• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transforming growth factor β signaling in uterine development and function

    2015-01-06 01:49:32QingleiLi

    Qinglei Li

    Transforming growth factor β signaling in uterine development and function

    Qinglei Li

    Transforming growth factor β(TGFβ)superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation.Mounting evidence supports its important role in female reproduction and development.TGFBs1-3 are founding members of this growth factor family,however,the in vivo function of TGFβ signaling in the uterus remains poorly defined.By drawing on mouse and human studies as a main source,this review focuses on the recent progress on understanding TGFβ signaling in the uterus.The review also considers the involvement of dysregulated TGFβ signaling in pathological conditions that cause pregnancy loss and fertility problems in women.

    Decidualization,Development,Embryonic development,Implantation,Myometrium,Pregnancy, Transforming growth factor β,Uterus

    Introduction

    Transforming growth factor β(TGFβ)superfamily proteins are versatile and fundamental regulators in metazoans.The TGFβ signal transduction pathway has been extensively studied.The application of mouse genetic approaches has catalyzed the identification of the roles of core signaling components of TGFβ superfamily members in reproductive processes.Recent studies using tissue/cellspecific knockout approaches represent a milestone towards understanding the in vivo function of TGFβ superfamily signaling in reproduction and development.These studies have yielded new insights into this growth factor superfamily in uterine development,function,and diseases.This review will focus on TGFβ signaling in the uterus,primarily using results from studies with mice and humans.

    TGFβsuperfamily

    Core components of the TGFβ signaling pathway

    Core components of the TGFβ signaling pathway consist of ligands,receptors,and SMA and MAD(mother against decapentaplegic)-related proteins(SMAD).TGFβ ligands bind to their receptors and impinge on SMADs to activate gene transcription.TGFβ superfamily ligands include TGFβs,activins,inhibins,bone morphogenetic proteins (BMPs),growth differentiation factors(GDFs),anti-Müllerian hormone(AMH),and nodal growth differentiation factor(NODAL).Seven type I(i.e.,ACVRL1, ACVR1,BMPR1A,ACVR1B,TGFBR1,BMPR1B,and ACVR1C)and five type II receptors(i.e.,TGFBR2, ACVR2,ACVR2B,BMPR2,and AMHR2)have been identified[1-4].SMADs are intracellular transducers.In mammalian species,eight SMAD proteins have been identified and are classified into receptor-regulated SMADs (R-SMADs;SMAD1,2,3,5,and 8),common SMAD(Co-SMAD),and inhibitory SMADs(I-SMADs;SMAD6 and SMAD7).R-SMADs are tethered by SMAD anchor for receptor activation(SARA)[5].In general,SMAD1/5/8 mediate BMP signaling,whereas SMAD2/3 mediate TGFβ and activin signaling.SMAD6 and SMAD7 can bind type I receptors and inhibit TGFβ and/or BMP signaling[6,7]. A plethora of ligands versus a fixed number of receptors and SMADs suggests the usage of shared receptor(s)and SMAD cell signaling molecules in this system.

    TGFβ signaling paradigm:canonical versus non-canonical pathway

    To initiate signal transduction,a ligand forms a heteromeric type II and type I receptor complex,where theconstitutively active type II receptor phosphorylates type I receptor at the glycine and serine(GS)domain.Subsequent phosphorylation of R-SMADs by the type I receptor and formation and translocation of R-SMAD-SMAD4 complex to the nucleus are critical steps for gene regulation[2,8-10].Activation of transcription is achieved by SMAD binding to the consensus DNA binding sequence (AGAC)termed SMAD binding element(SBE)[11,12],in concert with co-activators and co-repressors.Of note, SMADs can promote chromatin remodeling and histone modification,whichfacilitatesgenetranscriptionby recruiting co-regulators to the promoters of genes of preference[13].

    TGFβ signals through both SMAD-dependent(i.e.,canonical)and SMAD-independent(i.e.,non-canonical) pathways in a contextually dependent manner[2,8,14-16] (Figure 1).The non-canonical pathways serve to integrate signaling from other signaling cascades,resulting in a quantitative output in a given context.Davis and colleagues [17]have recently suggested the presence of microRNA (miRNA)-mediated non-canonical pathway,where TGFβ signaling promotes the biosynthesis of a subset of miRNAs via interactions between R-SMADs and a consensus RNA sequence of miRNAs within the DROSHA(drosha,ribonuclease type III)complex[17-19].Thus,this type of noncanonical signaling requires R-SMADs but not SMAD4. Multiple regulatory layers including ligand traps(e.g.,follistatin),inhibitory SMADs,and interactive pathways exist to determine the signaling output and precisely control TGFβ signaling activity[4,8,20-23].For instance,the linker region of R-SMADs is subject to the phosphorylation modification by mitogen-activated protein kinases(MAPKs)[24]. Therefore,the variable responses triggered by this growth factor superfamily and the complex signaling circuitries within a given cell population underscore the importance of a fine-tuned TGFβ signaling system at both the cellular and systemic levels.

    TGFβ superfamily signaling regulates female reproduction

    TGFβ superfamily is evolutionarily conserved and plays fundamental roles in cell growth and differentiation. The signal transduction and biological functions of this signaling pathway have been extensively investigated [2,4,8,9,25].TGFβ superfamily signaling is essential for female reproduction(Figure 2),and dysregulation of TGFβ signaling may cause catastrophic consequences, leading to reproductive diseases and cancers[26-33].

    Recent studies have uncovered the roles of key receptors and intracellular SMADs of this pathway in female reproduction.Smad1 and Smad5 null mice are embryonically lethal,but Smad8 null mice are viable and fertile [34,35].SMAD1/5 and ALK3/6 act as tumor suppressors with functional redundancy in the ovary[27,29].Smad3Δex8mice demonstrate impaired follicular growth and atresia,altered ovarian cell differentiation,and defective granulosa cell response to follicle-stimulating hormone(FSH)[36,37]. We have shown that SMAD2 and SMAD3 are redundantly required to maintain normal fertility and ovarian function[38].Disruption of Smad4 signaling in ovarian granulosa cells leads to premature luteinization[39].However,oocyte-specific knockout of Smad4 causes minimal fertility defects in mice[40].SMAD7 mediates TGFβinduced apoptosis[41]and antagonizes key TGFβ signaling in ovarian granulosa cells[42],suggesting inhibitorySMADs are potentially novel regulators of ovarian function.Recent studies show that TGFBR1 is indispensable for female reproductive tract development[43,44],while ALK2 and BMPR2 are required for uterine decidualization and/or pregnancy maintenance[45,46].

    Figure 1 Canonical and non-canonical TGFβsignaling.In the canonical pathway,TGFβ ligands bind to serine/threonine kinase type II and type I receptors and phosphorylate R-SMADs,which form heteromeric complexes with SMAD4 and translocate into the nucleus to regulate gene transcription.The non-canonical pathway generally refers to the SMAD-independent pathway such as PI3K-AKT,ERK1/2,p38,and JNK pathways. Recent studies have identified an“R-SMAD-dependent but SMAD4-independent”non-canonical pathway that regulates miRNA maturation.

    Figure 2 Major functions of TGFβsuperfamily signaling in the female reproduction.TGFβ superfamily signaling regulates a variety of reproductive processes including follicular development (e.g.,TGFβs,GDF9,BMP15,activins,and AMH),ovulation(e.g.,GDF9), oocyte competence(e.g.,GDF9 and BMP15),decidualization(e.g., BMP2 and NODAL),implantation(e.g.,ALK2-mediated signaling), pregnancy(e.g.,BMPR2-mediated signaling),embryonic development (e.g.,TGFβs,activins,follistatin,BMP2,and BMP4),and uterine development(TGFBR1-mediated signaling).

    TGFβsignaling in uterine development

    The uterus develops from the Müllerian duct,which forms at embryonic day E11.75 in mice[47].Uterine mesenchymal cells remain randomly oriented and undifferentiated until after birth.Between birth and postnatal day 3,circular and longitudinal myometrial layers are differentiated from the mesenchyme[48].The uterus acquires basic layers and structures by postnatal day 15[48,49].Maturation of the myometrium continues into adulthood.Mechanisms controllingmyometrialdevelopmentarepoorlydefined. Wingless-type MMTV integration site family(Wnt)7a null females demonstrate defects in reproductive tract formation,suggesting a critical role of Wnt/β catenin signaling in myometrial development[50-53].

    Myometrial contractility is critical for successful pregnancy and labor.The myometrial cells transform from a quiescent to a contractile phenotype trigged by the decline of progesterone levels during late pregnancy.What has long puzzled scientists is how this transformation occurs during pregnancy,and how myometrial development and function are coordinately regulated.Uterine contraction is controlled by hormonal,cellular,and molecular signals [54-65].Recent studies have discovered that miRNAs are keyregulatorsofcontraction-associatedgenesand suppressors including oxytocin receptor(Oxtr),cyclooxygenase 2(Cox2),connexin 43(Cx43),zinc finger E-box binding homeobox 1(Zeb1),and Zeb2[65,66].However, signaling pathways that control the development of morphologically normal and functionally competent myometrium are poorly understood.

