• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Epigenetics and transgenerational inheritance in domesticated farm animals

    2015-01-06 01:49:31AmandaFeeneyEricNilssonandMichaelSkinner
    關鍵詞:實際效果發(fā)電廠英特爾

    Amanda Feeney,Eric Nilsson and Michael K Skinner

    Epigenetics and transgenerational inheritance in domesticated farm animals

    Amanda Feeney,Eric Nilsson and Michael K Skinner*

    Epigenetics provides a molecular mechanism of inheritance that is not solely dependent on DNA sequence and that can account for non-Mendelian inheritance patterns.Epigenetic changes underlie many normal developmental processes,and can lead to disease development as well.While epigenetic effects have been studied in well-characterized rodent models,less research has been done using agriculturally important domestic animal species.This review will present the results of current epigenetic research using farm animal models(cattle,pigs,sheep and chickens).Much of the work has focused on the epigenetic effects that environmental exposures to toxicants,nutrients and infectious agents has on either the exposed animals themselves or on their direct offspring.Only one porcine study examined epigenetic transgenerational effects;namely the effect diet micronutrients fed to male pigs has on liver DNA methylation and muscle mass in grand-offspring(F2 generation).Healthy viable offspring are very important in the farm and husbandry industry and epigenetic differences can be associated with production traits.Therefore further epigenetic research into domestic animal health and how exposure to toxicants or nutritional changes affects future generations is imperative.

    Environment,Epigenetics,Pig,Review,Transgenerational

    Introduction

    Mendelian genetic theories have guided much of the biological research preformed in recent history.It has long been assumed that specific phenotypes arise only from DNA sequence.However,non-Mendelian inheritance patterns challenge these theories and suggest that an alternate process might exist to account for certain mechanisms of inheritance.Epigenetics provides a molecular mechanism that can account for these non-Mendelian observations[1-3].Epigenetics researchlooks into modifications and inheritance patterns that do not involve changes in the DNA sequence,but do affect genome activity and gene expression[1-4].There are four main mechanisms by which epigenetics can alter gene expression:DNA methylation,histone modification, chromatin structure,and non-coding RNA[1,5].Although the epigenetic processes are highly conserved among all species,the specific epigenomes are highly divergent between species.Modifications of these epigenetic processes can occur due to direct environmental exposure at critical periods in the development of the organism [1,6-8].Clearly any generation that has direct exposure to an environmental insult may be altered in some way. Recent research shows subsequent generations that were not present at the time of the exposure can still be affected due to epigenetic transgenerational inheritance,if exposure occurred during sensitive developmental windows for the germ cells[9].Epigenetic transgenerational inheritance is defined as germline-mediated inheritance of epigeneticinformationbetweengenerations,inthe absence of direct environmental influences,that leads to phenotypic variation[1,9].For example,if a pregnant animal is exposed to a toxicant during gonadal sex determination of the fetus then changes in fetal germ cell epigenetic programming may occur[8,10].Therefore these offspring and the gametes that will form the grand-offspring are directly exposed to the toxicant,and changes seen in these F1 and F2 generations are not transgenerational[11]. However,epigenetic changes in the F3 generation(greatgrand-offspring)would be considered transgenerationally inherited.In contrast,if a male or non-pregnant female adult animal is subjected to an environmental exposure, then changes seen in the F2 generation or later are considered transgenerational[11].Changes in DNA methylation in gametes that are transmitted to subsequentgenerations provide a mechanism for the inheritance of epigenetic information[12-14].Non-coding RNA also appears to have a role in epigenetic transgenerational inheritance[15].Much of the current research hasusedrodentmodels to demonstrate epigenetic changes after environmental insult,especially during pregnancy[8,10].Germline epigenetic transgenerational inheritance has also been shown in plants,flies,worms,and humans[10,16-21].

    Despite the amount of epigenetic and transgenerational epigenetic inheritance research being done on a multitude of mammal,insect,and plant models[8,10,16-21],a lack of research into these topics using farm animal models exists.This review will present the current epigenetic inheritance research and data using farm animal models (bovine,porcine,ovine,and gallus),Table 1.While much of the work has focused on the direct effects of environmental exposure to toxicants and nutrients,research into epigenetic transgenerational inheritance is limited.It is important that more epigenetic research be done in domesticated farm animals because of their close human relationships and potential for high pesticide exposure on farms.Pesticides have been shown to have dramatic transgenerational epigenetic effects on many animal models affecting the nervous system,reproductive and endocrine systems,and even causing cancer[9,22].Since hybrid vigour(i.e.heterosis)has been shown to be critical in breeding of domestic animals,and epigenetics has a critical role in hybrid vigour[23],epigenetic inheritance will be important in developing optimal domestic animal breeds. Considering overpopulation issues requiring a rise in food supply,there may be more efficient ways of detecting and promoting favorable selection using epigenetics to breed for a lower instance of animal disease.

    Domestic animal models

    Bovine

    The relationship of DNA methylation and milk production in dairy cattle has been investigated.During lactation the bovine αS1-casein gene is hypomethylated[24].Research has characterized this gene during various physiological conditions during the lactation cycle.Vanselow et al.found that during lactation the(STAT)5-binding lactation enhancer,which is part of the αS1-casein encoding gene, is hypomethylated[25].However,during Escherichia coli infection of the mammary gland,this region becomes methylated at three CpG dinucleotides which accompanies a shut down of αS1-casein synthesis[25]. These observations have also been shown with infection by Streptococcus uberis[26].In addition,methylation of these same 3 CpG dinucleotides has been seen during non-milking periods of healthy dairy cattle when milking was ceased suddenly[27].González-Recio et al. preformed a generational study to see if a mother dairy cow affected the milk production of her offspring[28]. They found that female calves born to cows that were already lactating from previous births produced between 18 and 91 kg less milk in adulthood than calves that were first-born,and that their lifespans were also shorter[28].Because of the generational effect,researchers suggested epigenetic inheritance.However, they did not look specifically at epigenetic differences in the affected calves versus controls.

