鄭新慶 ,郭富雯 ,劉昕明,林榮澄*,周治東,施曉峰
(1. 國(guó)家海洋局 第三海洋研究所,福建 廈門(mén) 361005;2. 臺(tái)灣海洋生物博物館,臺(tái)灣 屏東 90001;3. 廣西壯族自治區(qū)海洋研究院,廣西 南寧 530022; 4. 福建海洋研究所,福建 廈門(mén) 361005)
海洋酸化沒(méi)有顯著影響成體鹿角杯形珊瑚的鈣化作用和光合能力
鄭新慶1,郭富雯2,劉昕明3,林榮澄1*,周治東4,施曉峰1
(1. 國(guó)家海洋局 第三海洋研究所,福建 廈門(mén) 361005;2. 臺(tái)灣海洋生物博物館,臺(tái)灣 屏東 90001;3. 廣西壯族自治區(qū)海洋研究院,廣西 南寧 530022; 4. 福建海洋研究所,福建 廈門(mén) 361005)
鹿角杯形珊瑚;酸化;珊瑚礁;鈣化作用;Fv/Fm
造礁珊瑚被認(rèn)為是受海水酸化影響最大的類(lèi)群,因?yàn)樯汉鹘阁w形成過(guò)程中需要CaCO3進(jìn)行相關(guān)的物理、生理和化學(xué)過(guò)程,最后形成珊瑚礁。根據(jù)預(yù)測(cè),當(dāng)大氣CO2濃度上升到450×10-6時(shí),珊瑚礁的鈣化能力將下降到50%左右,這還是沒(méi)有考慮其他因子(如溫度等)協(xié)同作用的結(jié)果。Langdon等[9]、Barker等[10]發(fā)現(xiàn),當(dāng)溫度處于珊瑚的最適生長(zhǎng)溫度時(shí),造礁珊瑚的鈣化能力與海水文石飽和度(Ωarag)有大致的相關(guān)關(guān)系。Gattuso等[11]、Langdon和Atkinson[12]指出,當(dāng)大氣CO2濃度上升到450×10-6時(shí),淺水區(qū)域造礁珊瑚的主要種類(lèi)鹿角珊瑚(Acropora)將變得更加脆弱和容易損毀,海水酸度的增加可能會(huì)導(dǎo)致大面積珊瑚礁棲息地的退化,珊瑚的造礁過(guò)程可能會(huì)變緩甚至可能停止或消失。
截至目前,已有大量的實(shí)驗(yàn)研究表明pCO2的增加會(huì)引起珊瑚鈣化率的下降[7,12—19]。不過(guò),來(lái)自冷水珊瑚、溫帶造礁珊瑚以及少數(shù)熱帶造礁珊瑚的數(shù)據(jù)顯示,并不是所有的造礁珊瑚都對(duì)海水酸化敏感[14,19—25]。有些造礁珊瑚可以通過(guò)上調(diào)鈣化位點(diǎn)的pH抵消海水酸化的消極影響[26]。而且,造礁珊瑚對(duì)酸化的響應(yīng)似乎還存在地域的特異性,不同區(qū)域,它們對(duì)酸化的響應(yīng)可能存在差異[20]。因此,為了評(píng)估未來(lái)可能的海洋酸化情境對(duì)南海北部珊瑚礁的潛在影響,我們必須了解分布于該區(qū)域的造礁珊瑚對(duì)酸化的生理生態(tài)響應(yīng)及其潛在的結(jié)果,并了解其背后的生理及其分子響應(yīng)機(jī)制。然而,與國(guó)際上如火如荼的研究相比,國(guó)內(nèi)造礁珊瑚酸化生理的研究還很少[19],目前還未見(jiàn)國(guó)內(nèi)雜志有相關(guān)的實(shí)驗(yàn)研究報(bào)道。
鹿角杯形珊瑚(Pocilloporadamicornis)是印度-太平洋珊瑚礁區(qū)常見(jiàn)的造礁珊瑚,被廣泛用于造礁珊瑚脅迫生理和生態(tài)學(xué)、病理學(xué)、繁殖生態(tài)學(xué)等研究的模式生物[27—32],但很少有研究者選擇它用于酸化生理的相關(guān)研究[14,19—20]。即便是Huang等[19]和Comeau等[14,20]的研究,其結(jié)果也存在較大差異。同時(shí),先前的研究也僅局限于珊瑚鈣化率的測(cè)定,而沒(méi)有涉及其他的生理參數(shù),例如光合效率、蟲(chóng)黃藻密度等。由于珊瑚的鈣化作用與光合作用過(guò)程息息相關(guān)[33],因此本研究以鹿角杯形珊瑚為研究對(duì)象,以珊瑚的鈣化率和光合能力為指標(biāo),通過(guò)氣體交換法模擬未來(lái)的酸化環(huán)境(2100年,pH≈7.8)研究鹿角杯形珊瑚對(duì)酸化的生理生態(tài)響應(yīng)。
