畢君輝+葛文春+張彥龍+楊浩+王智慧
摘要:報(bào)道了佳木斯地塊東部錦山花崗雜巖體的鋯石LAICPMS UPb定年結(jié)果、全巖地球化學(xué)和鋯石Hf同位素特征,確定了花崗質(zhì)巖石的形成時(shí)代、源區(qū)性質(zhì)及其地球動(dòng)力學(xué)背景,同時(shí)也為中亞造山帶東段的構(gòu)造演化提供重要線索?;◢弾r的鋯石主要呈自形—半自形晶,發(fā)育顯著的震蕩生長(zhǎng)環(huán)帶,w(Th)/w(U)值在0.12~1.20之間,顯示其典型的巖漿成因。測(cè)年結(jié)果表明這些花崗質(zhì)巖石形成于早—中二疊世(260~278 Ma)。地球化學(xué)特征顯示:花崗質(zhì)巖石w(SiO2)值為6675%~7010%,w(Na2O)值為440%~523%,w(K2O)值為077%~280%,w(K2O)/w(Na2O)值為018~061,A/CNK值為097~114;這些巖石富集大離子親石元素(Rb、Ba和K),相對(duì)虧損高場(chǎng)強(qiáng)元素(Nb、Ta、P、Zr、Ti和Hf)。鋯石原位Hf同位素分析顯示,花崗巖的εHf(t)值介于-0.8~7.7之間,兩階段Hf模式年齡介于953~1 578 Ma之間。該區(qū)花崗質(zhì)巖石屬于偏鋁質(zhì)—弱過(guò)鋁質(zhì)的低鉀—中鉀鈣堿性I型花崗巖,原始巖漿起源于中—新元古代增生的下地殼物質(zhì)的部分熔融。結(jié)合區(qū)域研究資料,研究區(qū)內(nèi)早—中二疊世花崗巖就位于活動(dòng)大陸邊緣環(huán)境,其形成可能與佳木斯地塊東側(cè)古大洋板塊的西向俯沖作用有關(guān)。
關(guān)鍵詞:花崗巖;二疊紀(jì);鋯石UPb定年;巖石成因;活動(dòng)大陸邊緣;俯沖作用;佳木斯地塊
中圖分類號(hào):P595;P597文獻(xiàn)標(biāo)志碼:A
0引言
中國(guó)東北地區(qū)位于中亞造山帶東段[12],為典型的顯生宙增生造山帶,Sengor等將其稱為阿爾泰構(gòu)造拼貼帶[3]。東北地區(qū)經(jīng)歷了古亞洲洋和太平洋兩大構(gòu)造域演化階段以及若干中、小塊體復(fù)雜拼貼演化歷史的構(gòu)造拼貼[46],自西北向東南依次為額爾古納地塊、興安地塊、松遼地塊、佳木斯地塊和興凱地塊[79]。此外,東北地區(qū)廣泛發(fā)育古生代—中生代花崗巖[1013]。近年來(lái),不少學(xué)者對(duì)大興安嶺地區(qū)花崗巖的形成時(shí)代、地殼增生以及區(qū)域構(gòu)造演化歷史進(jìn)行了較為詳細(xì)的研究[1,1422],而對(duì)黑龍江東部花崗巖(特別是古生代花崗巖)的研究則相對(duì)薄弱[10]。隨著佳木斯地塊麻山雜巖約500 Ma變質(zhì)年齡的報(bào)道和顯生宙花崗巖年齡的確定,使該地塊的基底組成和構(gòu)造屬性等問(wèn)題成為國(guó)內(nèi)外學(xué)者研究的熱點(diǎn)之一[78,2329]。目前,佳木斯地塊花崗巖的研究主要集中在南部穆棱—牡丹江、雞西等地區(qū),對(duì)佳木斯地塊東部的研究十分匱乏,不利于提高和完善對(duì)佳木斯地塊的整體認(rèn)識(shí)。研究區(qū)位于佳木斯地塊東部的錦山地區(qū),此前并沒(méi)有同位素年代學(xué)資料記載該區(qū)花崗質(zhì)巖石的形成時(shí)代,制約了對(duì)本區(qū)花崗巖成因及其地質(zhì)意義的研究。基于此,筆者通過(guò)對(duì)錦山花崗雜巖體鋯石UPb年代學(xué)和地球化學(xué)研究,明確巖體的形成時(shí)代及其成因,并結(jié)合區(qū)域地質(zhì)資料,進(jìn)一步探討了該區(qū)的構(gòu)造背景及其動(dòng)力學(xué)機(jī)制等問(wèn)題。
1地質(zhì)概況及樣品特征
佳木斯地塊是中亞造山帶在中國(guó)東北的一個(gè)重要構(gòu)造單元[3],也是興蒙造山帶若干變質(zhì)地體中最著名的一個(gè),地處西伯利亞克拉通和華北克拉通之間。該地塊呈SN向帶狀展布,向南、北可分別延伸到興凱地塊和俄羅斯境內(nèi)的布列亞地塊[圖1(a)]。Wilde等研究認(rèn)為它們有著一致的早期地殼演化史,稱其為佳木斯—興凱—布列亞地塊[2425,30]。佳木斯地塊東緣發(fā)育晚古生代躍進(jìn)山增生雜巖,與中生代就位的那丹哈達(dá)地體相鄰,西以嘉蔭—牡丹江斷裂為界。
佳木斯地塊的結(jié)晶基底主要由麻粒巖相角閃巖相變質(zhì)的麻山雜巖和大面積出露的花崗質(zhì)巖石組成。黑龍江省地質(zhì)礦產(chǎn)局報(bào)道佳木斯地塊形成于太古代[31],但近期研究結(jié)果表明,該地塊麻粒巖相變質(zhì)作用發(fā)生在約500 Ma[2332],并且主要存在515~530、254~270 Ma兩期花崗質(zhì)巖漿作用[910]。其中,兩期花崗質(zhì)巖石分別形成于泛非期變質(zhì)造山作用和古大洋板塊的俯沖作用,共同侵入到麻山雜巖中,是佳木斯地塊的重要組成部分。此外,該地塊東緣還發(fā)育有二疊紀(jì)火山巖[33]。
興凱地塊位于中亞造山帶最南端[34],大部分出露于俄羅斯境內(nèi),只有少部分延伸到中國(guó)東北[圖1(a)]。中國(guó)的興凱地塊主要由前寒武紀(jì)變質(zhì)基底巖石和各時(shí)代的花崗質(zhì)巖石組成。其中,前寒武紀(jì)變質(zhì)基底巖石零星出露,其變質(zhì)程度及巖石特征相當(dāng)于佳木斯地塊的麻山雜巖[31]。興凱地塊的花崗質(zhì)巖石主要有與泛非期變質(zhì)造山作用有關(guān)的花崗巖[8]、大面積未變形的具有活動(dòng)大陸邊緣屬性的二疊紀(jì)花崗巖[30,35]以及造山后擴(kuò)張伸展環(huán)境下的三疊紀(jì)花崗巖[35]。
F1為索倫—西拉木倫—長(zhǎng)春斷裂;F2為嘉蔭—牡丹江斷裂;F3為賀根山—黑河斷裂;F4為新林—喜貴圖斷裂;
F5為伊通—依蘭斷裂;F6為敦化—密山斷裂;圖(a)引自文獻(xiàn)[36];圖(b)引自文獻(xiàn)[31]
錦山花崗雜巖體位于黑龍江省富錦市錦山鎮(zhèn)西南,大地構(gòu)造位置屬于佳木斯地塊東部[圖1(a)]。該巖體呈SN向展布的巖株?duì)町a(chǎn)出,主要被白堊紀(jì)東大嶺組和第四系所覆蓋。黑龍江省地質(zhì)礦產(chǎn)局依據(jù)巖石類型和地層對(duì)比,將本區(qū)花崗巖劃分為古元古代[31]。本文通過(guò)詳細(xì)的野外地質(zhì)調(diào)查表明,錦山花崗雜巖體主要巖石類型為二長(zhǎng)花崗巖和花崗閃長(zhǎng)巖,局部可見(jiàn)晚期侵入的輝綠巖脈,但由于受野外出露情況的限制,并未見(jiàn)巖性變化的直接證據(jù)。