    The influence of epigenetics on disease has been studied in many animal models such as rats,mice,and humans,but very little has been done with cattle.One bovinedevelopmentaldiseasecalledlarge-offspring syndrome(LOS)has been found to have epigenetic components during embryonic growth.LOS has largely been associated with reproductive technologies commonly used with cattle such as in vitro fertilization and somatic-cell nuclear transfer[32].Symptoms usually include increases in birth weight,organ overgrowth, difficulty breathing and standing,as well as skeletal and immunological defects.There are also increased rates of fetal and neonatal deaths[33-35].Dean et al.[36] has reported methylation changes in bovine embryos (morulae)between controls,in vitro fertilized,and somatic-cell nuclear transfer embryos,and suggests that these methylation differences may account for the different success rates and health of calves born from these reproductive technologies[36].A number of studies have demonstrated developmental epigenetic programming in bovine germ cells[37]and bovine embryos[38], which is similar among all mammalian species.In another study focusing on innate immunity,Green et al. [39]looked at epigenetics and individual variation in the innate immune response of bovine dermal fibroblasts,specifically via toll receptor signaling.Exposure to de-methylating and hyper-acetylating agents led to increased expression of several cytokines as compared to controls,suggesting immune gene expression has epigenetic regulation[39].

    Table 1 Environmental epigenetics and epigenetic inheritance in domestic farm animals

    Table 1 Environmental epigenetics and epigenetic inheritance in domestic farm animals(Continued)

    No studies have been published showing epigenetic transgenerational inheritance in cattle.

    Porcine

    Swine are often used as animal models to study human disease because of the similar physiology between the two species.Because of this,much of the epigenetic porcine research involves exposure and response,with very little of the current research being transgenerational.

    Epigenetic effects due to histone modification and acetylation have been studied in a porcine model both in order to increase meat production and to develop a potential treatment for muscular degenerative disease.Sulforaphane is a bioactive histone deacetylase inhibitor often found in edible vegetation like broccoli[40].Fan et al. [41]treated porcine satellite cells with sulforaphane to epigenetically repress myostatin which would potentially result in more muscle growth[42].Liu et al.[43]also looked at the myostatin pathway to investigate the short term and long term epigenetic changes in pigs based on maternal diet.These researchers concluded that histone modifications and changes in microRNA expression took place long term and played a part in skeletal muscle phenotype[43].Another study looked at DNA methylation in response to altered protein and carbohydrate diets for maternal pigs during gestation[44].Researchers found that hepatic global methylation was decreased in fetuses from protein-restricted mothers,likely caused by methionine deficiency[45].However,skeletal muscle global methylation was not affected[44].This study demonstrates maternal nutrition will likely have an epigenetic effect on embryonic tissue development.Epigenetic programming in the porcine germline has also been reported[46].

    Research conducted by Tarletan et al.demonstrated that neonatal estrogen exposure in piglets can lead to epigenetic changes that affect uterine capacity and environment[47]. This leads to potentially less successful pregnancies once the piglets become adults[47].Another environmental estrogen exposure experiment was preformed analyzing the effect on the gene HOXA10 by exposing offspring in utero to estradiol-17β.No difference in HOXA10 expression was detected in either the low dose or high dose group[48].However,differences in HOXA10 mRNA expression were detected between pre-pubescent and postpubescent gilts[48].

    我們對算法的實際效果進行評估,實驗在Ubuntu 16.04系統(tǒng)下利用TensorFlow 1.3.0開發(fā)完成。實際電腦配置為:英特爾酷睿i7-3770@3.40 GHz處理器,DDR3 800 M Hz,8GB內存。實驗數(shù)據(jù)為某市某發(fā)電廠一段時間內的發(fā)電負荷。

    One recent transgenerational porcine study has been reported[49],Table 1.Braunschweig et al.preformed a three generational study to look at the effect of feeding on male epigenetic inheritance.The experimental group F0 generation males were fed a diet high in methylating micronutrients,and the resulting F2 generation had a lowerfatpercentageandhighershouldermuscle percentage as compared to controls.They also found significant differences in DNA methylation between the control and experimental groups,especially in the liver, which was proposed to epigenetically affect fat metabolism pathways[49].

    Ovine

    As shown in the bovine model and porcine model,maternal nutritional impact is a common topic in epigenetic research,and ovine studies are no exception.Zhang et al. [50]looked into the effects of maternal over-nutrition in sheep,both during peri-conception and during the late stages of pregnancy.They found that over-nutrition in late stages of pregnancy resulted in more visceral fat in offspring and a change in appetite that pre-disposed that lamb to over-eat in adult life.More interestingly,they also found that over-nutrition at the peri-conception period led to higher rates of visceral fat in only female ewe offspring,leading to a conclusion of sex-specific DNA methylation.They also found that when diet was restricted just before conception(maternal under-nutrition), the adrenal glands of the offspring tended to be heavier and have less methylation of the IGF2/H19 differentially methylated regions in the adrenal.Observations suggested that while a restricted peri-conception diet led to no maternal epigenetic influence on bodyweight,it didincrease the stress response in these offspring[50].Other nutritional studies have looked at muscle development in response to maternal under-nutrition during pregnancy and have shown that maternal under-nutrition causes a decrease of fast muscle fibers in early stages,but an increase in them during later stages of development[51,52]. However,these studies did not investigate epigenetic mechanisms.

    No studies have been published showing epigenetic transgenerational inheritance in sheep.

    Gallus

    Marek’s disease in chickens is a manifestation of Marek’s disease virus and progresses to become a T-cell lymphoma that affects chickens and other birds.Vaccines have been developed but they are not completely successful[53]. Tian et al.[54]set to find out why one breeding line seemed resistant to the virus,while another was more susceptible.They found that in the virus-resistant line,DNA methylation levels in thymus cells were decreased after exposure to the virus.They also found that with pharmacological inhibition of DNA methylation in vitro the propagation in the infected cells was slowed.Observations suggested that DNA methylation in the host may be associated with virus resistance or susceptibility[54].