2.1 選擇的珊瑚種類(lèi)及來(lái)源
鹿角杯形珊瑚(P.damicornis)是印度-太平洋珊瑚礁區(qū)的常見(jiàn)種類(lèi),也是我國(guó)海域常見(jiàn)的造礁珊瑚種類(lèi)。本研究從臺(tái)灣南部墾丁萬(wàn)里桐海域采集直徑10 cm的鹿角杯形珊瑚十余棵。
從幾個(gè)鹿角杯形珊瑚母體剪下珊瑚斷枝(fragments),珊瑚的浮力質(zhì)量(Buoyant weight)約0.4~0.9 g/ind,斷枝60棵左右,利用阿隆發(fā)膠將珊瑚斷枝的剪接位置與不銹鋼絲黏在一起,然后扦插在泡沫塑料中(圖1),暫養(yǎng)在養(yǎng)殖室內(nèi)培養(yǎng)系統(tǒng)中1個(gè)月,待斷枝恢復(fù)后,實(shí)驗(yàn)開(kāi)始。
圖1 用于實(shí)驗(yàn)的鹿角杯形珊瑚斷枝Fig. 1 Pocillopora damicornis fragments used for experiments左:剛剪下來(lái)的珊瑚斷枝;右:與不銹鋼絲連接的珊瑚斷枝Left:coral fragments removed from large colonies by scissors;right:coral fragments mounted onto stainless steel wire with epoxy resin
2.2 采用的酸化系統(tǒng)
采用圖2如下系統(tǒng)模擬海水酸化(圖2)。系統(tǒng)通過(guò)電磁閥與pH控制器相聯(lián),通過(guò)監(jiān)測(cè)水體pH的變動(dòng),控制氣瓶CO2氣體的輸入。本研究設(shè)置酸化處理組和對(duì)照組,將酸化處理組的pH控制器的pH值設(shè)定為7.8,當(dāng)水體的pH>7.8時(shí),電磁閥啟動(dòng),氣瓶的CO2輸入實(shí)驗(yàn)水體,當(dāng)水體的pH<7.8時(shí),電磁閥關(guān)閉。每周校正一次pH控制器的pH探頭。
圖2 酸化系統(tǒng)的示意圖(左)和實(shí)驗(yàn)缸的鹿角杯形珊瑚斷枝(右)Fig.2 pH-stat systems designed for simulating ocean acidification (left) and Pocillopora damicornis fragments in the experimental tanks (right)
從暫養(yǎng)系統(tǒng)中隨機(jī)選擇斷枝用于實(shí)驗(yàn)。每個(gè)處理組放置18顆斷枝,每6顆斷枝掛載在六角架上,具體位置如圖2所示。實(shí)驗(yàn)缸為全透明的玻璃缸,長(zhǎng)×寬×高為60 cm×45 cm×45 cm,玻璃缸鋪設(shè)2~3 cm厚的活沙,沙子的粒徑約2~3 mm,兩塊活石放在缸體的前后側(cè),實(shí)驗(yàn)水體維持在100 L左右。將不同處理的玻璃缸放在水體體積約3 t玻璃纖維缸中水浴,保證不同處理組的水溫完全一致,避免溫度對(duì)實(shí)驗(yàn)的干擾。利用2匹的空調(diào)制冷機(jī)調(diào)節(jié)玻璃纖維缸的水溫,溫度變動(dòng)在25~30℃之間,自然采光。
2.2 實(shí)驗(yàn)系統(tǒng)理化參數(shù)的測(cè)定
(1)利用Hobo溫光儀監(jiān)測(cè)實(shí)驗(yàn)缸體的溫度和光照的變動(dòng)情況。
(2)實(shí)驗(yàn)期間每日的上午(8:00—11:00)、下午(14:00—17:00)和晚上(19:00—22:00)分別記錄實(shí)驗(yàn)系統(tǒng)的pH值。
2.3 珊瑚生理參數(shù)的測(cè)定