    TGFβ signaling plays a pleiotropic role in fundamental cellular and developmental events[2,3,8].Using a Tgfbr1 conditional knockout(cKO)mouse model created using anti-Müllerian hormone receptor type 2(Amhr2)-Cre, we have shown that TGFβ signaling is essential for smooth muscle development in the female reproductive tract[43,44].The female mice develop a striking oviductal phenotype that includes a diverticulum.The Tgfbr1 cKO mice are infertile and embryos are unable to be transported to the uterus due to the presence of the physical barrier of oviductal diverticula[43].Meanwhile, disrupted uterine smooth muscle formation is another prominent feature in these mice,which is associated with a developmental failure of the myometrium during early postnatal uterine development[44].However,the expression of the majority of smooth muscle genes in the uterus of the conditional knockout mice does not significantly differ from that of controls,suggesting that the developmental abnormality might not be a direct result of intrinsic deficiency in smooth muscle cell differentiation.Our studies point to the contributions of reduced deposition of extracellular matrix proteins,derailed signaling of plateletderived growth factors,and potentially altered migration of uterine cells during a critical time window of development[44].The Tgfbr1 cKO mouse model can be further exploited to understand the pathogenesis of myometriumassociated diseases,such as adenomyosis that is present in these mice[44].

    TGFβsignaling and uterine function

    Pre-implantation embryonic development refers to a period from fertilization to blastocyst implantation,which requires coordinated expression of maternal and embryonic genes. The fertilized egg undergoes dynamic genetic programming and divisions to reach the blastocyst stage.The pluripotent inner cell mass of the blastocyst will develop into the embryonic proper,while the trophectoderm and the primitive endoderm form extra-embryonic tissues during development[67].Preimplantation embryonic development largely depends on maternal proteins and transcripts before zygotic genome activation(ZGA),which initiates the expression of genes that are needed for continued development of the embryos.ZGA occurs at the twocell stage in the mouse[68].

    Blastocyst implantation is a complex event that is controlled by both intrinsic embryonic programs and extrinsic cues including hormonal and uterine signals.Implantation in the mouse can be divided into three phases:apposition,attachment,and penetration.Following attachment,uterine stromal cells extensively proliferate and differentiate into decidual cells(i.e.,decidualization)[69].The roles of steroid hormones,cytokines,growth factors,integrins, and angiogenic factors have been explored,and more recently,a number of novel genes/pathways underlying implantation have been identified.Several elegant reviews are available on these topics[70-72].The important roles of embryonic TGFβ superfamily signaling in embryo development have been reviewed[3].This article will focus on the role of maternal TGFβ signaling in implantation and embryonic development.

    TGFBs1-3 are founding members of the TGFβ superfamily.The majority of currently available studies are confined to the identification of tissue/cell-specific expression of TGFBs and in vitro analysis of the ligand function.In the uterus,the in vivo role of TGFβ signaling remains elusive,partially because of the redundancy of the ligands [73,74]and the lack of appropriate animal models as a result of the embryonic lethality in mice lacking TGFβ ligands.TGFB1 is involved in preimplantation development and yolk sac vasculogenesis/hematopoiesis[75].To allow the Tgfb1 null mice survive to reproductive age,they were bred onto the severe combined immunodeficiency(SCID) background[76].Although the uterus of Tgfb1 mutant mice appears to be morphologically normal[76],embryos are arrested in the morula stage.

    An in vitro model has been used to determine the effect of growth factors on preimplantation development, and the results showed that TGFB1 or epidermal growth factor(EGF)dramatically improves the inferior development of singly cultured embryos between eight-cell/morula and blastocyst stages.This study suggests that embryo and/ or reproductive tract-derived growth factors are involved in the development of preimplantation embryos[77].In vitro treatment of preimplantation stage embryos with TGFB1 increases total numbers of cells in expanded and hatching blastocysts[78].Furthermore,TGFB1-promoted in vitro blastocyst outgrowth is blocked by an antibody directed to parathyroid hormone-related protein[79],which suggests the involvement of parathyroid hormone-related protein in mediating the effect of TGFB1 on blastocyst outgrowth.In addition,TGFB1 increases the in vitro expression of oncofetal fibronectin,an anchoring trophoblast marker,indicating a potential role of TGFβ in trophoblast adhesion during implantation[80].TGFB1 also inhibits human trophoblast cell invasion,at least partially,by promoting the production of tissue inhibitor of metalloproteinases(TIMP)[81].An elegant study showed that maternal TGFB1 can cross the placenta and rescue the developmental defects of Tgfb1 null embryos,leading to perinatal survival of these mice[82].As further evidence,both maternal and fetal TGFB1 may act to maintain pregnancy[83].

    TGFβ signaling and uterine diseases

    Uterine fibroids

    Leiomyoma,generally known as uterine fibroid,is a benign tumor arising from the myometrium(i.e.,smooth muscle layers).Although leiomyoma is commonly benign, it could be the cause of fertility disorders and morbidity and mortality in women[84].

    Increasing lines of evidence point to the involvement of TGFβ signaling in the development of leiomyoma.It has been shown that the expression of TGFBs and receptors is elevated in leiomyomata versus unaffected myometrium[85].Among all the three TGFβ isoforms, TGFB3 seems to play a major role in leiomyoma development by promoting cell growth and fibrogenic process [86].Tgfb3 transcript and protein levels are elevated in human leiomyoma cells,compared with myometrial cells in two-dimensional(2D)and 3D cultures[87-90].In a 3D culture system,a higher level of TGFB3 and SMAD2/3 activation is present in the leiomyoma cells versus myometrial cells[87,89].However,it does not support that connective tissue growth factor 2(CCN2/CTGF)is a major mediator of TGFβ action in leiomyoma tissues[91].

    Although a link between overexpression of TGFBs and leiomyoma has been recognized,the precise mechanisms of TGFβ signaling in leiomyoma are largely unknown.It has been demonstrated that TGFB1-stimulated expression of fibromodulin may contribute to the fibrotic properties of leiomyoma[92].Moreover,treatment of myometrial cells with TGFB3 promotes the expression of ECM components such as collagen 1A1(COL1A1),fibronectin 1(FN1),and versican,but reduces the expression of those associated with ECM degradation[88,93].Thus,TGFβ signaling induces molecular changes that facilitate leiomyoma formation.Consistent with the enhanced TGFβ signaling in the etiology of leiomyoma,a number of substances or drugs, such as genistein[94],relaxin[95],halofuginone[96], asoprisnil[97],gonadotropin-releasing hormone-analogs (GnRH-a),and tibolone[98]may influence leiomyoma development via affecting TGFβ signaling.For the therapeutic purpose,an ideal drug is one that only targets TGFβ signaling in the leiomyoma cells but not normal myometrial cells. In this vein,asoprisnil,a steroidal 11β-benzaldoximesubstitutedselectiveprogesteronereceptormodulator (SPRM),targets TGFB3 and TGFBR2 in leiomyoma cells but not normal myometrial cells[97],providing a potentially effective treatment option for leiomyoma.The high levels of leiomyoma-secreted TGFBs,in turn,may compromise uterine function of the patients.For example,by producing excessive amount of TGFB3,leiomyoma antagonizes decidualization mediated by BMP2[99].

    Preeclampsia

    Preeclampsia often occurs in pregnant women after the 20thweek of gestation,characterized by hypertension andproteinuria.The causes of preeclampsia are complex and beyond the scope of this review.It has been shown that plasma TGFB1[100-104]and TGFB2[105]levels are elevated in patients with preeclampsia.Experimental evidence also suggests that failure to downregulate the expression of TGFB3 during early gestation may cause trophoblast hypoinvasion and preeclampsia[106].Interestingly,the levels of soluble endoglin,a transmembrane TGFβ co-receptor,are elevated in sera of women with preeclampsia,which may be associated with vascular complications and hypertension in these patients[107,108].Based on these findings, TGFB proteins may serve as potential biomarkers for preeclampsia[105].It is thus plausible that optimal TGFβ signaling activity is required to keep preeclampsia in check by maintaining normal trophoblast invasion during implantation and placentation.However,another study showed that TGFBs1-3 are not expressed in villous trophoblasts, and TGFB1 and TGFB3 are not expressed in the extravillous trophoblast either.The expression of TGFBs1-3 in the placenta is not altered in patients with preeclampsia[109]. Moreover,there are also reports indicating that concentrations of TGFB1 in serum are indistinguishable between patients with preeclampsia and normal controls [110-112].In addition,the levels of activin A and inhibin A,but not inhibin B,are increased in patients with preeclampsia[113-116].Thus,the role of TGFβ signaling in the pathophysiological events of preeclampsia awaits further elucidation.