    Different developmental epigenetic patterns have been studied between chicken types.One study looked at differential DNA methylation in breast muscle between slow-growing and fast-growing broiler chickens[55]. They found that between the two breeds of chickens there were 75 differentially methylated genes,including several genes belonging to the fibroblast growth factor (FGF)family.The FGF family is known for its role in many growth processes[56].In addition,effects in the insulin growth factor receptor(IGF1R)were observed that influence skeletal muscle growth specifically[57,58].

    As one review indicated,many poultry studies indicate that there may be epigenetic effects,and even transgenerational epigenetic inheritance,though very few studies actually test for DNA methylation or histone modification in their research[59].

    No studies have been published showing epigenetic transgenerational inheritance in chicken.

    Conclusion

    While a good amount of epigenetic research has been preformed on domesticated farm animals still more needs to be done,Table 1.There is little research at all in transgenerational inheritance of these epigenetic modifications.This could be due to the fact that farm animals are more difficult and more costly to raise than other common animal research models.In addition,they have longer lifespans so transgenerational studies take more time and resources.Animal science researchers should cultivate an interest in conducting these types of experiments for a number of reasons.Healthy viable offspring are very important in the farm and husbandry industry and epigenetic differences can be associated with production traits.Recently there has been a lot of social pressure to cut down on vaccination and antibiotic use for animals raised for meat and epigenetics research may help to provide the key to lowering disease and increasing immunity.Therefore research into domestic animal health and how exposure to toxicants such as pesticides affects future generations is imperative.Glossary

    Epigenetics:Molecular factors/processes around the DNA that regulate genome activity independent of DNA sequence,and are mitotically stable.

    Epigenetic:Transgenerational Inheritance:Germlinemediated inheritance of epigenetic information between generations in the absence of direct environmental influences,that leads to phenotypic variation.

    Epimutation:Differential presence of epigenetic marks that lead to altered genome activity.

    Abbreviations

    F0:Generation pregnant female;F1:Generation fetus that becomes the offspring or children;F2:Generation(grandchildren);F3:Generation(greatgrandchildren);LOS:Large-offspring syndrome;FGF:Fibroblast growth factor; IGF1R:Insulin growth factor receptor.

    Competing interests

    The authors declare that they have no competing interests.

    Authors’contributions

    All authors designed and wrote the study.All authors edited and approved the manuscript.

    Acknowledgements

    We acknowledge the assistance of Ms.Heather Johnson for assistance in preparation of the manuscript.The current address for Ms.Amanda Feeney is New York Medical College-Valhalla,New York.This research was supported by NIH grants to MKS.

    Received:28 July 2014 Accepted:14 October 2014 Published:23 October 2014

    1.Skinner MK,Manikkam M,Guerrero-Bosagna C:Epigenetic transgenerational actions of environmental factors in disease etiology.Trends Endocrinol Metab 2010,21:214-222.

    2.Jirtle RL,Skinner MK:Environmental epigenomics and disease susceptibility.Nat Rev Genet 2007,8:253-262.

    3.Guerrero-Bosagna C,Skinner MK:Environmentally induced epigenetic transgenerational inheritance of phenotype and disease.Mol Cell Endocrinol 2012,354:3-8.

    4.Simmons D:Epigenetic influence and disease.Nat Educ 2008,1:6.

    5.Egger G,Liang G,Aparicio A,Jones PA:Epigenetics in human disease and prospects for epigenetic therapy.Nature 2004,429:457-463.

    6.Vandegehuchte MB,Janssen CR:Epigenetics in an ecotoxicological context.Mutat Res Genet Toxicol Environ Mutagen 2014,764-765:36-45.

    7.Baccarelli A,Bollati V:Epigenetics and environmental chemicals.Curr Opin Pediatr 2009,21:243-251.

    8.Anway MD,Cupp AS,Uzumcu M,Skinner MK:Epigenetic transgenerational actions of endocrine disruptors and male fertility.Science 2005,308:1466-1469.

    9.Skinner MK:Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability.Epigenetics 2011,6:838-842.

    10.Manikkam M,Guerrero-Bosagna C,Tracey R,Haque MM,Skinner MK:Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures.PLoS One 2012,7:e31901.

    11.Skinner MK:What is an epigenetic transgenerational phenotype?F3 or F2.Reprod Toxicol 2008,25:2-6.

    12.Lees-Murdock DJ,Walsh CP:DNA methylation reprogramming in the germ line.Epigenetics 2008,3:5-13.

    13.Reik W,Dean W,Walter J:Epigenetic reprogramming in mammalian development.Science 2001,293:1089-1093.

    14.Smith ZD,Chan MM,Mikkelsen TS,Gu H,Gnirke A,Regev A,Meissner A:A unique regulatory phase of DNA methylation in the early mammalian embryo.Nature 2012,484:339-344.

    15.Gapp K,Jawaid A,Sarkies P,Bohacek J,Pelczar P,Prados J,Farinelli L,Miska E,Mansuy IM:Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.Nat Neurosci 2014,17:667-669.

    16.Guerrero-Bosagna C,Settles M,Lucker B,Skinner M:Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome.PLoS One 2010,5:e13100.

    17.Arico JK,Katz DJ,van der Vlag J,Kelly WG:Epigenetic patterns maintained in early Caenorhabditis elegans embryos can be established by gene activity in the parental germ cells.PLoS Genet 2011,7:e1001391.

    18.Carone BR,Fauquier L,Habib N,Shea JM,Hart CE,Li R,Bock C,Li C,Gu H, Zamore PD,Meissner A,Weng Z,Hofmann HA,Friedman N,Rando OJ:Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals.Cell 2010,143:1084-1096.

    19.Dunn GA,Bale TL:Maternal high-fat diet effects on third-generation female body size via the paternal lineage.Endocrinology 2011,152:2228-2236. 20.Morgan CP,Bale TL:Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage.J Neurosci 2011,31:11748-11755.