細(xì)粒角閃黑云二長(zhǎng)花崗巖呈細(xì)?;◢徑Y(jié)構(gòu)和塊狀構(gòu)造。主要礦物為石英(體積分?jǐn)?shù)為20%~25%)、斜長(zhǎng)石(30%~40%)、正長(zhǎng)石(20%~30%)、黑云母(5%~8%)和角閃石(低于5%)。石英呈他形粒狀且波狀消光;斜長(zhǎng)石呈半自形板柱狀,聚片雙晶發(fā)育,絹云母化蝕變嚴(yán)重,邊部可見(jiàn)蠕蟲(chóng)構(gòu)造,粒徑02~0.8 mm;正長(zhǎng)石呈半自形板柱狀,卡式雙晶發(fā)育,局部可見(jiàn)高嶺土化蝕變;黑云母呈鱗片狀,粒徑02~05 mm,普遍發(fā)育綠泥石化蝕變[圖2(a)]。副礦物主要為鋯石、磷灰石和少量不透明礦物等。
中細(xì)粒黑云花崗閃長(zhǎng)巖呈中細(xì)粒花崗結(jié)構(gòu)和主體塊狀構(gòu)造,局部可見(jiàn)弱片麻狀構(gòu)造。主要礦物為石英(體積分?jǐn)?shù)為25%~30%)、斜長(zhǎng)石(40%~50%)、堿性長(zhǎng)石(10%~15%)和黑云母(5%~10%),含少量角閃石。石英呈他形粒狀且波狀消光,粒徑為0.2~0.8 mm;斜長(zhǎng)石呈半自形板柱狀,聚片雙晶發(fā)育清晰,個(gè)別顆??梢?jiàn)環(huán)帶結(jié)構(gòu),粒徑大小不等(0.5~3 mm);堿性長(zhǎng)石呈半自形—他形板柱狀,以條紋長(zhǎng)石為主,局部可見(jiàn)高嶺土化蝕變,粒徑0.5~1.5 mm;黑云母呈鱗片狀,綠泥石化發(fā)育,具有普魯士藍(lán)的異常干涉色;普通角閃石呈柱狀,具有淺綠—綠色多色性[圖2(b)]。副礦物主要為鋯石、榍石,以及少量磷灰石和不透明礦物等。
2分析方法
2.1鋯石UPb定年
用于鋯石UPb定年的樣品均采自天然露頭和采石場(chǎng)的新鮮樣品。樣品的破碎和鋯石的挑選工作在河北省廊坊市宇能巖石礦物分選技術(shù)服務(wù)有限公司完成。在陰極發(fā)光(CL)圖像基礎(chǔ)上,采用激光剝蝕電感耦合等離子體質(zhì)譜計(jì)(LAICPMS)法對(duì)鋯石進(jìn)行微區(qū)原位單點(diǎn)UPb同位素定年。試驗(yàn)在中國(guó)地質(zhì)大學(xué)(武漢)地質(zhì)過(guò)程與礦產(chǎn)資源國(guó)家重點(diǎn)實(shí)驗(yàn)室完成,分析儀器為由美國(guó)New Wave Research Inc.公司生產(chǎn)的激光剝蝕進(jìn)樣系統(tǒng)(UPI93SS)和由美國(guó)AGILENT科技有限公司生產(chǎn)的Agilent7500a型四級(jí)桿等離子體質(zhì)譜儀聯(lián)合構(gòu)成的激光等離子體質(zhì)譜儀(LAICPMS),激光束斑直徑為36 μm,激光器工作頻率為10 Hz。試驗(yàn)中,采用氦氣作為剝蝕物質(zhì)的載氣,利用美國(guó)國(guó)家標(biāo)準(zhǔn)技術(shù)研究院研制的人工合成硅酸鹽玻璃標(biāo)準(zhǔn)參考物質(zhì)NIST SRM610進(jìn)行儀器最佳化,利用哈佛大學(xué)國(guó)際標(biāo)準(zhǔn)鋯石91500作為外部校正[37],單個(gè)數(shù)據(jù)點(diǎn)誤差類型為1σ,加權(quán)平均年齡誤差類型為2σ。樣品的同位素比值計(jì)算選用澳大利亞Glitter 4.4數(shù)據(jù)處理軟件,并采用Andersen的方法對(duì)同位素比值進(jìn)行校正[38],以消除普通204Pb的影響。
2.2Hf同位素分析
鋯石原位LuHf同位素分析在中國(guó)科學(xué)院地質(zhì)與地球物理研究所完成。試驗(yàn)采用Neptune多接收電感耦合等離子體質(zhì)譜儀和Geolas193 nm準(zhǔn)分子激光取樣系統(tǒng)(LAMCICPMS),激光束斑直徑36 μm,激光頻率8 Hz。詳細(xì)測(cè)試流程以及儀器運(yùn)行原理等參見(jiàn)文獻(xiàn)[39]。試驗(yàn)過(guò)程中,標(biāo)準(zhǔn)鋯石GJ1和MUD測(cè)定的N(176Hf)/N(177Hf)值分別為0282 020±0000 008、0282 508±0000 007,該值與目前用溶液法獲得的值在誤差范圍內(nèi)一致[4041]。在εHf(t)值計(jì)算中,采用BlichertToft等所推薦的球粒隕石值[42],Hf同位素單階段模式年齡(TDM1)以虧損地幔為參考計(jì)算,兩階段模式年齡(TDM2)采用大陸地殼平均組成來(lái)計(jì)算。
2.3主量、微量和稀土元素分析
主量、微量和稀土元素的分析均在核工業(yè)北京地質(zhì)研究院分析測(cè)試研究中心完成。其中,主量元素在RigakuRIX型熒光光譜儀(XRF)上進(jìn)行,微量、稀土元素的分析采用PEElan6000型電感耦合等離子體質(zhì)譜儀(ICPMS)完成。測(cè)量采用自動(dòng)進(jìn)樣的方式,以外部標(biāo)準(zhǔn)校正方法進(jìn)行。對(duì)國(guó)際標(biāo)樣玄武巖(BHVO1、BCR2)和安山巖(AGV1)的分析結(jié)果表明,主量元素分析精度優(yōu)于5%,微量元素分析精度一般優(yōu)于10%[43]。
3分析結(jié)果
3.1鋯石UPb定年結(jié)果
3件樣品的鋯石LAICPMS UPb定年數(shù)據(jù)列于表1。陰極發(fā)光(CL)圖像顯示:鋯石多呈自形—半自形晶,發(fā)育有明顯的巖漿振蕩環(huán)帶(圖3)。較高的w(Th)/w(U)值(0.12~1.20)表明鋯石具有典型的巖漿成因[3638]。
樣品11GW041采自黑龍江省富錦市錦山鎮(zhèn)仁義村西南采石場(chǎng)(47°05′00.2″N,131°42′32.9″E),巖石類型為細(xì)粒角閃黑云二長(zhǎng)花崗巖。22個(gè)鋯石分析點(diǎn)的測(cè)試結(jié)果表明,所測(cè)鋯石的同位素分析數(shù)據(jù)均落在諧和線上及其附近[圖4(a)]。其中10個(gè)鋯石分析點(diǎn)的n(206Pb)/n(238U)年齡集中分布在253~267 Ma之間,加權(quán)平均值為(261±3)Ma,平均標(biāo)準(zhǔn)權(quán)重偏差(MSWD)為090,應(yīng)代表巖漿結(jié)晶年齡;另有11個(gè)鋯石分析點(diǎn)的n(206Pb)/n(238U)年齡加權(quán)平均值為(288±4)Ma,MSWD值為20;1個(gè)鋯石的諧和年齡為(502±7)Ma,應(yīng)為巖體捕獲的早期巖漿鋯石。