    Intrauterine growth restriction

    Intrauterine growth restriction(IUGR),also called fetal growth restriction(FGR),refers to a complication of fetal growth during pregnancy.The estimated weight of the fetus with IUGR is often less than 90%of other fetuses at the same stage of pregnancy[117].Circumstantial evidence indicates that TGFβ signaling is involved in the development of IUGR.Serum levels of TGFB1 in the IUGR fetus are lower[118].TGFB2 is required for normal embryo growth,as supported by the fact that Tgfb2 mutant fetuses weigh less than littermate controls[119].Soluble endoglin levels are elevated in IUGR pregnancies[108],although it is debatable[120].It has been shown that the higher expression of endoglin in IUGR pregnancies may be caused by placental hypoxia involving TGFB3[121]. Mouse models for IUGR are valuable to study the mechanism of this pathological condition,which may have devastating effects on the pregnancy and newborns.Notably, Nodal knockout mice show diminished decidua basalis due to reduced proliferation and enhanced apoptosis as well as defects in placental development,resulting in IUGR and preterm fetal loss[122].Conditional ablation of Bmpr2 in the uterus causes defects in decidualization, trophoblast invasion,and vascularization,which are causes of IUGR in the pregnant females[46].

    Endometrial hyperplasia

    Endometrial hyperplasia is a pathological condition where endometrial cells undergo excessive proliferation [123].Categories of endometrial hyperplasia include simple hyperplasia,simple atypical hyperplasia,complex hyperplasia,and complex atypical hyperplasia[124].Endometrial hyperplasia is recognized as a premalignant lesion of endometrial carcinoma[125]and a potential cause of abnormal uterine bleeding and fertility disorders.The high prevalence of endometrial carcinoma is associated with atypical hyperplasia in women[126-128].It has been reported that up to 29%of untreated complex atypical hyperplasia progresses to carcinoma[124].Endometrial hyperplasia is generally caused by excessive or chronic estrogen stimulation that is unopposed by progesterone,as in patients with chronic anovulation and polycystic ovary syndrome.Although progestin treatment is commonly effective for this disease[129],approximately 30%of patients with complex hyperplasia are progestin resistant[130].Genetic alterations including mutations of Pten tumor suppressor have been shown to be associated with endometrial hyperplasia [131,132].Elegant work has shown that inactivation of TGFβ signaling and loss of growth inhibition are associated with human endometrial carcinogenesis[133,134].The role of TGFβ signaling in endometrial cancer has been reviewed and will not be covered in this article[135].Our recent study shows that loss of TGFBR1 in the mouse uterus using Amhr2-Cre enhances epithelial cell proliferation.The aberration culminates in endometrial hyperplasia. Further studies have uncovered potential TGFBR1-mediated paracrine signaling in the regulation of uterine epithelial cell proliferation,and provided genetic evidence supporting the role of uterine epithelial cell proliferation in the pathogenesis of endometrial hyperplasia [136].Further elucidating the role and the underlying mechanisms of TGFβ signaling in the pathogenesis of endometrial hyperplasia and/or cancer will benefit the design of new therapies.

    Conclusions and future directions

    A precisely controlled endogenous TGFβ signaling system is of critical importance for the development and function of female reproductive tract.Mouse genetics has proven to be a powerful tool to address many of the fundamental questions posed in the field of TGFβ and reproduction. Conditional knockout approaches have been utilized over the last two decades to decipher the reproductive function of TGFβ superfamily in female reproduction.These studies are at an exciting stage and are advancing at a rapid pace.The functional role of TGFβ signaling in the uterus is beginning to be unveiled.We anticipate that the genetic approach will continue to have large impacts and lead to new breakthroughs in this field.However,understanding how the hormonal,cellular,and molecular signals inducea specific biological response and functional outcome in the context of the uterine microenvironment in vivo represents a challenging task.It remains unclear how specific or integrated signals act on the chromatin to shape the epigenetic landscape in physiological and/or pathological conditions of the uterus.Therefore,the interaction between TGFβ signaling and other regulatory pathways(e.g., small RNA pathways)and potential epigenetic mechanisms underlying specific reproductive processes and/or diseases in the uterus need to be clarified.This knowledge will help to design new treatment options for uterine diseases and fertility disorders.

    Competing interests

    The author declares that he has no competing interests.

    Author’s contributions

    The author reviewed and analyzed the literature and wrote this paper.

    Acknowledgements

    The author thanks the great support and collaboration from colleagues at Texas A&M University,especially Drs.Kayla Bayless,Gregory Johnson,Robert Burghardt,and Fuller Bazer.Several trainees(Yang Gao,Samantha Duran, Chao Wang,and Haixia Wen)in the author’s lab have contributed to the related work.Yang Gao is also acknowledged for the assistance with literature review.Research in this area is supported by the National Institutes of Health grant R21HD073756 from the Eunice Kennedy Shriver National Institute of Child Health&Human Development and the Ralph E.Powe Junior Faculty Enhancement Awards from Oak Ridge Associated Universities.

    Received:9 July 2014 Accepted:28 October 2014 Published:14 November 2014

    1.Massague J:Receptors for the TGF-beta family.Cell 1992,69:1067-1070.

    2.Massague J:TGF-beta signal transduction.Annu Rev Biochem 1998,67:753-791.

    3.Chang H,Brown CW,Matzuk MM:Genetic analysis of the mammalian transforming growth factor-βsuperfamily.Endocr Rev 2002,23:787-823.

    4.Schmierer B,Hill CS:TGFbeta-SMAD signal transduction:molecular specificity and functional flexibility.Nat Rev Mol Cell Biol 2007,8:970-982.

    5.Tsukazaki T,Chiang TA,Davison AF,Attisano L,Wrana JL:SARA,a FYVE domain protein that recruits Smad2 to the TGF beta receptor.Cell 1998,95:779-791.

    6.Imamura T,Takase M,Nishihara A,Oeda E,Hanai J,Kawabata M,Miyazono K:Smad6 inhibits signalling by the TGF-beta superfamily.Nature 1997,389:622-626.

    7.Nakao A,Afrakhte M,Moren A,Nakayama T,Christian JL,Heuchel R,Itoh S, Kawabata M,Heldin NE,Heldin CH,ten Dijke P:Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling.Nature 1997,389:631-635.

    8.Massague J:How cells read TGF-beta signals.Nat Rev Mol Cell Biol 2000,1:169-178.

    9.Massague J:TGFbeta signalling in context.Nat Rev Mol Cell Biol 2012,13:616-630.

    10.Akhurst RJ,Hata A:Targeting the TGFbeta signalling pathway in disease.Nat Rev Drug Discov 2012,11:790-811.

    11.Jonk LJC,Itoh S,Heldin CH,ten Dijke P,Kruijer W:Identification and functional characterization of a Smad binding element(SBE)in the JunB promoter that acts as a transforming growth factor-beta,activin,and bone morphogenetic protein-inducible enhancer.J Biol Chem 1998,273:21145-21152.

    12.Shi Y,Wang YF,Jayaraman L,Yang H,Massague J,Pavletich NP:Crystal structure of a Smad MH1 domain bound to DNA:insights on DNA binding in TGF-beta signaling.Cell 1998,94:585-594.

    13.Ross S,Cheung E,Petrakis TG,Howell M,Kraus WL,Hill CS:Smads orchestrate specific histone modifications and chromatin remodeling to activate transcription.Embo J 2006,25:4490-4502.

    14.Moustakas A,Heldin CH:Non-Smad TGF-beta signals.J Cell Sci 2005,118:3573-3584.

    15.Zhang YE:Non-Smad pathways in TGF-beta signaling.Cell Res 2009,19:128-139.

    16.Guo X,Wang XF:Signaling cross-talk between TGF-beta/BMP and other pathways.Cell Res 2009,19:71-88.

    17.Davis BN,Hilyard AC,Lagna G,Hata A:SMAD proteins control DROSHA-mediated microRNA maturation.Nature 2008,454:56-61.

    18.Davis BN,Hilyard AC,Nguyen PH,Lagna G,Hata A:Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha.Mol Cell 2010,39:373-384.

    19.Davis-Dusenbery BN,Hata A:Smad-mediated miRNA processing:A critical role for a conserved RNA sequence.RNA Biol 2011,8:71-76.

    20.Attisano L,Wrana JL:Signal transduction by the TGF-beta superfamily.Science 2002,296:1646-1647.

    21.Derynck R,Zhang YE:Smad-dependent and Smad-independent pathways in TGF-beta family signalling.Nature 2003,425:577-584.

    22.Yan X,Liu Z,Chen Y:Regulation of TGF-beta signaling by Smad7.Acta Biochim Biophys Sin(Shanghai)2009,41:263-272.

    23.Yan XH,Chen YG:Smad7:not only a regulator,but also a cross-talk mediator of TGF-beta signalling.Biochem J 2011,434:1-10.

    24.Pera EM,Ikeda A,Eivers E,De Robertis EM:Integration of IGF,FGF,and anti-BMP signals via Smad1 phosphorylation in neural induction.Genes Dev 2003,17:3023-3028.

    25.Wakefield LM,Hill CS:Beyond TGFbeta:roles of other TGFbeta superfamily members in cancer.Nat Rev Cancer 2013,13:328-341.

    26.Li Q,Graff JM,O’Connor AE,Loveland KL,Matzuk MM:SMAD3 regulates gonadal tumorigenesis.Mol Endocrinol 2007,21:2472-2486.

    27.Pangas SA,Li X,Umans L,Zwijsen A,Huylebroeck D,Gutierrez C,Wang D, Martin JF,Jamin SP,Behringer RR,Robertson EJ,Matzuk MM:Conditional deletion of Smad1 and Smad5 in somatic cells of male and female gonads leads to metastatic tumor development in mice.Mol Cell Biol 2008,28:248-257.