    21.Saze H:Transgenerational inheritance of induced changes in the epigenetic state of chromatin in plants.Genes Genet Syst 2012,87:145-152.

    22.Collotta M,Bertazzi PA,Bollati V:Epigenetics and pesticides.Toxicology 2013,307:35-41.

    23.Groszmann M,Greaves IK,Fujimoto R,Peacock WJ,Dennis ES:The role of epigenetics in hybrid vigour.Trends Genet 2013,29:684-690.

    24.Platenburg GJ,Vollebregt EJ,Karatzas CN,Kootwijk EP,De Boer HA,Strijker R:Mammary gland-specific hypomethylation of Hpa II sites flanking the bovine alpha S1-casein gene.Transgenic Res 1996,5:421-431.

    25.Vanselow J,Yang W,Herrmann J,Zerbe H,Schuberth HJ,Petzl W,Tomek W, Seyfert HM:DNA-remethylation around a STAT5-binding enhancer in the alphaS1-casein promoter is associated with abrupt shutdown of alphaS1-casein synthesis during acute mastitis.J Mol Endocrinol 2006,37:463-477.

    26.Swanson KM,Stelwagen K,Dobson J,Henderson HV,Davis SR,Farr VC, Singh K:Transcriptome profiling of Streptococcus uberis-induced mastitis reveals fundamental differences between immune gene expression in the mammary gland and in a primary cell culture model.J Dairy Sci 2009,92:117-129.

    27.Singh K,Swanson K,Couldrey C,Seyfert H-M,Stelwagen K:DNA methylation events associated with the suppression of milk protein gene expression during involution of the bovine mammary gland.Proc N Z Soc Anim Prod 2009,69:57-59.

    28.González-Recio O,Ugarte E,Bach A:Trans-generational effect of maternal lactation during pregnancy:a Holstein cow model.PLoS One 2012,7(12):e51816.

    29.Bugaut M:Occurrence,absorption and metabolism of short chain fatty acids in the digestive tract of mammals.Comp Biochem Physiol B 1987,86:439-472.

    30.Li RW,Li C:Butyrate induces profound changes in gene expression related to multiple signal pathways in bovine kidney epithelial cells.BMC Genomics 2006,7:234.

    31.Wu S,Li RW,Li W,Li CJ:Transcriptome characterization by RNA-seq unravels the mechanisms of butyrate-induced epigenomic regulation in bovine cells.PLoS One 2012,7:e36940.

    32.Kruip TAM,den Daas JHG:In vitro produced and cloned embryos:effects on pregnancy,parturition and offspring.Theriogenology 1997,47:43-52.

    33.Young LE,Sinclair KD,Wilmut I:Large offspring syndrome in cattle and sheep.Rev Reprod 1998,3:155-163.

    34.Walker SK,Hartwich KM,Seamark RF:The production of unusually large offspring following embryo manipulation:concepts and challenges.Theriogenology 1996,45:111-120.

    35.Garry FB,Adams R,McCann JP,Odde KG:Postnatal characteristics of calves produced by nuclear transfer cloning.Theriogenology 1996,45:141-152.

    36.Dean W,Santos F,Stojkovic M,Zakhartchenko V,Walter J,Wolf E,Reik W:Conservation of methylation reprogramming in mammalian development:aberrant reprogramming in cloned embryos.Proc Natl Acad Sci U S A 2001,98:13734-13738.

    37.Heinzmann J,Hansmann T,Herrmann D,Wrenzycki C,Zechner U,Haaf T, Niemann H:Epigenetic profile of developmentally important genes in bovine oocytes.Mol Reprod Dev 2011,78:188-201.

    38.Niemann H,Carnwath JW,Herrmann D,Wieczorek G,Lemme E,Lucas-Hahn A,Olek S:DNA methylation patterns reflect epigenetic reprogramming in bovine embryos.Cell Reprogram 2010,12:33-42.

    39.Green BB,Kerr DE:Epigenetic contribution to individual variation in response to lipopolysaccharide in bovine dermal fibroblasts.Vet Immunol Immunopathol 2014,157:49-58.

    40.Ho E,Clarke JD,Dashwood RH:Dietary sulforaphane,a histone deacetylase inhibitor for cancer prevention.J Nutr 2009,139:2393-2396.

    41.Fan H,Zhang R,Tesfaye D,Tholen E,Looft C,Holker M,Schellander K,Cinar MU:Sulforaphane causes a major epigenetic repression of myostatin in porcine satellite cells.Epigenetics 2012,7:1379-1390.

    42.Benny Klimek ME,Aydogdu T,Link MJ,Pons M,Koniaris LG,Zimmers TA:Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia.Biochem Biophys Res Commun 2010,391:1548-1554.

    43.Liu X,Wang J,Li R,Yang X,Sun Q,Albrecht E,Zhao R:Maternal dietary protein affects transcriptional regulation of myostatin gene distinctively at weaning and finishing stages in skeletal muscle of Meishan pigs.Epigenetics 2011,6:899-907.

    44.Altmann S,Murani E,Schwerin M,Metges CC,Wimmers K,Ponsuksili S:Maternal dietary protein restriction and excess affects offspring gene expression and methylation of non-SMC subunits of condensin I in liver and skeletal muscle.Epigenetics 2012,7:239-252.

    45.Niculescu MD,Zeisel SH:Diet,methyl donors and DNA methylation: interactions between dietary folate,methionine and choline.J Nutr 2002,132:2333S-2335S.

    46.Hyldig SM,Croxall N,Contreras DA,Thomsen PD,Alberio R:Epigenetic reprogramming in the porcine germ line.BMC Dev Biol 2011,11:11.

    47.Tarleton BJ,Wiley AA,Bartol FF:Neonatal estradiol exposure alters uterine morphology and endometrial transcriptional activity in prepubertal gilts.Domest Anim Endocrinol 2001,21:111-125.