選擇珊瑚共生蟲(chóng)黃藻葉綠素?zé)晒庵笖?shù)以及珊瑚的鈣化率為指標(biāo),研究鹿角杯形珊瑚對(duì)海水酸化的生理生態(tài)響應(yīng)。每周測(cè)量1次,實(shí)驗(yàn)4周。
(1)珊瑚的鈣化率
利用精度0.01 mg的天平測(cè)量所有鹿角杯形珊瑚斷枝的浮力質(zhì)量。根據(jù)Spencer Davies (1989)的方法估算鹿角杯形珊瑚的鈣化率(G)。
(2)珊瑚的光合能力
利用Diving PAM測(cè)量所有鹿角杯形珊瑚斷枝的葉綠素?zé)晒庵笖?shù)(Fv/Fm),它反映了珊瑚的光合能力(photosynthesis capacity),當(dāng)珊瑚受到脅迫時(shí),F(xiàn)v/Fm會(huì)下降。
2.4 數(shù)據(jù)處理
采用OriginPro 8和Excel 2007作圖。采用雙因素分差分析(HSD檢驗(yàn))比較酸化處理與否以及不同時(shí)間間隔鹿角杯形珊瑚鈣化作用的差異;采用成組數(shù)據(jù)t檢驗(yàn)檢驗(yàn)每周酸化處理組和對(duì)照組鹿角杯形珊瑚光合能力(Fv/Fm)的差異。利用配對(duì)數(shù)據(jù)t檢驗(yàn)檢驗(yàn)酸化處理組和對(duì)照組實(shí)驗(yàn)水體pH的差異。顯著性水平P<0.05。
3.1 環(huán)境參數(shù)
(1)實(shí)驗(yàn)系統(tǒng)溫度和光強(qiáng)的變化
從5月20日至6月4日,利用Hobo溫光記錄儀監(jiān)測(cè)系統(tǒng)溫度的變化。結(jié)果顯示,實(shí)驗(yàn)系統(tǒng)的溫度介于26.5~29.2℃之間,除24日和25日溫度異常升高以外,大部分時(shí)間實(shí)驗(yàn)系統(tǒng)的溫度維持在27~28℃。白天由于日照的關(guān)系,溫度有所上升(約1℃)。光強(qiáng)介于0~7 000 lx之間,其變化趨勢(shì)與溫度相似,大多數(shù)時(shí)間光強(qiáng)在2 000~4 000 lx左右。對(duì)照組和處理組的溫度和光強(qiáng)基本一致(圖3)。
圖3 實(shí)驗(yàn)水體光強(qiáng)和溫度的變化Fig.3 The variation of seawater temperature and light intensity in the experimental seawater
圖4 實(shí)驗(yàn)水體pH的變化Fig.4 Variation of pH in the experimental seawater
(2)實(shí)驗(yàn)系統(tǒng)pH的晝夜變化
實(shí)驗(yàn)期間利用酸化系統(tǒng)模擬海洋酸化的實(shí)驗(yàn)水體的pH變化如圖4所示。結(jié)果表明,酸化處理組的pH值介于7.69~7.91(7.78±0.04),而對(duì)照組的pH變動(dòng)較大,介于7.99~8.29(8.11±0.07)。酸化處理組和對(duì)照組的pH差異極顯著(t=-35.8,df=86,P<0.001)。
(3)實(shí)驗(yàn)系統(tǒng)的營(yíng)養(yǎng)鹽水平
實(shí)驗(yàn)系統(tǒng)的營(yíng)養(yǎng)鹽水平如表1所示。磷酸鹽水平介于0.004~0.017 nmol/L,銨鹽介于0.050~0.128 nmol/L,硝酸鹽介于0.001~0.017 nmol/L,系統(tǒng)的亞硝酸鹽含量低于儀器的檢測(cè)線,顯示實(shí)驗(yàn)水體的亞硝酸鹽含量極低??傮w來(lái)說(shuō),實(shí)驗(yàn)系統(tǒng)的營(yíng)養(yǎng)鹽水平低,落在珊瑚的最適生長(zhǎng)范圍之內(nèi)。酸化處理組和對(duì)照組的各營(yíng)養(yǎng)鹽指標(biāo)差異不大。
表1 實(shí)驗(yàn)系統(tǒng)的營(yíng)養(yǎng)鹽水平Tab.1 Inorganic nutrient in the experimental systems
注:nd表示低于儀器檢測(cè)線。