    28.Matzuk MM,Finegold MJ,Su JG,Hsueh AJ,Bradley A:Alpha-inhibin is a tumour-suppressor gene with gonadal specificity in mice.Nature 1992,360:313-319.

    29.Edson MA,Nalam RL,Clementi C,Franco HL,Demayo FJ,Lyons KM,Pangas SA,Matzuk MM:Granulosa cell-expressed BMPR1A and BMPR1B have unique functions in regulating fertility but act redundantly to suppress ovarian tumor development.Mol Endocrinol 2010,24:1251-1266.

    30.Middlebrook BS,Eldin K,Li X,Shivasankaran S,Pangas SA:Smad1-Smad5 ovarian conditional knockout mice develop a disease profile similar to the juvenile form of human granulosa cell tumors.Endocrinology 2009,150:5208-5217.

    31.Neptune ER,Frischmeyer PA,Arking DE,Myers L,Bunton TE,Gayraud B, Ramirez F,Sakai LY,Dietz HC:Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome.Nat Genet 2003,33:407-411.

    32.Huang XR,Chung AC,Wang XJ,Lai KN,Lan HY:Mice overexpressing latent TGF-beta1 are protected against renal fibrosis in obstructive kidney disease.Am J Physiol Renal Physiol 2008,295:F118-F127.

    33.Massague J:TGFbeta in Cancer.Cell 2008,134:215-230.

    34.Arnold SJ,Maretto S,Islam A,Bikoff EK,Robertson EJ:Dose-dependent Smad1,Smad5 and Smad8 signaling in the early mouse embryo.Dev Biol 2006,296:104-118.

    35.Huang Z,Wang DG,Ihida-Stansbury K,Jones PL,Martin JF:Defective pulmonary vascular remodeling in Smad8 mutant mice.Hum Mol Genet 2009,18:2791-2801.

    36.Tomic D,Miller KP,Kenny HA,Woodruff TK,Hoyer P,Flaws JA:Ovarian follicle development requires Smad3.Mol Endocrinol 2004,18:2224-2240.

    37.Gong X,McGee EA:Smad3 is required for normal follicular folliclestimulating hormone responsiveness in the mouse.Biol Reprod 2009,81:730-738.

    38.Li Q,Pangas SA,Jorgez CJ,Graff JM,Weinstein M,Matzuk MM:Redundant roles of SMAD2 and SMAD3 in ovarian granulosa cells in vivo.Mol Cell Biol 2008,28:7001-7011.

    39.Pangas SA,Li X,Robertson EJ,Matzuk MM:Premature luteinization and cumulus cell defects in ovarian-specific Smad4 knockout mice.Mol Endocrinol 2006,20:1406-1422.

    40.Li X,Tripurani SK,James R,Pangas SA:Minimal fertility defects in mice deficient in oocyte-expressed Smad4.Biol Reprod 2012,86:1-6.

    41.Quezada M,Wang J,Hoang V,McGee EA:Smad7 is a transforming growth factor-beta-inducible mediator of apoptosis in granulosa cells.Fertil Steril 2012,97:1452-1459.e1451-1456.

    42.Gao Y,Wen H,Wang C,Li Q:SMAD7 antagonizes key TGFbeta superfamily signaling in mouse granulosa cells in vitro.Reproduction 2013,146:1-11.

    43.Li Q,Agno JE,Edson MA,Nagaraja AK,Nagashima T,Matzuk MM:Transforming growth factor beta receptor type 1 is essential for female reproductive tract integrity and function.PLoS Genet 2011,7:e1002320.

    44.Gao Y,Bayless KJ,Li Q:TGFBR1 is required for mouse myometrial development.Mol Endocrinol 2014,28:380-394.

    45.Clementi C,Tripurani SK,Large MJ,Edson MA,Creighton CJ,Hawkins SM, Kovanci E,Kaartinen V,Lydon JP,Pangas SA,DeMayo FJ,Matzuk MM:Activin-like kinase 2 functions in peri-implantation uterine signaling in mice and humans.PLoS Genet 2013,9:e1003863.

    46.Nagashima T,Li Q,Clementi C,Lydon JP,Demayo FJ,Matzuk MM:BMPR2 is required for postimplantation uterine function and pregnancy maintenance.J Clin Invest 2013,123:2539-2550.

    47.Orvis GD,Behringer RR:Cellular mechanisms of Mullerian duct formation in the mouse.Dev Biol 2007,306:493-504.

    48.Brody JR,Cunha GR:Histologic,morphometric,and immunocytochemical analysis of myometrial development in rats and mice:I.Normal development.Am J Anat 1989,186:1-20.

    49.Brody JR,Cunha GR:Histologic,morphometric,and immunocytochemical analysis of myometrial development in rats and mice:II.Effects of DES on development.Am J Anat 1989,186:21-42.

    50.Miller C,Sassoon DA:Wnt-7a maintains appropriate uterine patterning during the development of the mouse female reproductive tract.Development 1998,125:3201-3211.

    51.Wang Y,Jia Y,Franken P,Smits R,Ewing PC,Lydon JP,Demayo FJ,Burger CW,Anton Grootegoed J,Fodde R,Blok LJ:Loss of APC function in mesenchymal cells surrounding the Mullerian duct leads to myometrial defects in adult mice.Mol Cell Endocrinol 2011,341:48-54.

    52.Arango NA,Szotek PP,Manganaro TF,Oliva E,Donahoe PK,Teixeira J:Conditional deletion of beta-catenin in the mesenchyme of the developing mouse uterus results in a switch to adipogenesis in the myometrium.Dev Biol 2005,288:276-283.

    53.Parr BA,McMahon AP:Sexually dimorphic development of the mammalian reproductive tract requires Wnt-7a.Nature 1998,395:707-710.

    54.Mesiano S,Chan EC,Fitter JT,Kwek K,Yeo G,Smith R:Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium.J Clin Endocrinol Metab 2002,87:2924-2930.

    55.Condon JC,Jeyasuria P,Faust JM,Wilson JW,Mendelson CR:A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition.Proc Natl Acad Sci U S A 2003,100:9518-9523.

    56.Brainard AM,Miller AJ,Martens JR,England SK:Maxi-K channels localize to caveolae in human myometrium:a role for an actin-channel-caveolin complex in the regulation of myometrial smooth muscle K+current.Am J Physiol Cell Physiol 2005,289:C49-C57.

    57.Brainard AM,Korovkina VP,England SK:Potassium channels and uterine function.Semin Cell Dev Biol 2007,18:332-339.

    58.Pierce SL,Kresowik JD,Lamping KG,England SK:Overexpression of SK3 channels dampens uterine contractility to prevent preterm labor in mice.Bio Reprod 2008,78:1058-1063.

    59.Pierce SL,England SK:SK3 channel expression during pregnancy is regulated through estrogen and Sp factor-mediated transcriptional control of the KCNN3 gene.Am J Physiol Endocrinol Metab 2010,299:E640-E646.

    60.Yallampalli C,Dong YL:Estradiol-17beta inhibits nitric oxide synthase (NOS)-II and stimulates NOS-III gene expression in the rat uterus.Bio Reprod 2000,63:34-41.

    61.Yallampalli C,Garfield RE,Byam-Smith M:Nitric oxide inhibits uterine contractility during pregnancy but not during delivery.Endocrinology 1993,133:1899-1902.

    62.Yallampalli C,Izumi H,Byam-Smith M,Garfield RE:An L-arginine-nitric oxide-cyclic guanosine monophosphate system exists in the uterus and inhibits contractility during pregnancy.Am J Obstet Gynecol 1994,170:175-185.

    63.Dong YL,Yallampalli C:Interaction between nitric oxide and prostaglandin E2 pathways in pregnant rat uteri.Am J Physiol 1996,270:E471-E476.

    64.Tong D,Lu X,Wang HX,Plante I,Lui E,Laird DW,Bai D,Kidder GM:A dominant loss-of-function GJA1(Cx43)mutant impairs parturition in the mouse.Biol Reprod 2009,80:1099-1106.

    65.Renthal NE,Chen CC,Williams KC,Gerard RD,Prange-Kiel J,Mendelson CR:miR-200 family and targets,ZEB1 and ZEB2,modulate uterine quiescence and contractility during pregnancy and labor.Proc Natl Acad Sci U S A 2010,107:20828-20833.

    66.Williams KC,Renthal NE,Gerard RD,Mendelson CR:The microRNA (miR)-199a/214 cluster mediates opposing effects of progesterone and estrogen on uterine contractility during pregnancy and labor.Mol Endocrinol 2012,26:1857-1867.

    67.Cockburn K,Rossant J:Making the blastocyst:lessons from the mouse.J Clin Invest 2010,120:995-1003.

    68.Flach G,Johnson MH,Braude PR,Taylor RA,Bolton VN:The transition from maternal to embryonic control in the 2-cell mouse embryo.Embo J 1982,1:681-686.

    69.Salamonsen LA,Dimitriadis E,Jones RL,Nie G:Complex regulation of decidualization:a role for cytokines and proteases-a review.Placenta 2003,24(Suppl A):S76-S85.