    48.Pistek VL,Furst RW,Kliem H,Bauersachs S,Meyer HH,Ulbrich SE:HOXA10 mRNA expression and promoter DNA methylation in female pig offspring after in utero estradiol-17beta exposure.J Steroid Biochem Mol Biol 2013,138:435-444.

    49.Braunschweig M,Jagannathan V,Gutzwiller A,Bee G:Investigations on transgenerational epigenetic response down the male line in F2 pigs.PLoS One 2012,7:e30583.

    50.Zhang S,Rattanatray L,McMillen IC,Suter CM,Morrison JL:Periconceptional nutrition and the early programming of a life of obesity or adversity.Prog Biophys Mol Biol 2011,106:307-314.

    51.Fahey AJ,Brameld JM,Parr T,Buttery PJ:The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb.J Anim Sci 2005,83:2564-2571.

    52.Daniel ZC,Brameld JM,Craigon J,Scollan ND,Buttery PJ:Effect of maternal dietary restriction during pregnancy on lamb carcass characteristics and muscle fiber composition.J Anim Sci 2007,85:1565-1576.

    53.Davison F,Nair V:Marek's Disease:An Evolving Problem.London:Elsevier Science Press;2004.

    54.Tian F,Zhan F,Vanderkraats ND,Hiken JF,Edwards JR,Zhang H,Zhao K, Song J:DNMT gene expression and methylome in Marek's disease resistant and susceptible chickens prior to and following infection by MDV.Epigenetics 2013,8(4):431-444.

    55.Hu Y,Xu H,Li Z,Zheng X,Jia X,Nie Q,Zhang X:Comparison of the genome-wide DNA methylation profiles between fast-growing and slow-growing broilers.PLoS One 2013,8:e56411.

    56.Itoh N:The Fgf families in humans,mice,and zebrafish:their evolutional processes and roles in development,metabolism,and disease.Biol Pharm Bull 2007,30:1819-1825.

    57.Liu JP,Baker J,Perkins AS,Robertson EJ,Efstratiadis A:Mice carrying null mutations of the genes encoding insulin-like growth factor I(Igf-1)and type 1 IGF receptor(Igf1r).Cell 1993,75:59-72.

    58.Huang MB,Xu H,Xie SJ,Zhou H,Qu LH:Insulin-like growth factor-1 receptor is regulated by microRNA-133 during skeletal myogenesis.PLoS One 2011,6:e29173.

    59.Berghof TV,Parmentier HK,Lammers A:Transgenerational epigenetic effects on innate immunity in broilers:an underestimated field to be explored?Poult Sci 2013,92:2904-2913.

    Cite this article as:Feeney et al.:Epigenetics and transgenerational inheritance in domesticated farm animals.Journal of Animal Science and Biotechnology 20145:48.

    10.1186/2049-1891-5-48

    *Correspondence:skinner@wsu.edu

    Center for Reproductive Biology,School of Biological Sciences,Washington State University,99164-4236 Pullman,WA,USA