3.2 珊瑚的鈣化率
鹿角杯形珊瑚的鈣化率的變化如圖5所示。在實(shí)驗(yàn)期間,鹿角杯形珊瑚緩慢生長(zhǎng),酸化處理組鹿角杯形珊瑚平均浮力質(zhì)量(g/ind)從0.382增加到0.404,對(duì)照組則從0.360增加到0.377(見(jiàn)圖5A);對(duì)照組和酸化處理組鹿角杯形珊瑚的生長(zhǎng)率分別介于1.15%~1.92%/周和1.71%~2.09%/周,酸化處理組的平均生長(zhǎng)率略高于對(duì)照組(見(jiàn)圖5B),但二者并沒(méi)有顯著的差異(表2,df=1,F(xiàn)=2.9,P=0.09),不同時(shí)段鹿角杯形珊瑚的生長(zhǎng)率也沒(méi)有顯著的差異(表2,df=3,F(xiàn)=1.83,P=0.15)。
圖5 海水酸化對(duì)鹿角杯形珊瑚鈣化率的影響Fig.5 Effects of ocean acidification to the calcification of Pocillopora damicornisA.珊瑚浮力質(zhì)量的周變化;B.珊瑚鈣化率的周變化A.weekly variation of buoyant weight in P.damicornis; B.weekly variation of the calcification in P.damicomis
表2 鹿角杯形珊瑚鈣化率的統(tǒng)計(jì)檢驗(yàn)結(jié)果Tab.2 Statistic results for the calcification of Pocillopora damicornis
3.3 珊瑚共生蟲(chóng)黃藻的葉綠素?zé)晒庵笖?shù)
從鹿角杯形珊瑚共生蟲(chóng)黃藻葉綠素?zé)晒庵笖?shù)Fv/Fm來(lái)看(圖6),除第4周略有下降以外,實(shí)驗(yàn)期間,F(xiàn)v/Fm均值在0.7左右,酸化處理組和對(duì)照組之間沒(méi)有顯著的差異(P>0.5)。
圖6 酸化對(duì)鹿角杯形珊瑚光合能力(Fv/Fm)的影響Fig.6 Effects of ocean acidification to the photosyn-thesis capacity (Fv/Fm) of Pocillopora damicornis
圖7 海水中的pH與造礁珊瑚鈣化液中的pH(引自McCulloch等[26])Fig.7 Plot of pH in seawater relative to pH at site of calcification of hermatypic corals,modified from McCulloch et al[26]
不過(guò),盡管鹿角杯形珊瑚在個(gè)體水平上的生理指標(biāo)(鈣化率和光合效率)并沒(méi)有下降,但是海洋酸化可能會(huì)從微觀的分子水平上對(duì)珊瑚產(chǎn)生影響。例如,Hillhouse和Grammatopoulos發(fā)現(xiàn),酸化對(duì)冷水珊瑚Desmophyllumdianthus鈣化率和呼吸速率沒(méi)有顯著的影響,但是基因的蛋白表達(dá)差異顯著,酸化使得與細(xì)胞脅迫相關(guān)的HSP70和免疫防衛(wèi)有關(guān)的甘露糖結(jié)合c型聚合酶表達(dá)增加[43]。同時(shí),與珊瑚骨骼合成密切相關(guān)的關(guān)鍵蛋白酶——a-碳酸酐酶的合成也增加了[44]。這表明在酸化條件下珊瑚可能會(huì)重建其鈣化能力,即使其最終表現(xiàn)出的鈣化率指標(biāo)并沒(méi)有顯著的差異。因此,理解造礁珊瑚對(duì)酸化生理響應(yīng)過(guò)程背后的分子機(jī)制也是非常重要,這需要今后研究進(jìn)一步的深入。
[1] Sabine C L,F(xiàn)eely R A,Gruber N,et al. The oceanic sink for anthropogenic CO2[J]. Science,2004,305(5682): 367-371.