    70.Wang H,Dey SK:Roadmap to embryo implantation:clues from mouse models.Nat Rev Genet 2006,7:185-199.

    71.Cha J,Sun X,Dey SK:Mechanisms of implantation:strategies for successful pregnancy.Nat Med 2012,18:1754-1767.

    72.Guzelogiu-Kayisli Z,Kayisli UA,Taylor HS:The role of growth factors and cytokines during implantation:endocrine and paracrine interactions.Semin Reprod Med 2009,27:62-79.

    73.Memon MA,Anway MD,Covert TR,Uzumcu M,Skinner MK:Transforming growth factor beta(TGF beta 1,TGF beta 2 and TGF beta 3)null-mutant phenotypes in embryonic gonadal development.Mol Cell Endocrinol 2008,294:70-80.

    74.Mu Z,Yang Z,Yu D,Zhao Z,Munger JS:TGFbeta1 and TGFbeta3 are partially redundant effectors in brain vascular morphogenesis.Mech Dev 2008,125:508-516.

    75.Kallapur S,Ormsby I,Doetschman T:Strain dependency of TGFbeta1 function during embryogenesis.Mol Reprod Dev 1999,52:341-349.

    76.Ingman WV,Robker RL,Woittiez K,Robertson SA:Null mutation in transforming growth factor beta1 disrupts ovarian function and causes oocyte incompetence and early embryo arrest.Endocrinology 2006,147:835-845.

    77.Paria BC,Dey SK:Preimplantation embryo development in vitro-cooperative interactions among embryos and role of growth-factors.Proc Natl Acad Sci U S A 1990,87:4756-4760.

    78.Lim J,Bongso A,Ratnam S:Mitogenic and cytogenetic evaluation of transforming growth-factor-beta on murine preimplantation embryonic-development in-vitro.Mol Reprod Dev 1993,36:482-487.

    79.Nowak RA,Haimovici F,Biggers JD,Erbach GT:Transforming growth factorbeta stimulates mouse blastocyst outgrowth through a mechanism involving parathyroid hormone-related protein.Biol Reprod 1999,60:85-93.

    80.Feinberg RF,Kliman HJ,Wang CL:Transforming growth factor-beta stimulates trophoblast oncofetal fibronectin synthesis in vitro:implications for trophoblast implantation in vivo.J Clin Endocrinol Metab 1994,78:1241-1248.

    81.Graham CH,Connelly I,Macdougall JR,Kerbel RS,Stetlerstevenson WG,Lala PK:Resistance of malignant trophoblast cells to both the antiproliferative and anti-invasive effects of transforming growth-factor-beta.Exp Cell Res 1994,214:93-99.

    82.Letterio JJ,Geiser AG,Kulkarni AB,Roche NS,Sporn MB,Roberts AB:Maternal rescue of transforming growth factor-beta 1 null mice.Science 1994,264:1936-1938.

    83.McLennan IS,Koishi K:Fetal and maternal transforming growth factorbeta 1 may combine to maintain pregnancy in mice.Biol Reprod 2004,70:1614-1618.

    84.Akinyemi BO,Adewoye BR,Fakoya TA:Uterine fibroid:a review.Niger J Med 2004,13:318-329.

    85.Dou Q,Zhao Y,Tarnuzzer RW,Rong H,Williams RS,Schultz GS,Chegini N:Suppression of transforming growth factor-beta(TGF beta)and TGF beta receptor messenger ribonucleic acid and protein expression in leiomyomata in women receiving gonadotropin-releasing hormone agonist therapy.J Clin Endocrinol Metab 1996,81:3222-3230.

    86.Arici A,Sozen I:Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation.Fertil Steril 2000,73:1006-1011.

    87.Levy G,Malik M,Britten J,Gilden M,Segars J,Catherino WH:Liarozole inhibits transforming growth factor-beta3-mediated extracellular matrix formation in human three-dimensional leiomyoma cultures.Fertil Steril 2014,102:272-281.

    88.Joseph DS,Malik M,Nurudeen S,Catherino WH:Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3.Fertil Steril 2010,93:1500-1508.

    89.Malik M,Catherino WH:Development and validation of a three-dimensional in vitro model for uterine leiomyoma and patient-matched myometrium.Fertil Steril 2012,97:1287-1293.

    90.Malik M,Catherino WH:Novel method to characterize primary cultures of leiomyoma and myometrium with the use of confirmatory biomarker gene arrays.Fertil Steril 2007,87:1166-1172.

    91.Luo X,Ding L,Chegini N:CCNs,fibulin-1C and S100A4 expression in leiomyoma and myometrium:inverse association with TGF-beta and regulation by TGF-beta in leiomyoma and myometrial smooth muscle cells.Mol Hum Reprod 2006,12:245-256.

    92.Levens E,Luo X,Ding L,Williams RS,Chegini N:Fibromodulin is expressed in leiomyoma and myometrium and regulated by gonadotropinreleasing hormone analogue therapy and TGF-beta through Smad and MAPK-mediated signalling.Mol Hum Reprod 2005,11:489-494.

    93.Norian JM,Malik M,Parker CY,Joseph D,Leppert PC,Segars JH,Catherino WH:Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas.Reprod Sci 2009,16:1153-1164.

    94.Di X,Andrews DM,Tucker CJ,Yu L,Moore AB,Zheng X,Castro L,Hermon T, Xiao H,Dixon D:A high concentration of genistein down-regulates activin A,Smad3 and other TGF-beta pathway genes in human uterine leiomyoma cells.Exp Mol Med 2012,44:281-292.

    95.Li Z,Burzawa JK,Troung A,Feng S,Agoulnik IU,Tong X,Anderson ML, Kovanci E,Rajkovic A,Agoulnik AI:Relaxin signaling in uterine fibroids.Ann N Y Acad Sci 2009,1160:374-378.

    96.Grudzien MM,Low PS,Manning PC,Arredondo M,Belton RJ Jr,Nowak RA:The antifibrotic drug halofuginone inhibits proliferation and collagen production by human leiomyoma and myometrial smooth muscle cells.Fertil Steril 2010,93:1290-1298.

    97.Ohara N,Morikawa A,Chen W,Wang J,DeManno DA,Chwalisz K,Maruo T:Comparative effects of SPRM asoprisnil(J867)on proliferation,apoptosis, and the expression of growth factors in cultured uterine leiomyoma cells and normal myometrial cells.Reprod Sci 2007,14:20-27.

    98.De Falco M,Staibano S,D’Armiento FP,Mascolo M,Salvatore G,Busiello A, Carbone IF,Pollio F,Di Lieto A:Preoperative treatment of uterine leiomyomas:Clinical findings and expression of transforming growth factor-beta 3 and connective tissue growth factor.J Soc Gynecol Investig 2006,13:297-303.

    99.Sinclair DC,Mastroyannis A,Taylor HS:Leiomyoma simultaneously impair endometrial BMP-2-mediated decidualization and anticoagulant expression through secretion of TGF-beta 3.J Clin Endocr Metab 2011,96:412-421.

    100.Peracoli MT,Menegon FT,Borges VT,de Araujo Costa RA,Thomazini-Santos IA,Peracoli JC:Platelet aggregation and TGF-beta(1)plasma levels in pregnant women with preeclampsia.J Reprod Immunol 2008,79:79-84.

    101.Djurovic S,Schjetlein R,Wisloff F,Haugen G,Husby H,Berg K:Plasma concentrations of Lp(a)lipoprotein and TGF-beta1 are altered in preeclampsia.Clin Genet 1997,52:371-376.

    102.Enquobahrie DA,Williams MA,Qiu C,Woelk GB,Mahomed K:Maternal plasma transforming growth factor-beta1 concentrations in preeclamptic and normotensive pregnant Zimbabwean women.J Matern Fetal Neona 2005,17:343-348.

    103.Wang XJ,Zhou ZY,Xu YJ:Changes of plasma uPA and TGF-beta1 in patients with preeclampsia.Sichuan Da Xue Xue Bao Yi Xue Ban 2010,41:118-120.

    104.Feizollahzadeh S,Taheripanah R,Khani M,Farokhi B,Amani D:Promoter region polymorphisms in the transforming growth factor beta-1 (TGFbeta1)gene and serum TGFbeta1 concentration in preeclamptic and control Iranian women.J Reprod Immunol 2012,94:216-221.

    105.Shaarawy M,El Meleigy M,Rasheed K:Maternal serum transforming growth factor beta-2 in preeclampsia and eclampsia,a potential biomarker for the assessment of disease severity and fetal outcome.J Soc Gynecol Investig 2001,8:27-31.

    106.Caniggia I,Grisaru-Gravnosky S,Kuliszewsky M,Post M,Lye SJ:Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies.J Clin Invest 1999,103:1641-1650.

    107.Venkatesha S,Toporsian M,Lam C,Hanai J,Mammoto T,Kim YM,Bdolah Y, Lim KH,Yuan HT,Libermann TA,Stillman IE,Roberts D,D’Amore PA,Epstein FH,Sellke FW,Romero R,Sukhatme VP,Letarte M,Karumanchi SA:Soluble endoglin contributes to the pathogenesis of preeclampsia.Nat Med 2006,12:642-649.