    猜你喜歡
    實際效果發(fā)電廠英特爾
    簡約與繁復
    破壞發(fā)電廠
    增強企業(yè)黨員教育培訓實際效果性的思考研究
    魅力中國(2021年47期)2021-11-27 13:33:58
    發(fā)電廠的類型(二)
    英特爾攜手一汽集團,引領汽車行業(yè)全新變革
    英特爾擴充FPGA可編程加速卡產品組合
    增強可操作性 注重實際效果——《環(huán)境保護稅法(草案)》面臨六大問題需進一步明確
    外資力薦高通并購賽靈思對抗英特爾
    電子世界(2015年22期)2015-12-29 02:49:41
    探討小兒哮喘臨床護理中應用健康教育的實際效果
    好平板有強芯 英特爾Bay Trail芯片解析
    在线观看免费日韩欧美大片| 日韩大片免费观看网站| www.熟女人妻精品国产| 色婷婷久久久亚洲欧美| 自线自在国产av| 91麻豆精品激情在线观看国产 | 精品国产一区二区三区四区第35| 91av网站免费观看| 国产欧美日韩综合在线一区二区| 久久国产精品人妻蜜桃| 免费在线观看视频国产中文字幕亚洲| 精品亚洲乱码少妇综合久久| 成在线人永久免费视频| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 热99国产精品久久久久久7| 久久精品国产a三级三级三级| 亚洲熟妇熟女久久| 久久香蕉激情| 91老司机精品| 正在播放国产对白刺激| 又黄又粗又硬又大视频| 国产又爽黄色视频| 69av精品久久久久久 | 日韩精品免费视频一区二区三区| 最近最新中文字幕大全免费视频| 女人精品久久久久毛片| 亚洲午夜理论影院| 国产精品一区二区精品视频观看| 丰满人妻熟妇乱又伦精品不卡| 老司机影院毛片| 久久中文看片网| 一进一出好大好爽视频| 色在线成人网| 久久久精品区二区三区| 下体分泌物呈黄色| 午夜福利影视在线免费观看| 亚洲va日本ⅴa欧美va伊人久久| 精品少妇内射三级| 在线观看免费高清a一片| 精品国内亚洲2022精品成人 | 最近最新免费中文字幕在线| 制服诱惑二区| 久久九九热精品免费| 日本vs欧美在线观看视频| 欧美一级毛片孕妇| 国产一区二区 视频在线| 午夜福利视频精品| 久久 成人 亚洲| 亚洲情色 制服丝袜| 国产高清videossex| 久久热在线av| svipshipincom国产片| 成人三级做爰电影| 男女高潮啪啪啪动态图| 黄色怎么调成土黄色| 黄色丝袜av网址大全| 国产一区二区在线观看av| 免费少妇av软件| 久久久久久免费高清国产稀缺| 99香蕉大伊视频| 18禁美女被吸乳视频| 18禁美女被吸乳视频| 香蕉丝袜av| 欧美精品一区二区大全| 亚洲av欧美aⅴ国产| 露出奶头的视频| 国产精品免费一区二区三区在线 | 在线av久久热| 久久久国产一区二区| 最近最新中文字幕大全电影3 | 精品国产一区二区久久| 免费人妻精品一区二区三区视频| 亚洲精品自拍成人| 亚洲色图 男人天堂 中文字幕| 国产成人精品无人区| 99精国产麻豆久久婷婷| 深夜精品福利| 色94色欧美一区二区| 91精品三级在线观看| 91精品三级在线观看| 极品教师在线免费播放| 免费高清在线观看日韩| 黑丝袜美女国产一区| 中文字幕人妻丝袜制服| 日韩人妻精品一区2区三区| 一区在线观看完整版| 极品人妻少妇av视频| 亚洲人成伊人成综合网2020| 日韩大码丰满熟妇| 超色免费av| 如日韩欧美国产精品一区二区三区| 嫁个100分男人电影在线观看| 国产精品av久久久久免费| 亚洲七黄色美女视频| 国产成人精品无人区| 亚洲九九香蕉| 麻豆av在线久日| 黄色片一级片一级黄色片| 国产精品久久电影中文字幕 | 日韩欧美免费精品| 精品福利永久在线观看| 欧美精品人与动牲交sv欧美| 亚洲精华国产精华精| 精品免费久久久久久久清纯 | 久久毛片免费看一区二区三区| 少妇精品久久久久久久| 国产精品99久久99久久久不卡| www.自偷自拍.com| 日韩欧美一区视频在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 天天添夜夜摸| 久久人妻福利社区极品人妻图片| 国产精品一区二区在线观看99| av网站免费在线观看视频| 一进一出抽搐动态| 男女免费视频国产| 在线观看免费日韩欧美大片| 国产欧美亚洲国产| 男女之事视频高清在线观看| 最新的欧美精品一区二区| 性少妇av在线| 50天的宝宝边吃奶边哭怎么回事| 在线 av 中文字幕| 婷婷成人精品国产| 一区二区日韩欧美中文字幕| 他把我摸到了高潮在线观看 | 久9热在线精品视频| 如日韩欧美国产精品一区二区三区| 免费人妻精品一区二区三区视频| bbb黄色大片| 欧美另类亚洲清纯唯美| netflix在线观看网站| 国产精品久久久久久精品电影小说| 亚洲 国产 在线| 91麻豆精品激情在线观看国产 | 中文亚洲av片在线观看爽 | kizo精华| 69av精品久久久久久 | 丁香欧美五月| 露出奶头的视频| 欧美人与性动交α欧美精品济南到| 亚洲国产中文字幕在线视频| 王馨瑶露胸无遮挡在线观看| 国产精品久久久久久精品古装| 亚洲,欧美精品.| 交换朋友夫妻互换小说| 日韩一卡2卡3卡4卡2021年| 国产精品久久久久久精品电影小说| 老司机午夜福利在线观看视频 | 黑人欧美特级aaaaaa片| 香蕉久久夜色| 欧美日韩黄片免| 人妻 亚洲 视频| 十八禁网站网址无遮挡| 色精品久久人妻99蜜桃| 久久久久久亚洲精品国产蜜桃av| 亚洲精品av麻豆狂野| 亚洲熟女毛片儿| av视频免费观看在线观看| 老鸭窝网址在线观看| 一级片'在线观看视频| 日韩免费高清中文字幕av| 亚洲国产成人一精品久久久| 亚洲男人天堂网一区| 电影成人av| 精品久久蜜臀av无| 午夜91福利影院| 国产深夜福利视频在线观看| 十八禁网站免费在线| 国产av又大| 黄色a级毛片大全视频| 亚洲成人免费电影在线观看| 他把我摸到了高潮在线观看 | 啦啦啦在线免费观看视频4| 成人特级黄色片久久久久久久 | av在线播放免费不卡| 精品人妻熟女毛片av久久网站| 人人妻,人人澡人人爽秒播| 一进一出好大好爽视频| 十八禁人妻一区二区| 亚洲国产欧美在线一区| 丝袜美足系列| 久久久久久久国产电影| 1024香蕉在线观看| 久久亚洲真实| 又大又爽又粗| 久久午夜综合久久蜜桃| 亚洲色图av天堂| 91成人精品电影| 亚洲精品粉嫩美女一区| av欧美777| 