樣品13GW197采自黑龍江省富錦市錦山鎮(zhèn)仁義村西南采石場(chǎng)(47°05′02.6″N,131°42′29.3″E),巖石類型為細(xì)粒角閃黑云二長(zhǎng)花崗巖。18個(gè)鋯石分析點(diǎn)的測(cè)試數(shù)據(jù)均分布在諧和線上及其附近。其中16個(gè)鋯石分析點(diǎn)的n(206Pb)/n(238U)年齡集中分布在272~286 Ma之間,年齡加權(quán)平均值為(278±3)Ma,MSWD值為037[圖4(b)],代表了巖漿結(jié)晶年齡;另外2個(gè)鋯石分析點(diǎn)的年齡分別為(342±5)、(345±7)Ma,可能為捕獲鋯石;其余鋯石分析點(diǎn)可能因后期不同程度的放射性成因Pb丟失,導(dǎo)致數(shù)據(jù)點(diǎn)遠(yuǎn)離諧和線分布而未參與計(jì)算。
樣品10GW251采自黑龍江省富錦市錦山鎮(zhèn)南采石場(chǎng)(47°02′02.5″N,131°43′12.7″E),巖石類型為中細(xì)粒黑云花崗閃長(zhǎng)巖。24個(gè)鋯石分析點(diǎn)的結(jié)果表明,18個(gè)鋯石分析點(diǎn)的同位素分析數(shù)據(jù)落在諧和線上及其附近[圖4(c)]。其中3個(gè)鋯石分析點(diǎn)的n(206Pb)/n(238U)年齡加權(quán)平均值為(260±8)Ma,MSWD 值為0.81,代表樣品巖漿結(jié)晶年齡;另有13個(gè)鋯石分析點(diǎn)的n(206Pb)/n(238U)年齡加權(quán)平均值為(461±5)Ma,MSWD值為012;2個(gè)鋯石分析點(diǎn)的諧和年齡分別為(532±13)、(532±12)Ma,應(yīng)為巖體捕獲的早期巖漿鋯石;其余鋯石分析點(diǎn)可能因放射性成因Pb丟失,導(dǎo)致其遠(yuǎn)離諧和線分布。
3.2地球化學(xué)特征
3.2.1主量和微量元素
主量和微量元素分析結(jié)果及相關(guān)參數(shù)列于表2。由表2可以看出,研究區(qū)內(nèi)6個(gè)花崗質(zhì)巖石樣品的主量、微量元素特征較為一致。SiO2含量(質(zhì)量分?jǐn)?shù),下同)主要介于6675%~7010%之間,w(Na2O)值為440%~523%,w(K2O)值為077%~280%,w(Na2O)+w(K2O)值為518%~784%,w(K2O)/w(Na2O)值為018~061,w(Al2O3)值為1436%~1567%,A/CNK值為097~114。在A/CNKA/NK圖解中,呈現(xiàn)出準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)特征[圖5(a)];在SiO2K2O圖解上,整體具有中鉀鈣堿性系列的特征[圖5(b)]。
在稀土元素配分模式中,所有樣品均表現(xiàn)為輕稀土元素(LREE)富集、重稀土元素(HREE)虧損和Eu異常較弱的特征[圖6(a)]。二長(zhǎng)花崗巖的稀土元素總含量為(127.88~140.36)×10-6,wLREE/wHREE值為(5.67~6.24)×10-6,w(La)N/w(Yb)N值為5.03~5.77,w(Ce)N/w(Yb)N值為394~446,Eu異常為0.72~0.96;花崗閃長(zhǎng)巖的稀土元素總含量為(92.83~97.24)×10-6,wLREE/wHREE值為(11.61~14.63)×10-6,w(La)N/w(Yb)N值為1501~21.09,w(Ce)N/w(Yb)N值為11.32~14.41,Eu異常為0.84~1.05。在原始地幔標(biāo)準(zhǔn)化微量元素蛛網(wǎng)圖[圖6(b)]中,花崗質(zhì)巖石整體上表現(xiàn)出富集Rb、Ba和K等大離子親石元素(LILE),相對(duì)虧損Nb、Ta、P、Ti、Zr和Hf等高場(chǎng)強(qiáng)元素(HFSE)的特征?;◢忛W長(zhǎng)巖的高場(chǎng)強(qiáng)元素虧損較明顯,可能暗示著巖漿源區(qū)或巖漿結(jié)晶分異過(guò)程中磷灰石、金紅石和含鈦(如鈦鐵礦、榍石等)等副礦物存在分離結(jié)晶作用。此外,研究區(qū)內(nèi)樣品的w(Nb)/w(Ta)值和w(Zr)/w(Hf)值存在較大分異,可能是花崗質(zhì)巖漿對(duì)源區(qū)的繼承性造成的。
3.2.2鋯石Hf同位素
鋯石原位LuHf同位素測(cè)試結(jié)果見(jiàn)表3和圖7。所測(cè)鋯石在形成后具有較低的放射性成因176Hf積累(n(176Lu)/n(177Hf)值絕大多數(shù)小于0002),因此,n(176Lu)/n(177Hf)值基本代表了其形成時(shí)的初始值。
二長(zhǎng)花崗巖(樣品11GW041)共分析了15個(gè)鋯石分析點(diǎn)(表3),其中7個(gè)捕獲鋯石分析點(diǎn)的年齡介于288~502 Ma,它們的N(176Hf)/N(177Hf)值介于0282 649~0.282 726之間,εHf(t)值為0.2~3.7,TDM1值為765~962 Ma,TDM2值為1 052~1 339 Ma。7個(gè)巖漿鋯石分析點(diǎn)的年齡介于253~263 Ma之間,N(176Hf)/N(177Hf)值介于0282 642~0282 771之間,εHf(t)值為-0.8~5.3,TDM1值為699~927 Ma,TDM2值為953~1 339 Ma(圖7)?;◢忛W長(zhǎng)巖(樣品10GW251)共分析了24個(gè)鋯石分析點(diǎn)(表3),其中14個(gè)捕獲鋯石分析點(diǎn)的年齡介于461~532 Ma之間,它們的N(176Hf)/N(177Hf)值介于0282 592~0282 731之間,εHf(t)值為35~86,TDM1值為741~932 Ma,TDM2值為1 094~1 527 Ma。3個(gè)巖漿鋯石的年齡介于257~269 Ma之間,N(176Hf)/N(177Hf)值介于0282 604~0282 770之間,εHf(t)值為1.5~7.7,TDM1值為587~843 Ma,TDM2值為1 013~1 578 Ma(圖7)。