[2] Raven J,Caldeira K,Elderfield H,et al. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide[M]. London: The Royal Society,2005.
[3] Houghton J T,Ding Y,Griggs D J,et al. Climate change 2001: the scientific basis[R]//Contribution of Working Group I to the Third Assessment Report of the Intergoverment Panel on Climate Change. Cambridge: Cambridge University Press,2001: 881.
[4] Brewer P G. Ocean chemistry of the fossil fuel CO2signal: the haline signal of “business as usual”[J]. Geophysical Research Letters,1997,24(11): 1367-1369.
[5] Feely R A,Sabine C L,Lee K,et al. Impact of anthropogenic CO2on the CaCO3system in the oceans[J]. Science,2004,305(5682): 362-366.
[6] Kleypas J A,Langdon C. Coral reefs and changing seawater chemistry[M]//Phinney J T,Hoegh-Guldberg O,Kleypas J,eds. Coral Reefs and Climate Change: Science and Management. Washington,DC: American Geophysical Union,2006: 73-110.
[7] Anthony K R N,Kline D I,Diaz-Pulido G,et al. Ocean acidification causes bleaching and productivity loss in coral reef builders[J]. Proceedings of the National Academy of Sciences of the United States of America,2008,105(45): 17442-17446.
[8] Fabry V J,Seibel B A,F(xiàn)eely R A,et al. Impacts of ocean acidification on marine fauna and ecosystem processes[J]. ICES Journal of Marine Science,2008,65(3): 414-432.
[9] Langdon C,Takahashi T,Sweeney C,et al. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef[J]. Global Biogeochemical Cycles,2000,14(2): 639-654.
[10] Baker A C,Glynn P W,Riegl B. Climate change and coral reef bleaching: an ecological assessment of long-term impacts,recovery trends and future outlook[J]. Estuarine,Coastal and Shelf Science,2008,80(4): 435-471.
[11] Gattuso J P,Allemand D,F(xiàn)rankignoulle M. Photosynthesis and calcification at cellular,organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry[J]. American Zoologist,1999,39(1): 160-183.
[12] Langdon C,Atkinson M J. Effect of elevatedpCO2on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment[J]. Journal of Geophysical Research: Oceans,2005,110(C9): C09S07.
[13] Albright R,Langdon C. Ocean acidification impacts multiple early life history processes of the Caribbean coralPoritesastreoides[J]. Global Change Biology,2011,17(7): 2478-2487.
[14] Comeau S,Edmunds P J,Spindel N B,et al. Fast coral reef calcifiers are more sensitive to ocean acidification in short-term laboratory incubations[J]. Limnology and Oceanography,2014,59(3): 1081-1091.
[15] Chauvin A,Denis V,Cuet P. Is the response of coral calcification to seawater acidification related to nutrient loading?[J]. Coral Reefs,2011,30(4): 911-923.
[16] Dufault A M,Ninokawa A,Bramanti L,et al. The role of light in mediating the effects of ocean acidification on coral calcification[J]. The Journal of Experimental Biology,2013,216: 1570-1577.
[17] Jokiel P L,Rodgers K S,Kuffner I B,et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation[J]. Coral Reefs,2008,27(3): 473-483.
[18] Ries J B. A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification[J]. Geochimica et Cosmochimica Acta,2011,75(14): 4053-4064.