最近最新免费中文字幕在线| aaaaa片日本免费| 可以免费在线观看a视频的电影网站| 欧美精品av麻豆av| 91老司机精品| 手机成人av网站| 波多野结衣av一区二区av| 精品国产乱码久久久久久男人| 久久这里只有精品19| 免费一级毛片在线播放高清视频 | 亚洲精品久久成人aⅴ小说| 国产福利在线免费观看视频| 精品欧美一区二区三区在线| 淫妇啪啪啪对白视频| 午夜福利视频精品| 在线观看66精品国产| av天堂在线播放| 人人妻人人澡人人爽人人夜夜| 男女边摸边吃奶| 久久精品国产亚洲av高清一级| 这个男人来自地球电影免费观看| 中文字幕人妻熟女乱码| 青青草视频在线视频观看| 中文亚洲av片在线观看爽 | av欧美777| 天天操日日干夜夜撸| 夫妻午夜视频| 五月天丁香电影| 午夜福利欧美成人| 中亚洲国语对白在线视频| 亚洲精品中文字幕在线视频| 人妻一区二区av| 欧美乱妇无乱码| 成人精品一区二区免费| 国产人伦9x9x在线观看| 欧美日韩av久久| 老熟女久久久| 欧美激情极品国产一区二区三区| 一级,二级,三级黄色视频| 国产片内射在线| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 精品国产乱码久久久久久小说| 淫妇啪啪啪对白视频| 12—13女人毛片做爰片一| 久久天堂一区二区三区四区| 高清毛片免费观看视频网站 | 99精品在免费线老司机午夜| 老熟妇乱子伦视频在线观看| 女人高潮潮喷娇喘18禁视频| 亚洲成av片中文字幕在线观看| 国产成人影院久久av| 成人影院久久| 少妇 在线观看| 欧美黑人精品巨大| 亚洲精华国产精华精| 最新美女视频免费是黄的| 国产精品亚洲一级av第二区| 午夜福利,免费看| 青草久久国产| av一本久久久久| 久久婷婷成人综合色麻豆| av有码第一页| 免费不卡黄色视频| 黄色怎么调成土黄色| 成人特级黄色片久久久久久久 | 天堂动漫精品| 国产成人精品久久二区二区91| 亚洲avbb在线观看| 日本av手机在线免费观看| 国产视频一区二区在线看| 精品一区二区三卡| 精品福利永久在线观看| 亚洲伊人久久精品综合| 日韩免费高清中文字幕av| 免费黄频网站在线观看国产| 性色av乱码一区二区三区2| www.精华液| 在线观看www视频免费| 久久中文看片网| 最黄视频免费看| 色综合欧美亚洲国产小说| 在线播放国产精品三级| 天堂俺去俺来也www色官网| 人妻一区二区av| av超薄肉色丝袜交足视频| 午夜久久久在线观看| 变态另类成人亚洲欧美熟女 | 成年动漫av网址| 男女下面插进去视频免费观看| 欧美日韩亚洲国产一区二区在线观看 | 999久久久精品免费观看国产| 考比视频在线观看| 亚洲熟女精品中文字幕| 天堂8中文在线网| 久久久久久久大尺度免费视频| 亚洲九九香蕉| 中文字幕色久视频| 国产精品免费视频内射| 亚洲精品美女久久久久99蜜臀| 免费观看a级毛片全部| 色视频在线一区二区三区| 久久久精品区二区三区| 国产精品久久久人人做人人爽| 大型av网站在线播放| 人妻久久中文字幕网| 9热在线视频观看99| 欧美黑人精品巨大| 麻豆国产av国片精品| 人人妻人人添人人爽欧美一区卜| 国产日韩欧美视频二区| 国产在线视频一区二区| 久久久精品国产亚洲av高清涩受| 一级毛片女人18水好多| 久久久久久免费高清国产稀缺| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| 日韩中文字幕视频在线看片| 亚洲专区国产一区二区| 国产一卡二卡三卡精品| 黄片大片在线免费观看| 精品国产乱子伦一区二区三区| 亚洲欧美激情在线| 亚洲av美国av| 国产精品偷伦视频观看了| 亚洲综合色网址| 黑人操中国人逼视频| 国产精品香港三级国产av潘金莲| 午夜福利在线观看吧| 国产1区2区3区精品| 精品亚洲成国产av| 国产黄色免费在线视频| 国产精品电影一区二区三区 | 香蕉国产在线看| 免费在线观看黄色视频的| 脱女人内裤的视频| 国产日韩欧美亚洲二区| 51午夜福利影视在线观看| 亚洲精品国产色婷婷电影| 亚洲欧美激情在线| 欧美日韩中文字幕国产精品一区二区三区 | 成人精品一区二区免费| 国产精品亚洲一级av第二区| 国产日韩欧美在线精品| 亚洲人成电影观看| 青青草视频在线视频观看| 老熟妇仑乱视频hdxx| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 99久久99久久久精品蜜桃| www.自偷自拍.com| 一级片免费观看大全| 国产色视频综合| 在线播放国产精品三级| 亚洲五月色婷婷综合| 国产精品麻豆人妻色哟哟久久| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| 老司机靠b影院| 亚洲精品久久成人aⅴ小说| 超色免费av| 高潮久久久久久久久久久不卡| 99久久人妻综合| 99re6热这里在线精品视频| av片东京热男人的天堂| 99香蕉大伊视频| 久久精品亚洲熟妇少妇任你| 国产精品二区激情视频| 成人黄色视频免费在线看| 成人18禁高潮啪啪吃奶动态图| 午夜精品国产一区二区电影| 18禁美女被吸乳视频| 精品第一国产精品| 三上悠亚av全集在线观看| 亚洲av日韩精品久久久久久密| 欧美另类亚洲清纯唯美| 91字幕亚洲| 天堂中文最新版在线下载| 国产aⅴ精品一区二区三区波| 男人舔女人的私密视频| a级毛片在线看网站| 大片免费播放器 马上看| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 成人三级做爰电影| 女人被躁到高潮嗷嗷叫费观| 啪啪无遮挡十八禁网站| 国产精品电影一区二区三区 | 欧美+亚洲+日韩+国产| 51午夜福利影视在线观看| 人人澡人人妻人| 国产精品久久久久成人av| 99国产精品免费福利视频| 免费不卡黄色视频| 国产精品98久久久久久宅男小说| 日韩视频在线欧美| 久久午夜亚洲精品久久| 色综合婷婷激情| 欧美激情 高清一区二区三区| 国产一区二区在线观看av| 欧美国产精品va在线观看不卡| 80岁老熟妇乱子伦牲交| 极品人妻少妇av视频| 亚洲欧美日韩高清在线视频 | 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 女人被躁到高潮嗷嗷叫费观| 亚洲国产欧美一区二区综合| 国产精品免费大片| 嫩草影视91久久| 精品国产一区二区三区久久久樱花| 亚洲精品乱久久久久久| 