錦山地區(qū)不同巖性的花崗質(zhì)巖石具有一致的鋯石Hf同位素特征,即鋯石εHf(t)值介于-08~77之間,兩階段Hf模式年齡介于953~1 578 Ma之間。另外,捕獲鋯石也表現(xiàn)出相似的特征。
4討論
4.1晚古生代花崗巖的形成時(shí)代
通過(guò)對(duì)錦山花崗雜巖體中3個(gè)具有代表性的樣品進(jìn)行精確的鋯石LAICPMS UPb同位素定年測(cè)試研究,所測(cè)樣品的鋯石主要呈自形—半自形晶,振蕩生長(zhǎng)環(huán)帶清晰(圖2),樣品具有相對(duì)較高的w(Th)/w(U)值(0.12~1.20),顯示其巖漿成因的特征。鋯石UPb定年結(jié)果表明,3個(gè)樣品的成巖年齡分別為(261±3)、(278±3)、(260±8)Ma(表1、圖4),表明錦山花崗雜巖體形成于早—中二疊世巖漿的多次侵入,并非黑龍江省地質(zhì)礦產(chǎn)局確定的新元古代[31]。
錦山花崗雜巖體的鋯石UPb定年結(jié)果與佳木斯地塊曾報(bào)道過(guò)的二疊紀(jì)花崗質(zhì)巖漿活動(dòng)的時(shí)代(254~284 Ma)一致。代表性巖體有美作巖體(年齡為(259±4)Ma)、柴河巖體((254±5)Ma)、楚山巖體((256±5)Ma)、石場(chǎng)巖體((267±2)Ma)、六連巖體((284±2)Ma)等[9,4849],反映了佳木斯地塊存在二疊紀(jì)巖漿活動(dòng)。這也得到了佳木斯地塊東部二疊世(263~293 Ma)火山巖的支持[33]。另外,興凱地塊同樣存在該期巖漿活動(dòng),代表性花崗巖體有楊田寨南山巖體(年齡為(257±2)Ma)、朝鮮屯巖體((287±3)Ma)和興凱鎮(zhèn)東發(fā)村晚二疊世流紋巖((264±7)Ma)等[30,35,50]。上述定年結(jié)果揭示出,佳木斯—興凱地塊在二疊紀(jì)均發(fā)生大規(guī)模的構(gòu)造巖漿熱事件,表明它們可能有著相同的早期地質(zhì)演化歷史。
4.2巖石成因
花崗質(zhì)巖石的起源可以分為幔源巖漿的結(jié)晶分異[51]、巖漿混合過(guò)程[52]和地殼物質(zhì)的部分熔融[35]。本文所研究的花崗質(zhì)巖石具有高Si和貧Ca、Fe、Mg以及過(guò)渡族元素(Sc、Ti、Cr)的地球化學(xué)屬性,結(jié)合研究區(qū)內(nèi)未發(fā)現(xiàn)鐵鎂質(zhì)侵入體,表明它們起源于地殼物質(zhì)的部分熔融,而不是幔源巖漿的結(jié)晶分異或殼幔巖漿的混合作用,同時(shí)也得到該期花崗巖中含有較老的鋯石顆粒或殘留的支持[9]。所有樣品均具有準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)(A/NK值大于10,A/CNK 值小于1.1)的低鉀—中鉀鈣堿性系列巖石特征(圖5),并結(jié)合巖石中角閃石的出現(xiàn)(圖2),揭示出這些花崗質(zhì)巖石屬于殼源成因的I型花崗巖[53]。另外,鋯石εHf(t)值介于-08~77之間,兩階段Hf模式年齡介于953~1 578 Ma之間(表3、圖7),反映巖漿源區(qū)巖石應(yīng)為新增生的年輕地殼物質(zhì)。然而,研究區(qū)內(nèi)的花崗巖具有多樣性的地球化學(xué)組成,強(qiáng)烈地表明這些花崗質(zhì)巖石具有不同的成因過(guò)程。
花崗閃長(zhǎng)巖的地球化學(xué)特征顯示其具有強(qiáng)虧損的重稀土元素和較弱的Eu異常,相對(duì)高的w(Sr)值((394~487)×10-6)、w(Sr)/w(Y) 值(38.25~6118)、w(La)N/w(Yb)N 值(15.01~21.09)、w(Ce)N/w(Yb)N值(11.32~14.41)和低的w(Yb)值((0.73~0.95)×10-6)、w(Y)值((7.96~1030)×10-6)(表2、圖6),表明其母巖起源于下地殼物質(zhì)的部分熔融,高壓(高于1 500 MPa)殘留相中存在石榴子石和輝石,而無(wú)斜長(zhǎng)石[5456]。試驗(yàn)研究表明,下地殼玄武巖或角閃巖的部分熔融可導(dǎo)致源區(qū)石榴子石和輝石的殘留[57]。因此,可以認(rèn)為花崗閃長(zhǎng)巖起源于高壓條件下地殼基性巖石的部分熔融。
相比之下,二長(zhǎng)花崗巖具有相對(duì)高的w(Yb)值((3.13~3.23)×10-6)、w(Y)值((28.1~30.4)×10-6)和wHREE值以及低的w(Al2O3) 值(14.68%~17.82%)、w(La)N/w(Yb)N值(5.03~5.77)、w(Ce)N/w(Yb)N值(394~446)、w(Sr)值((227~431) ×10-6),明顯虧損Nb、Ta和Ti等高場(chǎng)強(qiáng)元素[圖6(b)]。這些地球化學(xué)特征同島弧或活動(dòng)大陸邊緣型鈣堿性花崗巖的屬性相一致[5859]。其次,由弱到強(qiáng)的Eu負(fù)異常[圖6(a)]表明斜長(zhǎng)石在源區(qū)殘留相中停留或在巖漿演化過(guò)程中分離結(jié)晶;最后,相對(duì)高的Yb、Y含量排除了殘留相中有石榴子石的可能,表明其起源于低壓下地殼年輕物質(zhì)的部分熔融[6061]。上述地球化學(xué)特征表明,這些花崗質(zhì)巖石起源于島弧型地殼物質(zhì)的部分熔融。
4.3地質(zhì)意義
錦山花崗雜巖體的巖性為花崗閃長(zhǎng)巖和二長(zhǎng)花崗巖,屬于準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)的低鉀—中鉀鈣堿性I型花崗巖(圖5)。它們具有較高的w(Al2O3)值和w(Na2O)/w(K2O)值,富集大離子親石元素(如Rb、Ba、K)和虧損高場(chǎng)強(qiáng)元素(如Nb、Ta、P、Zr、Ti、Hf),表明二疊紀(jì)錦山花崗雜巖體形成于活動(dòng)大陸邊緣的構(gòu)造背景[62]。同時(shí),Nb、Ta的虧損暗示了巖漿不可能直接由軟流圈部分熔融產(chǎn)生,而應(yīng)該來(lái)自地殼或殼?;烊?,可能與俯沖作用有關(guān)[6364]。根據(jù)Pearce等的構(gòu)造環(huán)境判別圖[64](圖8),所有樣品顯示了火山弧花崗巖(VAG)的特征,因此,可以認(rèn)為造成佳木斯地塊東部二疊紀(jì)花崗巖類的動(dòng)力和熱力來(lái)源可能與古大洋板塊的俯沖作用有關(guān)。