[19] Huang Hui,Yuan Xiangcheng,Cai Weijun,et al. Positive and negative responses of coral calcification to elevatedpCO2: case studies of two coral species and the implications of their responses[J]. Marine Ecology Progress Series,2014,502: 145-156.
[20] Comeau S,Carpenter R C,Nojiri Y,et al. Pacific-wide contrast highlights resistance of reef calcifiers to ocean acidification[J]. Proceedings of the Royal Society of London B: Biological Sciences,2014,281(1790): 20141339.
[21] Comeau S,Edmunds P J,Spindel N B,et al. The responses of eight coral reef calcifiers to increasing partial pressure of CO2do not exhibit a tipping point[J]. Limnology and Oceanography,2013,58(1): 388-398.
[22] Edmunds P J. Zooplanktivory ameliorates the effects of ocean acidification on the reef coralPoritesspp[J]. Limnology and Oceanography,2011,56(6): 2402-2410.
[23] Rodolfo-Metalpa R,Martin S,F(xiàn)errier-Pagès C,et al. Response of the temperate coralCladocoracaespitosato mid-and long-term exposure topCO2and temperature levels projected for the year 2100 AD[J]. Biogeosciences,2010,7: 289-300.
[24] Takahashi A,Kurihara H. Ocean acidification does not affect the physiology of the tropical coralAcroporadigitiferaduring a 5-week experiment[J]. Coral Reefs,2013,32(1): 305-314.
[25] Movilla J,Orejas C,Calvo E,et al. Differential response of two Mediterranean cold-water coral species to ocean acidification[J]. Coral Reefs,2014,33(3): 675-686.
[26] McCulloch M,F(xiàn)alter J,Trotter J,et al. Coral resilience to ocean acidification and global warming through pH up-regulation[J]. Nature Climate Change,2012,2(8): 623-627.
[27] Ben-Haim Y,Zicherman-Keren M,Rosenberg E. Temperature-regulated bleaching and lysis of the coralPocilloporadamicornisby the novel pathogenVibriocoralliilyticus[J]. Applied and Environmental Microbiology,2003,69(7): 4236-4242.
[28] Ben-Haim Y,Thompson F L,Thompson C C,et al.Vibriocoralliilyticussp. nov.,a temperature-dependent pathogen of the coralPocilloporadamicornis[J]. International Journal of Systematic and Evolutionary Microbiology,2003,53(1): 309-315.
[29] Bourne D G,Munn C B. Diversity of bacteria associated with the coralPocilloporadamicornisfrom the Great Barrier Reef[J]. Environmental Microbiology,2005,7(8): 1162-1174.
[30] Lesser M P,Weis V M,Patterson M R,et al. Effects of morphology and water motion on carbon delivery and productivity in the reef coral,Pocilloporadamicornis(Linnaeus): diffusion barriers,inorganic carbon limitation,and biochemical plasticity[J]. Journal of Experimental Marine Biology and Ecology,1994,178(2): 153-179.
[31] Richmond R H,Jokiel P L. Lunar periodicity in larva release in the reef coralPocilloporadamicornisat Enewetak and Hawaii[J]. Bulletin of Marine Science,1984,34(2): 280-287.
[32] Clausen C D,Roth A A. Effect of temperature and temperature adaptation on calcification rate in the hermatypic coralPocilloporadamicornis[J]. Marine Biology,1975,33(2): 93-100.
[33] Erez J,Reynaud S,Silverman J,et al. Coral calcification under ocean acidification and global change[M]//Dubinsky Z,Stambler N,eds. Coral Reefs: An Ecosystem in Transition. Berlin: Springer,2011: 151-176.
[34] Wicks L C,Roberts J M. Benthic invertebrates in a high-CO2world[M]//Gibson R N,Atkinson R J A,Gordon J,eds. Oceanography and Marine Biology: An Annual Review,2012,50: 127-188.
[35] Kleypas J A,Yates K K. Coral reefs and ocean acidification[J]. Oceanography,2009,22(4): 108-117.
[36] Ries J B,Cohen A L,McCorkle D C. A nonlinear calcification response to CO2-induced ocean acidification by the coralOculinaarbuscula[J]. Coral Reefs,2010,29(3): 661-674.