亚洲三区欧美一区| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 亚洲精品在线观看二区| 大香蕉久久成人网| 午夜激情av网站| 国产精品av久久久久免费| 亚洲精品久久午夜乱码| 欧美黑人精品巨大| 久久精品国产99精品国产亚洲性色 | 久久久久久久久免费视频了| 在线观看免费视频网站a站| 桃花免费在线播放| 国产片内射在线| 成年版毛片免费区| 亚洲av日韩精品久久久久久密| 精品国内亚洲2022精品成人 | 亚洲少妇的诱惑av| 久久精品亚洲av国产电影网| 亚洲中文字幕日韩| 日韩大码丰满熟妇| 亚洲精品一卡2卡三卡4卡5卡| 国产成人精品久久二区二区91| 亚洲va日本ⅴa欧美va伊人久久| 美女高潮喷水抽搐中文字幕| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月 | 一级毛片电影观看| 80岁老熟妇乱子伦牲交| 亚洲国产中文字幕在线视频| 日韩精品免费视频一区二区三区| 十分钟在线观看高清视频www| 国产亚洲欧美在线一区二区| 一级黄色大片毛片| 免费高清在线观看日韩| 怎么达到女性高潮| 久久av网站| 亚洲欧洲日产国产| 国产真人三级小视频在线观看| 国产一区二区三区在线臀色熟女 | 天天躁夜夜躁狠狠躁躁| 欧美日韩视频精品一区| 天堂俺去俺来也www色官网| 交换朋友夫妻互换小说| 色老头精品视频在线观看| 免费在线观看完整版高清| 一级毛片电影观看| 国产xxxxx性猛交| 久久精品国产99精品国产亚洲性色 | 少妇的丰满在线观看| 十八禁高潮呻吟视频| 欧美人与性动交α欧美精品济南到| 午夜激情av网站| 久久99一区二区三区| 中文字幕精品免费在线观看视频| 大香蕉久久网| 制服人妻中文乱码| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 亚洲三区欧美一区| 俄罗斯特黄特色一大片| 王馨瑶露胸无遮挡在线观看| 亚洲中文av在线| www.精华液| 国产男靠女视频免费网站| 99精品久久久久人妻精品| 丰满饥渴人妻一区二区三| 俄罗斯特黄特色一大片| 看免费av毛片| 精品国产一区二区三区四区第35| 国产欧美日韩综合在线一区二区| 免费日韩欧美在线观看| 久久久精品免费免费高清| 日本撒尿小便嘘嘘汇集6| 精品一区二区三区视频在线观看免费 | 久久国产精品大桥未久av| 淫妇啪啪啪对白视频| av欧美777| 精品午夜福利视频在线观看一区 | 亚洲中文av在线| 久久人妻av系列| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站 | 啦啦啦免费观看视频1| 极品人妻少妇av视频| 亚洲精品国产区一区二| 大香蕉久久成人网| 女性被躁到高潮视频| 极品教师在线免费播放| 啦啦啦中文免费视频观看日本| 久久精品国产a三级三级三级| 亚洲一卡2卡3卡4卡5卡精品中文| 成人特级黄色片久久久久久久 | 亚洲,欧美精品.| 一级毛片电影观看| 日韩 欧美 亚洲 中文字幕| 国产单亲对白刺激| 天天影视国产精品| 国产麻豆69| 纯流量卡能插随身wifi吗| 男女下面插进去视频免费观看| 一本大道久久a久久精品| 男女午夜视频在线观看| 日韩有码中文字幕| 亚洲精品国产区一区二| 久久久久久久久久久久大奶| 午夜福利影视在线免费观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久亚洲精品不卡| 免费不卡黄色视频| 十八禁高潮呻吟视频| 日本一区二区免费在线视频| 天堂俺去俺来也www色官网| 欧美日韩成人在线一区二区| 午夜91福利影院| 久久精品人人爽人人爽视色| 50天的宝宝边吃奶边哭怎么回事| 99国产精品免费福利视频| 99国产精品99久久久久| 国产一区二区三区在线臀色熟女 | 亚洲精品粉嫩美女一区| 最新美女视频免费是黄的| 国产av一区二区精品久久| 91麻豆av在线| 91成人精品电影| 亚洲伊人久久精品综合| www.自偷自拍.com| 人人妻人人澡人人看| 精品国产亚洲在线| 欧美亚洲 丝袜 人妻 在线| 老司机亚洲免费影院| 日韩熟女老妇一区二区性免费视频| 国产高清videossex| 亚洲成人国产一区在线观看| 久久国产精品人妻蜜桃| 国产精品国产av在线观看| 欧美成人免费av一区二区三区 | 多毛熟女@视频| tube8黄色片| 无人区码免费观看不卡 | 五月开心婷婷网| 色综合欧美亚洲国产小说| 亚洲美女黄片视频| 午夜精品久久久久久毛片777| www日本在线高清视频| 亚洲精品美女久久av网站| 亚洲精品乱久久久久久| 亚洲国产毛片av蜜桃av| 国产伦人伦偷精品视频| 中文字幕精品免费在线观看视频| 黄频高清免费视频| 久久久久网色| 老鸭窝网址在线观看| 成年人午夜在线观看视频| 黄频高清免费视频| 欧美日韩国产mv在线观看视频| 叶爱在线成人免费视频播放| 美国免费a级毛片| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 亚洲av日韩精品久久久久久密| 99精品在免费线老司机午夜| 一本综合久久免费| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 久久午夜综合久久蜜桃| 99在线人妻在线中文字幕 | 亚洲人成伊人成综合网2020| 久久久久久久国产电影| 国产精品美女特级片免费视频播放器 | 一区在线观看完整版| 久久久久久人人人人人| 男人操女人黄网站| 久久久久久久大尺度免费视频| 欧美日韩福利视频一区二区| 欧美日韩av久久| av有码第一页| 色播在线永久视频| 天天添夜夜摸| 手机成人av网站| 麻豆av在线久日| 精品国产亚洲在线| 十八禁人妻一区二区| 悠悠久久av| 三级毛片av免费| 91成人精品电影| 大码成人一级视频| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 久久久久精品人妻al黑| 免费一级毛片在线播放高清视频 | 在线观看免费高清a一片| 久久国产精品大桥未久av| 欧美人与性动交α欧美软件| 1024视频免费在线观看| 国产欧美日韩一区二区三区在线| 亚洲精品乱久久久久久| 久久天堂一区二区三区四区| √禁漫天堂资源中文www| 亚洲精品美女久久久久99蜜臀| 日日摸夜夜添夜夜添小说| 亚洲九九香蕉| 国产精品久久久久久精品电影小说| 两性夫妻黄色片| 97在线人人人人妻| svipshipincom国产片|