吳福元等研究表明,佳木斯地塊東部除了發(fā)育有大量與板塊俯沖活動(dòng)有關(guān)的鈣堿性花崗巖外[9,30,35,4849],在其東緣及東南緣的寶清—密山地區(qū)發(fā)育一套同期具有活動(dòng)大陸邊緣構(gòu)造屬性的鈣堿性玄武巖安山巖英安巖流紋巖組合[33]。另外,興凱地塊二疊紀(jì)花崗質(zhì)巖石(年齡為257~287 Ma)和流紋巖((264±7)Ma)的發(fā)現(xiàn)同時(shí)反映了興凱地塊亦存在該期巖漿活動(dòng)[30,35,50]。這些二疊紀(jì)巖石(年齡為254~293 Ma)呈近NNE向帶狀展布[圖1(b)],暗示佳木斯地塊東部二疊紀(jì)期間處于活動(dòng)大陸邊緣的構(gòu)造背景,當(dāng)時(shí)應(yīng)該存在一個(gè)自東向西俯沖的大洋板塊[33]。
上述結(jié)果得到了兩方面的支持:首先,在佳木斯地塊西側(cè)松嫩—張廣才嶺地塊的小興安嶺和張廣才嶺地區(qū)分別發(fā)育一套伸展背景下的早二疊世A型花崗巖[11,65]和雙峰式玄武巖玄武質(zhì)安山巖英安巖流紋巖組合[66],其形成于佳木斯地塊東側(cè)古大洋板塊的西向俯沖作用導(dǎo)致該地區(qū)產(chǎn)生類似弧后盆地的伸展環(huán)境[66];其次,在佳木斯地塊和那丹哈達(dá)地體之間存在一套輝石巖輝長(zhǎng)巖蛇紋巖組成的巖套,以及具有洋脊玄武巖(MORB型)屬性的綠片巖相變質(zhì)巖被發(fā)現(xiàn)[67]。因此,可以認(rèn)為在佳木斯地塊東緣曾發(fā)生過(guò)一次晚古生代古大洋板塊的俯沖增生事件。綜上所述,本文認(rèn)為佳木斯—興凱地塊東部二疊紀(jì)期間應(yīng)處于活動(dòng)大陸邊緣的構(gòu)造背景,其形成可能與佳木斯地塊東側(cè)古大洋板塊的西向俯沖作用有關(guān)。
5結(jié)語(yǔ)
(1)鋯石LAICPMS UPb定年結(jié)果表明,錦山花崗雜巖體形成于早—中二疊世巖漿(年齡為260~278 Ma)的多次侵入。結(jié)合前人確定的二疊紀(jì)巖漿活動(dòng)的空間分布,判定佳木斯地塊存在該期構(gòu)造巖漿熱事件。
(2)錦山二疊紀(jì)花崗質(zhì)巖石屬于準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)的低鉀—中鉀鈣堿性I型花崗巖,其原始巖漿起源于中—新元古代增生的下地殼物質(zhì)的部分熔融。
(3)佳木斯—興凱地塊東部二疊紀(jì)期間應(yīng)處于活動(dòng)大陸邊緣的構(gòu)造背景,其形成可能與佳木斯地塊東側(cè)古大洋板塊的西向俯沖作用有關(guān)。
參考文獻(xiàn):
[1]JAHN B M,WU F Y,CHEN B.Massive Granitoid Generation in Central Asia:Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic[J].Episodes,2000,23(2):8292.
[2]WU F Y,JAHN B M,WILDE S A,et al.Phanerozoic Crustal Growth:UPb and SrNd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics,2000,328(1/2):89113.
[3]SENGOR A M C,NATALIN B A,BURTMAN V S.Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia[J].Nature,1993,364:299307.
[4]邵濟(jì)安,唐克東,王成源,等.那丹哈達(dá)地體的構(gòu)造特征及演化[J].中國(guó)科學(xué):B輯,1991(7):744751.
SHAO Jian,TANG Kedong,WANG Chengyuan,et al.The Tectonic Characteristics and Evolution of Nadanhada Terrane[J].Science in China:Series B,1991(7):744751.
[5]李雙林,歐陽(yáng)自遠(yuǎn).興蒙造山帶及鄰區(qū)的構(gòu)造格局與構(gòu)造演化[J].海洋地質(zhì)與第四紀(jì)地質(zhì),1998,18(3):4554.
LI Shuanglin,OUYANG Ziyuan.Tectonic Framework and Evolution of XinganlingMongolian Orogenic Belt(XMOB) and Its Adjacent Region[J].Marine Geology and Quaternary Geology,1998,18(3):4554.
[6]吳福元,葉茂,張世紅.中國(guó)滿洲里—綏芬河地學(xué)斷面域的地球動(dòng)力學(xué)模型[J].地球科學(xué),1995,20(5):535539.
WU Fuyuan,YE Mao,ZHANG Shihong.Geodynamic Model of the ManzhouliSuifenhe Geoscience Transect[J].Earth Science,1995,20(5):535539.
[7]WILDE S A,吳福元,張興洲.中國(guó)東北麻山雜巖晚泛非期變質(zhì)的鋯石SHRIMP年齡證據(jù)及全球大陸再造意義[J].地球化學(xué),2001,30(1):3550.
WILDE S A,WU Fuyuan,ZHANG Xingzhou.The Mashan Complex:SHRIMP UPb Zircon Evidence for a Late PanAfrican Metamorphic Event in NE China and Its Implication for Global Continental Reconstructions[J].Geochimica,2001,30(1):3550.
[8]WILDE S A,WU F Y,ZHANG X Z.Late PanAfrican Magmatism in Northeastern China:SHRIMP UPb Zircon Evidence from Granitoids in the Jiamusi Massif[J].Precambrian Research,2003,122(1/2/3/4):311327.