    108.Stepan H,Kramer T,Faber R:Maternal plasma concentrations of soluble endoglin in pregnancies with intrauterine growth restriction.J Clin Endocrinol Metab 2007,92:2831-2834.

    109.Lyall F,Simpson H,Bulmer JN,Barber A,Robson SC:Transforming growth factor-beta expression in human placenta and placental bed in third trimester normal pregnancy,preeclampsia,and fetal growth restriction.Am J Pathol 2001,159:1827-1838.

    110.Szarka A,Rigo J Jr,Lazar L,Beko G,Molvarec A:Circulating cytokines, chemokines and adhesion molecules in normal pregnancy and preeclampsia determined by multiplex suspension array.BMC Immunol 2010,11:59.

    111.Perucci LO,Gomes KB,Freitas LG,Godoi LC,Alpoim PN,Pinheiro MB, Miranda AS,Teixeira AL,Dusse LM,Sousa LP:Soluble endoglin, transforming growth factor-Beta 1 and soluble tumor necrosis factor alpha receptors in different clinical manifestations of preeclampsia.PLoS One 2014,9:e97632.

    112.Huber A,Hefler L,Tempfer C,Zeisler H,Lebrecht A,Husslein P:Transforming growth factor-beta 1 serum levels in pregnancy and pre-eclampsia.Acta Obstet Gynecol Scand 2002,81:168-171.

    113.Bersinger NA,Smarason AK,Muttukrishna S,Groome NP,Redman CW:Women with preeclampsia have increased serum levels of pregnancyassociated plasma protein a(PAPP-A),inhibin A,activin A,and soluble E-selectin.Hypertens Pregnancy 2003,22:45-55.

    114.Silver HM,Lambert-Messerlian GM,Reis FM,Diblasio AM,Petraglia F,Canick JA:Mechanism of increased maternal serum total activin A and inhibin A in preeclampsia.J Soc Gynecol Investig 2002,9:308-312.

    115.Yair D,Eshed-Englender T,Kupferminc MJ,Geva E,Frenkel J,Sherman D:Serum levels of inhibin B,unlike inhibin A and activin A,are not altered in women with preeclampsia.Am J Reprod Immunol 2001,45:180-187.

    116.Laivuori H,Kaaja R,Turpeinen U,Stenman UH,Ylikorkala O:Serum activin A and inhibin A elevated in pre-eclampsia:no relation to insulin sensitivity.BJOG 1999,106:1298-1303.

    117.Figueras F,Gardosi J:Intrauterine growth restriction:new concepts in antenatal surveillance,diagnosis,and management.Am J Obstet Gynecol 2011,204:288-300.

    118.Ostlund E,Tally M,Fried G:Transforming growth factor-beta1 in fetal serum correlates with insulin-like growth factor-I and fetal growth.Obstet Gynecol 2002,100:567-573.

    119.Sanford LP,Ormsby I,GittenbergerdeGroot AC,Sariola H,Friedman R,Boivin GP,Cardell EL,Doetschman T:TGF beta 2 knockout mice have multiple developmental defects that are nonoverlapping with other TGF beta knockout phenotypes.Development 1997,124:2659-2670.

    120.Jeyabalan A,McGonigal S,Gilmour C,Hubel CA,Rajakumar A:Circulating and placental endoglin concentrations in pregnancies complicated by intrauterine growth restriction and preeclampsia.Placenta 2008,29:555-563.

    121.Yinon Y,Nevo O,Xu J,Many A,Rolfo A,Todros T,Post M,Caniggia I:Severe intrauterine growth restriction pregnancies have increased placental endoglin levels:hypoxic regulation via transforming growth factor-beta 3.Am J Pathol 2008,172:77-85.

    122.Park CB,DeMayo FJ,Lydon JP,Dufort D:NODAL in the uterus is necessary for proper placental development and maintenance of pregnancy.Biol Reprod 2012,86:194.

    123.Mills AM,Longacre TA:Endometrial hyperplasia.Semin Diagn Pathol 2010,27:199-214.

    124.Kurman RJ,Kaminski PF,Norris HJ:The behavior of endometrial hyperplasia.A long-term study of“untreated”hyperplasia in 170 patients.Cancer 1985,56:403-412.

    125.Montgomery BE,Daum GS,Dunton CJ:Endometrial hyperplasia:a review.Obstet Gynecol Surv 2004,59:368-378.

    126.Shutter J,Wright TC:Prevalence of underlying adenocarcinoma in women with atypical endometrial hyperplasia.Int J Gynecol Pathol 2005,24:313-318.

    127.Lacey JV,Chia VM:Endometrial hyperplasia and the risk of progression to carcinoma.Maturitas 2009,63:39-44.

    128.Hahn HS,Chun YK,Kwon YI,Kim TJ,Lee KH,Shim JU,Mok JE,Lim KT:Concurrent endometrial carcinoma following hysterectomy for atypical endometrial hyperplasia.Eur J Obstet Gynecol Reprod Biol 2010,150:80-83.

    129.Gambrell RD:Progestogens in estrogen-replacement therapy.Clin Obstet Gynecol 1995,38:890-901.

    130.Reed SD,Voigt LF,Newton KM,Garcia RH,Allison HK,Epplein M,Jordan D, Swisher E,Weiss NS:Progestin therapy of complex endometrial hyperplasia with and without atypia.Obstet Gynecol 2009,113:655-662.

    131.Stambolic V,Tsao MS,Macpherson D,Suzuki A,Chapman WR,Mak TW:High incidence of breast and endometrial neoplasia resembling human Cowden syndrome in pten(+/-)mice.Cancer Res 2000,60:3605-3611.

    132.Milam MR,Soliman PT,Chung LH,Schmeler KM,Bassett RL,Broaddus RR,Lu KH:Loss of phosphatase and tensin homologue deleted on chromosome 10 and phosphorylation of mammalian target of rapamycin are associated with progesterone refractory endometrial hyperplasia.Int J Gynecol Cancer 2008,18:146-151.

    133.Parekh TV,Gama P,Wen X,Demopoulos R,Munger JS,Carcangiu ML,Reiss M, Gold LI:Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition.Cancer Res 2002,62:2778-2790.

    134.Lecanda J,Parekh TV,Gama P,Lin K,Liarski V,Uretsky S,Mittal K,Gold LI:Transforming growth factor-beta,estrogen,and progesterone converge on the regulation of p27Kip1 in the normal and malignant endometrium.Cancer Res 2007,67:1007-1018.

    135.Piestrzeniewicz-Ulanska D,McGuinness D,Yeaman G:TGF-βSignaling in Endometrial Cancer.In Transforming Growth Factor-β in Cancer Therapy, Volume II.Edited by Jakowlew S.Totowa,NJ:Humana Press;2008:63-78.

    136.Gao Y,Li S,Li Q:Uterine epithelial cell proliferation and endometrial hyperplasia:evidence from a mouse model.Mol Hum Reprod 2014,20:776-786.

    Cite this article as:Li:Transforming growth factorβsignaling in uterine development and function.Journal of Animal Science and Biotechnology 20145:52.

    10.1186/2049-1891-5-52

    Correspondence:qli@cvm.tamu.edu

    Department of Veterinary Integrative Biosciences,College of Veterinary

    Medicine and Biomedical Sciences,Texas A&M University,College Station,TX 77843,USA

