碳庫(kù)的影響[J].中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2009,17(1):1-6.
CAI Liqun,QI Peng,ZHANG Renzhi,et al.Effects of different conservation tillage measures on soil organic carbon pool in two sequence rotation systems of spring wheat and pease[J].Chin J Eco-Agric,2009,17(1):1-6.
Years of cultivation along with light and high fractions of soil organic carbon in a Carya cathayensis forest
SHENG Weixing1,WU Jiasen2,XU Jianchun3,ZHANG Shaowei4,CAI Jianrong1
(1.Forest Enterprise of Jiande City,Jiande 311600,Zhejiang,China;2.School of Environmental and Resource Sciences,Zhejiang A&F University,Lin’an 311300,Zhejiang,China;3.Forest Enterprise of Kaihua City,Kaihua 324300,Zhejiang,China;4.Forest Farm of Xin’anjiang,Jiande 311600,Zhejiang,China)
Forests of Carya cathayensis(Chinese hickory),a unique tree species with seeds that produce highgrade oil.Intensive management including heavy application of chemical fertilizer and long-term application of herbicides has resulted in serious soil organic carbon (SOC)decrea.To evaluate what kind of composition of SOC decrea,soil samples collected from intensively-managed forests (IMF)of 5,10,15,and 20 years were compared to samples of IMF forests newly converted(year 0)from an evergreen and deciduous broadleaf forest(EDBF).The results indicated that SOC,light fraction organic carbon(LFOC),and high fraction organic carbon (HFOC)decreased after converting an EDBE to an IMF.Compared to the EDBF,in the Chinese hickory forest with 20 years intensive management,there was a decrease in SOC(38.6%),LFOC(68.2%),and HFOC(26.0%).After 5 years of intensive management,LFOC/SOC decreased from 23.0%to 17.0%;whereas HFOC/ SOC increased from 70.0%to 83.0%.The results demonstrate that LFOC is the main composition of SOC decreased after converting an EDBE to an IMF.[Ch,3 fig.2 tab.26 ref.]
forest soil science;light fraction organic carbon(LFOC);heavy fraction organic carbon(HFOC); Carya cathayensis
S714.5
A
2095-0756(2015)05-0803-06
10.11833/j.issn.2095-0756.2015.05.022
2014-12-01;
2015-03-04
浙江省科學(xué)技術(shù)重點(diǎn)科技創(chuàng)新團(tuán)隊(duì)資助項(xiàng)目(2009R50033)
盛衛(wèi)星,工程師,從事林業(yè)科技推廣研究。E-mail:89357222@qq.com。通信作者:吳家森,教授級(jí)高級(jí)工程師,博士,從事森林土壤與環(huán)境研究。E-mail:jswu@zafu.edu.cn