[9]吳福元,WILDE S A,孫德有.佳木斯地塊片麻狀花崗巖的鋯石離子探針UPb年齡[J].巖石學(xué)報(bào),2001,17(3):443452.
WU Fuyuan,WILDE S A,SUN Deyou.Zircon SHRIMP UPb Ages of Gneissic Granites in Jiamusi Massif,Northeastern China[J].Acta Petrologica Sinica,2001,17(3):443452.
[10]吳福元,孫德有,林強(qiáng).東北地區(qū)顯生宙花崗巖的成因與地殼增生[J].巖石學(xué)報(bào),1999,15(2):181189.
WU Fuyuan,SUN Deyou,LIN Qiang.Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China[J].Acta Petrologica Sinica,1999,15(2):181189.
[11]孫德有,吳福元,李惠民,等.小興安嶺西北部造山后A型花崗巖的時(shí)代及與索倫山—賀根山—扎賚特碰撞拼合帶東延的關(guān)系[J].科學(xué)通報(bào),2000,45(20):22172222.
SUN Deyou,WU Fuyuan,LI Huimin,et al.Emplacement Age of the Postorogenic Atype Granites in Northwestern Lesser Xingan Ranges,and Its Relationship to the Eastward Extension of SuolunshanHegenshanZhalaite Collisional Suture Zone[J].Chinese Science Bulletin,2000,45(20):22172222.
[12]孫德有,吳福元,張艷斌,等.西拉木倫河—長(zhǎng)春—延吉板塊縫合帶的最后閉合時(shí)間——來(lái)自吉林大玉山花崗巖體的證據(jù)[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2004,34(2):174181.
SUN Deyou,WU Fuyuan,ZHANG Yanbin,et al.The Final Closing Time of the West Lamulun RiverChangchunYanji Plate Suture Zone[J].Journal of Jilin University:Earth Science Edition,2004,34(2):174181.
[13]BI J H,GE W C,YANG H,et al.Petrogenesis and Tectonic Implications of Early Paleozoic Granitic Magmatism in the Jiamusi Massif,NE China:Geochronological,Geochemical and Hf Isotopic Evidence[J].Journal of Asian Earth Sciences,2014,96:308331.
[14]葛文春,吳福元,周長(zhǎng)勇,等.大興安嶺北部塔河花崗巖體的時(shí)代及對(duì)額爾古納地塊構(gòu)造歸屬的制約[J].科學(xué)通報(bào),2005,50(12):12391247.
GE Wenchun,WU Fuyuan,ZHOU Changyong,et al.Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Erguna Block in the Northern Part of the Da Xingan Range[J].Chinese Science Bulletin,2005,50(12):12391247.
[15]葛文春,隋振民,吳福元,等.大興安嶺東北部早古生代花崗巖鋯石UPb年齡、Hf同位素特征及地質(zhì)意義[J].巖石學(xué)報(bào),2007,23(2):423440.
GE Wenchun,SUI Zhenmin,WU Fuyuan,et al.Zircon UPb Ages,Hf Isotopic Characteristics and Their Implications of the Early Paleozoic Granites in the Northwestern Da Hinggan Mts.,Northeastern China[J].Acta Petrologica Sinica,2007,23(2):423440.
[16]JAHN B M,CAPDEVILA R,LIU D Y,et al.Sources of Phanerozoic Granitoids in the Transect BayanhongorUlaan Baatar,Mongolia:Geochemical and Nd Isotopic Evidence,and Implications for Phanerozoic Crustal Growth[J].Journal of Asian Earth Sciences,2004,23(5):629653.
[17]張彥龍,葛文春,高妍,等.龍鎮(zhèn)地區(qū)花崗巖鋯石 UPb 年齡和 Hf 同位素及地質(zhì)意義[J].巖石學(xué)報(bào),2010,26(4):10591073.
ZHANG Yanlong,GE Wenchun,GAO Yan,et al.Zircon UPb Ages and Hf Isotopes of Granites in Longzhen Area and Their Geological Implications[J].Acta Petrologica Sinica,2010,26(4):10591073.
[18]張彥龍,葛文春,柳小明,等.大興安嶺新林鎮(zhèn)巖體的同位素特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2008,38(2):177186.
ZHANG Yanlong,GE Wenchun,LIU Xiaoming,et al.Isotopic Characteristics and Its Significance of the Xinlin Town Pluton,Great Hinggan Mountains[J].Journal of Jilin University:Earth Science Edition,2008,38(2):177186.
[19]WU F Y,JAHN B M,WILDE S A,et al.Phanerozoic Crustal Growth:UPb and SrNd Isotopic Evidence from the Granites in Northeastern China[J].Tectonophysics,2000,328(1/2):89113.
[20]WU F Y,SUN D Y,LI H M,et al.Atype Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J].Chemical Geology,2002,187(1/2):143173.
[21]WU F Y,JAHN B M,WILDE S A,et al.Highly Fractionated Itype Granites in NE China Ⅱ:Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic[J].Lithos,2003,67(3/4):191204.
[22]WU F Y,SUN D Y,GE W C,et al.Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):130.
[23]WILDE S A,DORSETTBAIN H L,LENNON R G.Geological Setting and Controls on the Development of Graphite,Sillimanite and Phosphate Mineralization Within the Jiamusi Massif:An Exotic Fragment of Gondwanaland Located in Northeastern China?[J].Gondwana Research,1999,2(1):2146.
[24]WILDE S A,WU F Y,ZHAO G C.The Khanka Block,NE China,and Its Significance for the Evolution of the Central Asian Orogenic Belt and Continental Accretion[J].Geological Society,London,Special Publications,2010,338:117137.
[25]ZHOU J B,WILDE S A,ZHAO G C,et al.PanAfrican Metamorphic and Magmatic Rocks of the Khanka Massif,NE China:Further Evidence Regarding Their Affinity[J].Geological Magazine,2010,147(5):737749.
[26]ZHOU J B,WILDE S A,ZHAO G C,et al.Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia:An Intriguing Dilemma?[J].Journal of Geodynamics,2010,50(3/4):300317.
[27]周建波,張興洲,WILDE S A,等.中國(guó)東北~500 Ma泛非期孔茲巖帶的確定及其意義[J].巖石學(xué)報(bào),2011,27(4):12351245.
ZHOU Jianbo,ZHANG Xingzhou,WILDE S A,et al.Confirming of the Heilongjiang ~500 Ma PanAfrican Khondalite Belt and Its Tectonic Implications[J].Acta Petrologica Sinica,2011,27(4):12351245.
[28]任留東,王彥斌,楊崇輝,等.麻山雜巖的變質(zhì)混合巖化作用和花崗質(zhì)巖漿活動(dòng)[J].巖石學(xué)報(bào),2010,26(7):20052014.
REN Liudong,WANG Yanbin,YANG Chonghui,et al.Metamorphism,Migmatization and Granites of the Mashan Complex in Heilongjiang Province,Northeast China[J].Acta Petrologica Sinica,2010,26(7):20052014.