    老汉色∧v一级毛片| 亚洲综合色网址| 成人漫画全彩无遮挡| 欧美乱码精品一区二区三区| 欧美日韩亚洲高清精品| 日韩,欧美,国产一区二区三区| 国产精品久久久久久人妻精品电影 | 日本午夜av视频| 亚洲欧洲日产国产| 老司机在亚洲福利影院| 国产亚洲精品第一综合不卡| 欧美激情极品国产一区二区三区| 久久99精品国语久久久| 国产男人的电影天堂91| 久久 成人 亚洲| 国产精品国产三级国产专区5o| 狠狠精品人妻久久久久久综合| 欧美精品亚洲一区二区| 日本91视频免费播放| 成人亚洲精品一区在线观看| 亚洲国产av新网站| 一级毛片我不卡| 九九爱精品视频在线观看| 精品人妻熟女毛片av久久网站| 视频在线观看一区二区三区| 欧美国产精品一级二级三级| 久久久精品区二区三区| 黄色一级大片看看| 一区二区av电影网| 一级毛片我不卡| av线在线观看网站| 久久久国产精品麻豆| 国产精品一国产av| 啦啦啦视频在线资源免费观看| 一级黄片播放器| 日韩欧美一区视频在线观看| 久久人妻熟女aⅴ| 亚洲一级一片aⅴ在线观看| netflix在线观看网站| 午夜精品国产一区二区电影| 亚洲成色77777| 别揉我奶头~嗯~啊~动态视频 | 操美女的视频在线观看| 超碰成人久久| h视频一区二区三区| 亚洲欧美精品自产自拍| 夫妻午夜视频| 日本欧美视频一区| a级毛片在线看网站| 欧美中文综合在线视频| 男人爽女人下面视频在线观看| 国产成人系列免费观看| 国产精品久久久久久人妻精品电影 | 婷婷色av中文字幕| 国产成人精品福利久久| 久久精品久久久久久噜噜老黄| 亚洲 欧美一区二区三区| 免费看av在线观看网站| 国产精品.久久久| 别揉我奶头~嗯~啊~动态视频 | av天堂久久9| 一级a爱视频在线免费观看| 久久婷婷青草| 天堂中文最新版在线下载| 成人国语在线视频| 亚洲欧美清纯卡通| h视频一区二区三区| 精品福利永久在线观看| 国产高清国产精品国产三级| 亚洲av综合色区一区| 亚洲成av片中文字幕在线观看| 国产精品国产三级专区第一集| 青春草亚洲视频在线观看| 亚洲精品第二区| 欧美变态另类bdsm刘玥| 波多野结衣一区麻豆| 久久久久久久精品精品| 黑人巨大精品欧美一区二区蜜桃| 日韩熟女老妇一区二区性免费视频| 成人国产麻豆网| 91精品国产国语对白视频| 中文字幕制服av| 精品酒店卫生间| 久久精品久久久久久噜噜老黄| 毛片一级片免费看久久久久| 日本91视频免费播放| 久久人妻熟女aⅴ| 精品午夜福利在线看| 女性被躁到高潮视频| 成年动漫av网址| 国产精品久久久久久人妻精品电影 | 免费看av在线观看网站| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 丝袜美足系列| 国产一区有黄有色的免费视频| 亚洲国产精品一区二区三区在线| √禁漫天堂资源中文www| 日韩 亚洲 欧美在线| 亚洲成人国产一区在线观看 | 欧美日韩视频高清一区二区三区二| 热re99久久精品国产66热6| 深夜精品福利| 观看av在线不卡| 国精品久久久久久国模美| 秋霞在线观看毛片| 丰满饥渴人妻一区二区三| 亚洲综合色网址| 亚洲av电影在线观看一区二区三区| 成人国语在线视频| xxx大片免费视频| 欧美久久黑人一区二区| 欧美 亚洲 国产 日韩一| 免费看av在线观看网站| 精品一品国产午夜福利视频| 不卡视频在线观看欧美| 高清黄色对白视频在线免费看| 成人黄色视频免费在线看| 美女扒开内裤让男人捅视频| 亚洲国产欧美网| 丝袜脚勾引网站| 亚洲美女搞黄在线观看| 热99久久久久精品小说推荐| 国产免费福利视频在线观看| 午夜久久久在线观看| 日韩中文字幕欧美一区二区 | 波野结衣二区三区在线| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 欧美乱码精品一区二区三区| 国产一卡二卡三卡精品 | 日韩 亚洲 欧美在线| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 夜夜骑夜夜射夜夜干| 日韩 欧美 亚洲 中文字幕| 亚洲国产欧美一区二区综合| 91精品伊人久久大香线蕉| 国产精品麻豆人妻色哟哟久久| a级毛片在线看网站| 观看美女的网站| 精品亚洲乱码少妇综合久久| 亚洲精品久久久久久婷婷小说| 一区二区三区四区激情视频| 在线观看免费视频网站a站| 成人手机av| 中文字幕av电影在线播放| 十八禁高潮呻吟视频| 亚洲精品aⅴ在线观看| 制服人妻中文乱码| 国产日韩欧美亚洲二区| 18在线观看网站| 一二三四中文在线观看免费高清| 精品视频人人做人人爽| 少妇人妻 视频| 99久国产av精品国产电影| 蜜桃在线观看..| av福利片在线| 最近的中文字幕免费完整| 久久鲁丝午夜福利片| av片东京热男人的天堂| 韩国av在线不卡| 女性生殖器流出的白浆| 国产视频首页在线观看| 高清在线视频一区二区三区| 国产一区二区三区av在线| 国产免费一区二区三区四区乱码| 亚洲精品一二三| 亚洲欧美成人综合另类久久久| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 久久久精品国产亚洲av高清涩受| 亚洲欧美一区二区三区国产| 亚洲人成77777在线视频| 2018国产大陆天天弄谢| 满18在线观看网站| 9色porny在线观看| 涩涩av久久男人的天堂| 哪个播放器可以免费观看大片| 夜夜骑夜夜射夜夜干| 亚洲精品一二三| 精品一区二区三区四区五区乱码 | 丝袜在线中文字幕| 久久人妻熟女aⅴ| 国产精品女同一区二区软件| 国产淫语在线视频| 亚洲欧美成人综合另类久久久| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀 | 在线 av 中文字幕| 91精品三级在线观看| 成人国语在线视频| 999久久久国产精品视频| 99精国产麻豆久久婷婷| xxxhd国产人妻xxx| 欧美黑人精品巨大| 免费在线观看黄色视频的| 亚洲一区中文字幕在线| 国产免费现黄频在线看| 久久热在线av| 免费黄频网站在线观看国产| av福利片在线| 天堂俺去俺来也www色官网| 欧美最新免费一区二区三区| 人人澡人人妻人| 天天躁狠狠躁夜夜躁狠狠躁| 欧美日韩一级在线毛片| 少妇 在线观看| 女人久久www免费人成看片| www.精华液| 三上悠亚av全集在线观看| 大话2 男鬼变身卡| 午夜91福利影院| 赤兔流量卡办理| 日韩一卡2卡3卡4卡2021年| 侵犯人妻中文字幕一二三四区| 性高湖久久久久久久久免费观看| 国产精品一区二区在线不卡| videos熟女内射| 这个男人来自地球电影免费观看 | 欧美精品一区二区大全| 一本久久精品| 久久久久久久久久久免费av| 久久人人爽av亚洲精品天堂| 午夜福利视频在线观看免费| 看非洲黑人一级黄片| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 亚洲国产精品一区三区| 国产一区有黄有色的免费视频| 黄频高清免费视频| e午夜精品久久久久久久| 日韩一区二区三区影片| 亚洲av日韩在线播放| 亚洲精品久久午夜乱码| 国产免费又黄又爽又色| 99热国产这里只有精品6| 亚洲欧美一区二区三区国产| 欧美日韩亚洲综合一区二区三区_| 两个人看的免费小视频| 成年动漫av网址| 精品一区二区三区四区五区乱码 | 熟妇人妻不卡中文字幕| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 成年人免费黄色播放视频| 亚洲欧洲日产国产| 丝袜喷水一区| 中文欧美无线码| 啦啦啦视频在线资源免费观看| av线在线观看网站| 蜜桃国产av成人99| 日韩 亚洲 欧美在线| 天天影视国产精品| 永久免费av网站大全| 国产精品三级大全| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 婷婷色综合大香蕉| 91精品国产国语对白视频| 97在线人人人人妻| 你懂的网址亚洲精品在线观看| av网站在线播放免费| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 久久这里只有精品19| 高清欧美精品videossex| 欧美在线黄色| 18在线观看网站| 免费观看性生交大片5| 亚洲av成人不卡在线观看播放网 | 老司机靠b影院| 国产成人精品无人区| 99久久99久久久精品蜜桃| 91精品三级在线观看| 一级毛片电影观看| 男女无遮挡免费网站观看| 日韩一卡2卡3卡4卡2021年| 婷婷色av中文字幕| 黄片无遮挡物在线观看| 一级黄片播放器| 久久99一区二区三区| 男男h啪啪无遮挡| 亚洲成人国产一区在线观看 | 欧美精品亚洲一区二区| 纵有疾风起免费观看全集完整版| 中文字幕精品免费在线观看视频| 叶爱在线成人免费视频播放| 亚洲国产最新在线播放| 国产在线免费精品| 国产亚洲欧美精品永久| 欧美日韩av久久| 岛国毛片在线播放| 少妇的丰满在线观看| 精品少妇一区二区三区视频日本电影 | 制服丝袜香蕉在线| 国产在视频线精品| 九草在线视频观看| 中文字幕av电影在线播放| 亚洲,欧美精品.