[37] Comeau S,Carpenter R C,Edmunds P J. Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate[J]. Proceedings of the Royal Society B: Biological Sciences,2015,280(1753): 20122374.
[38] Jury C P,Whitehead R F,Szmant A M. Effects of variations in carbonate chemistry on the calcification rates ofMadracisauretenra(=Madracismirabilissensu Wells,1973): bicarbonate concentrations best predict calcification rates[J]. Global Change Biology,2010,16(5): 1632-1644.
[39] Jokiel P L,Bahr K D,Rodgers K S. Low-cost,high-flow mesocosm system for simulating ocean acidification with CO2gas[J]. Limnology and Oceanography: Methods,2014,12(5): 313-322.
[40] Burris J E,Porter J W,Laing W A. Effects of carbon dioxide concentration on coral photosynthesis[J]. Marine Biology,1983,75(2/3): 113-116.
[41] Goiran C,Al-Moghrabi S,Allemand D,et al. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate[J]. Journal of Experimental Marine Biology and Ecology,1996,199(2): 207-225.
[42] Iguchi A,Ozaki S,Nakamura T,et al. Effects of acidified seawater on coral calcification and symbiotic algae on the massive coralPoritesaustraliensis[J]. Marine Environmental Research,2012,73: 32-36.
[43] Hillhouse E W,Grammatopoulos D K. The molecular mechanisms underlying the regulation of the biological activity of corticotropin-releasing hormone receptors: implications for physiology and pathophysiology[J]. Endocrine Reviews,2006,27(3): 260-286.
[44] Carreiro-Silva M,Cerqueira T,Godinho A,et al. Molecular mechanisms underlying the physiological responses of the cold-water coralDesmophyllumdianthusto ocean acidification[J]. Coral Reefs,2014,33(2): 465-476.
Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coral Pocillopora damicornis
Zheng Xinqing1,Kuo Fuwen2,Liu Xinming3,Lin Rongcheng1*,Zhou Zhidong4,Shi Xiaofeng1
(1.TheThirdInstituteofOceanography,StateOceanicAdministration,Xiamen361005,China; 2.NationalMuseumofMarineBiologyandAquarium,Pingtung90001,China; 3.GuanxiAcademyofOceanography,Nanning530022,China; 4.FujianInstituteofOceanography,Xiamen361005,China)
Pocilloporadamicornis; ocean acidification; coral; calcification;Fv/Fm
2015-03-25;
2015-06-15。
南方海洋中心海洋產(chǎn)業(yè)核心和關(guān)鍵技術(shù)攻關(guān)項(xiàng)目(14CZY037HJ11);福建省重點(diǎn)科技項(xiàng)目(2012Y0071);福建省自然科學(xué)基金資助項(xiàng)目(2015J05083,2014J01127);海洋公益性行業(yè)科研專(zhuān)項(xiàng)(201105012);廣西科技興海專(zhuān)項(xiàng)項(xiàng)目(GXZC2015-G3-3696-JZ);廈門(mén)海洋開(kāi)發(fā)研究院項(xiàng)目(K140301)。
鄭新慶(1983—),男,福建省泉州市人,博士,助理研究員,從事珊瑚礁生態(tài)學(xué)研究。E-mail:zhengxinqing@tio.org.cn
*通信作者:林榮澄,男,研究員,從事海洋生物學(xué)研究。E-mail:linrongcheng@tio.org.cn
10.3969/j.issn.0253-4193.2015.10.006
Q145.2
A
0253-4193(2015)10-0059-10
鄭新慶,郭富雯,劉昕明,等. 海洋酸化沒(méi)有顯著影響成體鹿角杯形珊瑚的鈣化作用和光合能力[J].海洋學(xué)報(bào),2015,37(10):59—68,
Zheng Xinqing,Kuo Fuwen,Liu Xinming,et al. Ocean acidification does not significantly affect the calcification and photosynthesis capacity of hermatypic coralPocilloporadamicornis[J]. Haiyang Xuebao,2015,37(10):59—68,doi:10.3969/j.issn.0253-4193.2015.10.006