[29]任留東,王彥斌,楊崇輝,等.麻山雜巖的兩種變質(zhì)作用及其與花崗巖的關(guān)系[J].巖石學(xué)報(bào),2012,28(9):28552865.
REN Liudong,WANG Yanbin,YANG Chonghui,et al.Two Types of Metamorphism and Their Relationships with Granites in the Mashan Complex[J].Acta Petrologica Sinica,2012,28(9):28552865.
[30]楊浩,張彥龍,陳會(huì)軍,等.興凱湖花崗雜巖體的鋯石UPb年齡及其地質(zhì)意義[J].世界地質(zhì),2012,31(4):621630.
YANG Hao,ZHANG Yanlong,CHEN Huijun,et al.Zircon UPb Ages of Khanka Lake Granitic Complex and Its Geological Implication[J].Global Geology,2012,31(4):621630.
[31]黑龍江省地質(zhì)礦產(chǎn)局.黑龍江省區(qū)域地質(zhì)志[M].北京:地質(zhì)出版社,1993.
Heilongjiang Bureau of Geology and Mineral Resources.Regional Geology of Heilongjiang Province[M].Beijing:Geological Publishing House,1993.
[32]WILDE S A,ZHANG X Z,WU F Y.Extension of a Newlyidentified 500 Ma Metamorphic Terrane in Northeast China:Further UPb SHRIMP Dating of the Mashan Complex,Heilongjiang Province,China[J].Tectonophysics,2000,328(1/2):115130.
[33]MENG E,XU W L,YANG D B,et al.Permian Volcanisms in Eastern and Southeastern Margins of the Jiamusi Massif,Northeastern China:Zircon UPb Chronology,Geochemistry and Its Tectonic Implications[J].Chinese Science Bulletin,2008,53(8):12311245.
[34]邵濟(jì)安,唐克東.中國(guó)東北地體與東北亞大陸邊緣演化[M].北京:地震出版社,1995.
SHAO Jian,TANG Kedong.Terranes in Northeast China and Evolution of Northeast Asia Continental Margin[M].Beijing:Seismological Press,1995.
[35]YANG H,GE W C,ZHAO G C,et al.Early PermianLate Triassic Granitic Magmatism in the JiamusiKhanka Massif,Eastern Segment of the Central Asian Orogenic Belt and Its Implications[J].Gondwana Research,2014,DOI:10.1016/j.gr.2014.01.011.
[36]WU F Y,YANG J H,LO C H,et al.The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China[J].Island Arc,2007,16(1):156172.
[37]袁洪林,吳福元,高山,等.東北地區(qū)新生代侵入體的鋯石激光探針UPb年齡測(cè)定與稀土元素成分分析[J].科學(xué)通報(bào),2003,48(14):15111520.
YUAN Honglin,WU Fuyuan,GAO Shan,et al.Determination of UPb Age and Rare Earth Element of Zircons of Cenozoic Intrusion in NE China by Laserablation Inductively Couple Plasma Mass Spectrometry[J].Chinese Science Bulletin,2003,48(14):15111520.
[38]ANDERSEN T.Correction of Common Lead in UPb Analyses That Do Not Report 204Pb[J].Chemical Geology,2002,192(1/2):5979.
[39]WU F Y,YANG Y H,XIE L W,et al.Hf Isotopic Compositions of the Standard Zircons and Baddeleyites Used in UPb Geochronology[J].Chemical Geology,2006,234(1/2):105126.
[40]GOOLAERTS A,MATTIELLI N,JONG J D,et al.Hf and Lu Isotopic Reference Values for the Zircon Standard 91500 by MCICPMS[J].Chemical Geology,2004,206(1/2):19.
[41]WOODHEAD J,HERGT J,SHELLEY M,et al.Zircon Hfisotope Analysis with an Excimer Laser,Depth Profiling,Ablation of Complex Geometries,and Concomitant Age Estimation[J].Chemical Geology,2004,209(1/2):121135.
[42]BLICHERTTOFT J,ALBAREDE F.The LuHf Isotope Geochemistry of Chondrites and the Evolution of the Mantlecrust System[J].Earth and Planetary Science Letters,1997,148(1/2):243258.
[43]RUDNICK R L,GAO S,LING W L,et al.Petrology and Geochemistry of Spinel Peridotite Xenoliths from Hannuoba and Qixia,North China Craton[J].Lithos,2004,77(1/2/3/4):609637.
[44]MANIAR P D,PICCOLI P M.Tectonic Discrimination of Granitoids[J].Geological Society of America Bulletin,1989,101(5):635643.
[45]PECCERILLO A,TAYLOR S R.Geochemistry of Eocene Calcalkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J].Contributions to Mineralogy and Petrology,1976,58(1):6381.
[46]BOYNTON W V.Geochemistry of the Rare Earth Elements:Meteorite Studies[M]∥HENDERSON P.Rare Earth Element Geochemistry.Amsterdam:Elsevier,1984:63114.
[47]SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J].Geological Society,London,Special Publications,1989,42:313345
[48]黃映聰,任東輝,張興洲,等.黑龍江省東部樺南隆起美作花崗巖的鋯石UPb定年及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2008,38(4):631638.
HUANG Yingcong,REN Donghui,ZHANG Xingzhou,et al.Zircon UPb Dating of the Meizuo Granite and Geological Significance in the Huanan Uplift,East Heilongjiang Provience[J].Journal of Jilin University:Earth Science Edition,2008,38(4):631638.
[49]于介江,侯雪剛,葛文春,等.佳木斯地塊東北緣早二疊世六連巖體的巖漿混合成因:巖相學(xué)、年代學(xué)和地球化學(xué)證據(jù)[J].巖石學(xué)報(bào),2013,29(9):29712986.
YU Jiejiang,HOU Xuegang,GE Wenchun,et al.Magma Mixing Genesis of the Early Permian Liulian Pluton at the Northeastern Margin of the Jiamusi Massif in NE China:Evidences from Petrography,Geochronology and Geochemistry[J].Acta Petrologica Sinica,2013,29(9):29712986.
[50]MENG E,XU W L,PEI F P,et al.Detritalzircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province,NE China:Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J].Tectonophysics,2010,485(1/2/3/4):4251.
[51]HAN B F,WANG S G,JAHN B M,et al.Depletedmantle Source for the Ulungur River Atype Granites from North Xinjiang,China:Geochemistry and NdSr Isotopic Evidence,and Implications for Phanerozoic Crustal Growth[J].Chemical Geology,1997,138(3/4):135159.
[52]JAHN B M,WU F Y,CHEN B.Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic[J].Transactions of the Royal Society of Edinburgh:Earth Sciences,2000,91(1/2):181193.
[53]HOFMANN A W.Chemical Differentiation of the Earth:The Relationship Between Mantle,Continental Crust,and Oceanic Crust[J].Earth and Planetary Science Letters,1988,90(3):297314.
[54]RAPP R P,WATSON E B,MILLER C F.Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites[J].Precambrian Research,1991,51(1/2/3/4):125.
[55]SPRINGER W,SECK H A.Partial Fusion of Basic Granulites at 5 to 15 kbar:Implications for the Origin of TTG Magmas[J].Contributions to Mineralogy and Petrology,1997,127(1/2):3045.