| 国产精品欧美亚洲77777| 十八禁高潮呻吟视频| 观看av在线不卡| 日韩中文字幕欧美一区二区 | 男女国产视频网站| 另类亚洲欧美激情| svipshipincom国产片| 亚洲成人免费av在线播放| 亚洲av成人精品一二三区| 激情视频va一区二区三区| 亚洲av欧美aⅴ国产| 欧美乱码精品一区二区三区| 精品国产一区二区三区久久久樱花| av在线播放精品| 国产成人一区二区在线| 青春草亚洲视频在线观看| 日韩一区二区视频免费看| 亚洲一级一片aⅴ在线观看| 老熟女久久久| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 精品久久久久久电影网| 精品亚洲乱码少妇综合久久| 亚洲av男天堂| 精品亚洲成a人片在线观看| 日韩不卡一区二区三区视频在线| 韩国精品一区二区三区| 丝袜脚勾引网站| 亚洲七黄色美女视频| 国产在视频线精品| 黄频高清免费视频| 色婷婷久久久亚洲欧美| 亚洲精品aⅴ在线观看| 我要看黄色一级片免费的| 国产成人精品在线电影| netflix在线观看网站| 看十八女毛片水多多多| 好男人视频免费观看在线| 国产精品.久久久| 亚洲色图综合在线观看| 在线天堂中文资源库| 青青草视频在线视频观看| 国产精品国产av在线观看| 多毛熟女@视频| 国产精品香港三级国产av潘金莲 | 9热在线视频观看99| 久久精品国产亚洲av高清一级| 一本久久精品| 亚洲七黄色美女视频| 欧美人与性动交α欧美软件| 免费观看人在逋| 亚洲综合精品二区| 亚洲欧美一区二区三区黑人| 在线 av 中文字幕| 老鸭窝网址在线观看| 曰老女人黄片| a级毛片在线看网站| 水蜜桃什么品种好| 最新的欧美精品一区二区| 亚洲欧美日韩另类电影网站| 国产精品偷伦视频观看了| 麻豆精品久久久久久蜜桃| 日韩大码丰满熟妇| 超碰97精品在线观看| 国产精品无大码| 啦啦啦啦在线视频资源| 最黄视频免费看| 晚上一个人看的免费电影| 99香蕉大伊视频| 美女视频免费永久观看网站| 成人国产麻豆网| 国产深夜福利视频在线观看| 最近最新中文字幕免费大全7| 人人妻,人人澡人人爽秒播 | 色婷婷av一区二区三区视频| 最近2019中文字幕mv第一页| 亚洲成av片中文字幕在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| av国产久精品久网站免费入址| 两个人免费观看高清视频| 国产麻豆69| 麻豆精品久久久久久蜜桃| 久久精品国产亚洲av高清一级| 国产亚洲最大av| 亚洲专区中文字幕在线 | 在线免费观看不下载黄p国产| 色网站视频免费| 制服人妻中文乱码| 女人被躁到高潮嗷嗷叫费观| 亚洲国产精品一区二区三区在线| 最近中文字幕高清免费大全6| 妹子高潮喷水视频| 国产欧美亚洲国产| 亚洲一级一片aⅴ在线观看| 一区二区三区乱码不卡18| 另类亚洲欧美激情| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 满18在线观看网站| av卡一久久| 久久毛片免费看一区二区三区| 一级毛片 在线播放| 丝袜在线中文字幕| 国产精品久久久久久人妻精品电影 | 日本欧美国产在线视频| 一级片免费观看大全| 侵犯人妻中文字幕一二三四区| 超色免费av| 亚洲精品中文字幕在线视频| 一区在线观看完整版| 亚洲国产成人一精品久久久| 桃花免费在线播放| 精品一品国产午夜福利视频| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 欧美 亚洲 国产 日韩一| 欧美在线一区亚洲| 建设人人有责人人尽责人人享有的| 亚洲精品,欧美精品| 国产精品久久久久久久久免| 99热网站在线观看| 精品一区二区三卡| 国产日韩一区二区三区精品不卡| 黄色一级大片看看| 一本大道久久a久久精品| 午夜福利网站1000一区二区三区| 午夜激情av网站| 超色免费av| 如何舔出高潮| 菩萨蛮人人尽说江南好唐韦庄| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品94久久精品| 精品少妇黑人巨大在线播放| av国产久精品久网站免费入址| 男女之事视频高清在线观看 | 欧美亚洲日本最大视频资源| 又大又黄又爽视频免费| 国产精品久久久av美女十八| xxx大片免费视频| 国产午夜精品一二区理论片| 综合色丁香网| 天天添夜夜摸| 国产片特级美女逼逼视频| 这个男人来自地球电影免费观看 | 一本—道久久a久久精品蜜桃钙片| 精品一区二区三卡| 丰满迷人的少妇在线观看| 欧美激情极品国产一区二区三区| 亚洲欧美一区二区三区久久| 国产成人精品久久二区二区91 | 51午夜福利影视在线观看| 一本久久精品| 日韩av不卡免费在线播放| 亚洲精品在线美女| 日韩一卡2卡3卡4卡2021年| 免费少妇av软件| 欧美精品av麻豆av| 亚洲国产日韩一区二区| 亚洲自偷自拍图片 自拍| 亚洲精品aⅴ在线观看| 日韩一区二区三区影片| 亚洲美女视频黄频| 美女午夜性视频免费| 激情五月婷婷亚洲| 日本黄色日本黄色录像| 国产一区二区 视频在线| 国产av一区二区精品久久| 亚洲av成人精品一二三区| 日韩一区二区三区影片| 精品福利永久在线观看| netflix在线观看网站| 欧美日本中文国产一区发布| 多毛熟女@视频| 国产亚洲精品第一综合不卡| 亚洲欧洲国产日韩| 亚洲精品在线美女| 纵有疾风起免费观看全集完整版| 一级毛片我不卡| 90打野战视频偷拍视频| 最近中文字幕高清免费大全6| 久久天堂一区二区三区四区| 国产男女内射视频| 日韩视频在线欧美| 操美女的视频在线观看| 伊人久久大香线蕉亚洲五| 亚洲天堂av无毛| 国产乱来视频区| 亚洲精品自拍成人| 国产黄色视频一区二区在线观看| 天堂中文最新版在线下载| 精品久久久精品久久久| videosex国产| av国产精品久久久久影院| 欧美人与善性xxx| 男女高潮啪啪啪动态图| 国产午夜精品一二区理论片| 一边亲一边摸免费视频| 久久精品熟女亚洲av麻豆精品| 久久人人爽av亚洲精品天堂| 美女脱内裤让男人舔精品视频| 久热爱精品视频在线9| 免费在线观看黄色视频的| 巨乳人妻的诱惑在线观看| 热99久久久久精品小说推荐| 黄色毛片三级朝国网站| 人成视频在线观看免费观看| 女人被躁到高潮嗷嗷叫费观| 成人三级做爰电影| 捣出白浆h1v1| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 久久人人97超碰香蕉20202| 成人三级做爰电影| 不卡视频在线观看欧美| 国产精品熟女久久久久浪| 香蕉国产在线看| 无遮挡黄片免费观看| 亚洲av电影在线观看一区二区三区| 国产精品一区二区在线观看99| 成年人午夜在线观看视频| 超色免费av| 亚洲精品国产av蜜桃| 欧美日韩亚洲国产一区二区在线观看 | 十八禁高潮呻吟视频| www.熟女人妻精品国产| 色94色欧美一区二区| 丝袜脚勾引网站| 精品国产乱码久久久久久小说| 日韩 欧美 亚洲 中文字幕| 久久99热这里只频精品6学生| 亚洲七黄色美女视频| 亚洲成人一二三区av| 中国三级夫妇交换| 欧美老熟妇乱子伦牲交| av国产久精品久网站免费入址| 亚洲av中文av极速乱| 亚洲av在线观看美女高潮| 精品一区在线观看国产| 成人亚洲欧美一区二区av| 精品少妇一区二区三区视频日本电影 | 卡戴珊不雅视频在线播放| 国产成人精品久久二区二区91 | 亚洲人成电影观看| 精品亚洲成国产av| 青春草亚洲视频在线观看| 香蕉丝袜av| 韩国高清视频一区二区三区| 爱豆传媒免费全集在线观看| 老汉色av国产亚洲站长工具| av女优亚洲男人天堂| 久久久久精品久久久久真实原创| 日韩一区二区视频免费看| 热re99久久国产66热| 亚洲精品视频女| 女人高潮潮喷娇喘18禁视频| 久久热在线av| 国产成人精品久久久久久| 国产一级毛片在线| 一边亲一边摸免费视频| 色94色欧美一区二区| 国产亚洲av高清不卡| 桃花免费在线播放| 国产精品二区激情视频| 成年人午夜在线观看视频| 国产欧美日韩综合在线一区二区| 考比视频在线观看| 天天躁日日躁夜夜躁夜夜| 中文欧美无线码| 美女午夜性视频免费| 国产1区2区3区精品| 亚洲一区二区三区欧美精品| 老熟女久久久| 欧美久久黑人一区二区| 亚洲欧美一区二区三区黑人| 久久久久久久国产电影| 亚洲精品国产色婷婷电影| 国产熟女欧美一区二区| 美女视频免费永久观看网站| 亚洲国产中文字幕在线视频| 90打野战视频偷拍视频| 国产精品一二三区在线看| xxx大片免费视频| 女人久久www免费人成看片| 在线免费观看不下载黄p国产| 最新在线观看一区二区三区 | 亚洲第一区二区三区不卡| 亚洲国产成人一精品久久久| 男女国产视频网站| 欧美激情高清一区二区三区 | 成人国语在线视频| 欧美人与善性xxx| 久久久久精品性色| 色婷婷av一区二区三区视频| 99re6热这里在线精品视频| 老司机亚洲免费影院| 亚洲欧美成人综合另类久久久| a级片在线免费高清观看视频| 咕卡用的链子| 91aial.com中文字幕在线观看| 国产精品香港三级国产av潘金莲 | 亚洲成人免费av在线播放| 久久精品久久精品一区二区三区| 天天躁夜夜躁狠狠久久av| 新久久久久国产一级毛片| 亚洲精品久久午夜乱码| 日韩av不卡免费在线播放| 丝袜喷水一区| 国产1区2区3区精品| 免费人妻精品一区二区三区视频| 欧美97在线视频| 久久韩国三级中文字幕| 91国产中文字幕| 日韩一区二区视频免费看| 最近手机中文字幕大全| 亚洲色图 男人天堂 中文字幕|