[56]LITVINOVSKY B A,STEELE I M,WICKHAM S M.Silicic Magma Formation in Overthickened Crust:Melting of Charnockite and Leucogranite at 15,20 and 25 kbar[J].Journal of Petrology,2000,41(5):717737.
[57]RAPP R P,WATSON E B.Dehydration Melting of Metabasalt at 832 kbar:Implications for Continental Growth and Crustmantle Recycling[J].Journal of Petrology,1995,36(4):891931.
[58]PEARCE J A,HARRIS N B W,TINDLE A G.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].1984,25(4):956983.
[59]MCCULLOCH M T,GAMBLE J A.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism[J].Earth and Planetary Science Letters,1991,102(3/4):358374.
[60]DOUCE A E P,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[61]SKJERLIE K P,DOUCE A E P.The Fluidabsent Partial Melting of a Zoisitebearing Quartz Eclogite from 10 to 32 GPa; Implications for Melting in Thickened Continental Crust and for Subductionzone Processes[J].Journal of Petrology,2002,43(2):291314.
[62]GROVE T L,ELKINSTANTON L T,PARMAN S W,et al.Fractional Crystallization and Mantlemelting Controls on Calkalkaline Differentiation Trends[J].Contributions to Mineralogy and Petrology,2003,145(5):515533.
[63]FOLEY S.Petrological Characterization of the Source Components of Potassic Magmas:Geochemical and Experimental Constraints[J].Lithos,1992,28(3/4/5/6):187204.
[64]DUNGAN M A,LINDSTROM M M,MCMILLAN N J,et al.Open System Magmatic Evolution of the Taos Plateau Volcanic Field,Northern New Mexico:1.The Petrology and Geochemistry of the Servilleta Basalt[J].Journal of Geophysical Research:Solid Earth,1986,91(B6):59996028.
[65]郭奎城,張文龍,楊曉平,等.黑河市五道溝地區(qū)早二疊世 A 型花崗巖成因[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(4):10771083.
GUO Kuicheng,ZHANG Wenlong,YANG Xiaoping,et al.Origin of Early Permian Atype Granite in the Wudaogou Area,Heihe City[J].Journal of Jilin University:Earth Science Edition,2011,41(4):10771083.
[66]MENG E,XU W L,PEI F P,et al.Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province,NE China:Zircon UPbHf Isotopes and Geochemical Evidence[J].Journal of Asian Earth Sciences,2011,41(2):119132.
[67]張魁武,邵濟(jì)安,唐克東,等.黑龍江省東部躍進(jìn)山群中綠片巖的地球化學(xué)特征及地質(zhì)意義[J].巖石學(xué)報(bào),1997,13(2):168172.
[59]MCCULLOCH M T,GAMBLE J A.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism[J].Earth and Planetary Science Letters,1991,102(3/4):358374.
[60]DOUCE A E P,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[61]SKJERLIE K P,DOUCE A E P.The Fluidabsent Partial Melting of a Zoisitebearing Quartz Eclogite from 10 to 32 GPa; Implications for Melting in Thickened Continental Crust and for Subductionzone Processes[J].Journal of Petrology,2002,43(2):291314.
[62]GROVE T L,ELKINSTANTON L T,PARMAN S W,et al.Fractional Crystallization and Mantlemelting Controls on Calkalkaline Differentiation Trends[J].Contributions to Mineralogy and Petrology,2003,145(5):515533.
[63]FOLEY S.Petrological Characterization of the Source Components of Potassic Magmas:Geochemical and Experimental Constraints[J].Lithos,1992,28(3/4/5/6):187204.
[64]DUNGAN M A,LINDSTROM M M,MCMILLAN N J,et al.Open System Magmatic Evolution of the Taos Plateau Volcanic Field,Northern New Mexico:1.The Petrology and Geochemistry of the Servilleta Basalt[J].Journal of Geophysical Research:Solid Earth,1986,91(B6):59996028.
[65]郭奎城,張文龍,楊曉平,等.黑河市五道溝地區(qū)早二疊世 A 型花崗巖成因[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(4):10771083.
GUO Kuicheng,ZHANG Wenlong,YANG Xiaoping,et al.Origin of Early Permian Atype Granite in the Wudaogou Area,Heihe City[J].Journal of Jilin University:Earth Science Edition,2011,41(4):10771083.
[66]MENG E,XU W L,PEI F P,et al.Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province,NE China:Zircon UPbHf Isotopes and Geochemical Evidence[J].Journal of Asian Earth Sciences,2011,41(2):119132.
[67]張魁武,邵濟(jì)安,唐克東,等.黑龍江省東部躍進(jìn)山群中綠片巖的地球化學(xué)特征及地質(zhì)意義[J].巖石學(xué)報(bào),1997,13(2):168172.
[59]MCCULLOCH M T,GAMBLE J A.Geochemical and Geodynamical Constraints on Subduction Zone Magmatism[J].Earth and Planetary Science Letters,1991,102(3/4):358374.
[60]DOUCE A E P,BEARD J S.Dehydrationmelting of Biotite Gneiss and Quartz Amphibolite from 3 to 15 kbar[J].Journal of Petrology,1995,36(3):707738.
[61]SKJERLIE K P,DOUCE A E P.The Fluidabsent Partial Melting of a Zoisitebearing Quartz Eclogite from 10 to 32 GPa; Implications for Melting in Thickened Continental Crust and for Subductionzone Processes[J].Journal of Petrology,2002,43(2):291314.
[62]GROVE T L,ELKINSTANTON L T,PARMAN S W,et al.Fractional Crystallization and Mantlemelting Controls on Calkalkaline Differentiation Trends[J].Contributions to Mineralogy and Petrology,2003,145(5):515533.
[63]FOLEY S.Petrological Characterization of the Source Components of Potassic Magmas:Geochemical and Experimental Constraints[J].Lithos,1992,28(3/4/5/6):187204.
[64]DUNGAN M A,LINDSTROM M M,MCMILLAN N J,et al.Open System Magmatic Evolution of the Taos Plateau Volcanic Field,Northern New Mexico:1.The Petrology and Geochemistry of the Servilleta Basalt[J].Journal of Geophysical Research:Solid Earth,1986,91(B6):59996028.
[65]郭奎城,張文龍,楊曉平,等.黑河市五道溝地區(qū)早二疊世 A 型花崗巖成因[J].吉林大學(xué)學(xué)報(bào):地球科學(xué)版,2011,41(4):10771083.
GUO Kuicheng,ZHANG Wenlong,YANG Xiaoping,et al.Origin of Early Permian Atype Granite in the Wudaogou Area,Heihe City[J].Journal of Jilin University:Earth Science Edition,2011,41(4):10771083.
[66]MENG E,XU W L,PEI F P,et al.Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province,NE China:Zircon UPbHf Isotopes and Geochemical Evidence[J].Journal of Asian Earth Sciences,2011,41(2):119132.
[67]張魁武,邵濟(jì)安,唐克東,等.黑龍江省東部躍進(jìn)山群中綠片巖的地球化學(xué)特征及地質(zhì)意義[J].巖石學(xué)報(bào),1997,13(2):168172.