• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      定量蛋白質組學質譜采集技術進展

      2014-12-18 21:24:52張偉
      分析化學 2014年12期
      關鍵詞:綜述

      張偉

      摘 要 質譜是定量蛋白組學的主要工具。近年來隨著定量蛋白質組學研究的深入,傳統(tǒng)質譜定量技術面臨著復雜基質干擾、分析通量限制等諸多問題。而最近一系列質譜新技術的發(fā)展,包括同步母離子選擇(SPS)、質量虧損標記、平行反應監(jiān)測(PRM)、多重累積(MSX)和多種全新數(shù)據(jù)非依賴性采集(DIA)等,為解決目前蛋白質組學在相對定量和絕對定量分析方面的局限提供了有效途徑。本文對定量蛋白質組學目前遇到的瓶頸問題進行了分析,總結了質譜定量采集技術的最新進展,并評述了這些新技術的特點以及在定量蛋白質組學應用中的優(yōu)勢。

      [KH*3/4D][HTH]關鍵詞 [HTSS]定量蛋白質組學; 同步母離子選擇; 平行反應監(jiān)測; 數(shù)據(jù)非依賴性采集; 綜述

      [HT][HK][FQ(32,X,DY-W] [CD15] 20140910收稿; 20141018接受

      * Email: wei.zhang@thermofisher.com [HT]

      1 引 言

      當今蛋白質組學的關注焦點和研究趨勢已經逐漸從定性分析 轉向定量分析。定量蛋白質組學是對細胞、組織乃至完整生物體的蛋白質表達進行定量分析,對生物過程機理的探索和臨床診斷標志物的發(fā)現(xiàn)與驗證具有重要意義[ 1,2]。定量蛋白質組學分為相對定量與絕對定量[ 3]。相對定量即差異比較,通過質譜大規(guī)模、高通量地對兩種或多種不同生理、病理條件下的樣本進行定量分析,獲得蛋白質表達量的精確差異, 主要方法有穩(wěn)定同位素標記和非標記兩種技術手段[ 4,5]。絕對定量即獲得蛋白的具體表達量,利用質譜監(jiān)測目標蛋白的專一性肽段(Unique Peptide)獲得色譜質譜峰面積,并與已知量的標準肽段(外標法)或穩(wěn)定同位素標記的重標肽段(內標法)比較確定具體量,實現(xiàn)絕對定量。主要質譜方法是對專一性肽段進行選擇反應監(jiān)測或稱多反應監(jiān)測(Selected/Multiple reaction monitoring, SRM/MRM)[ 6]。

      穩(wěn)定同位素標記技術是蛋白質組學相對定量的經典方法。樣本在穩(wěn)定同位素標記后、質譜分析前混合,一次分析實現(xiàn)差異定量,有效消除了色譜和質譜分離分析過程中的不穩(wěn)定性,最大程度減小了定量誤差。常見方法有基于代謝標記的SILAC[ 7]、基于酶解標記的18O標記[ 8]和基于化學標記的二甲基化[ 9]等,這些方法通過一級母離子提取峰面積實現(xiàn)定量比較。但是,一級定量具有標記通量低、動態(tài)范圍差、靈敏度不高等不足,因此, 近年來,基于同重同位素標記的二級定量方法使用越來越廣泛[ 10]。利用同重同位素標簽標記肽段,在一級質譜不同樣本的肽段分子量沒有區(qū)分,相互疊加,提高了靈敏度; 二級碎裂獲得分子量不同的報告離子,在b/y離子定性的同時,通過報告離子之間的強度差異實現(xiàn)定量,提高了動態(tài)范圍。同重同位素主要標記試劑有iTRAQ[ 11]和TMT[ 12],標簽容量分別達到了8標和6標。然而,同重同位素標記技術面臨共洗脫肽段干擾的問題。蛋白質組學樣本非常復雜,在色譜上存在大量共洗脫肽段,而質譜在選擇母離子進行二級分析時,選擇窗口通常在m/z 2左右,分子量接近的共洗脫肽段被同時選擇,碎裂出的報告離子與目標肽段報告離子疊加,降低了定量比例的準確性[ 13,14]。Ting等[ 15]研究證明,在復雜樣本中,共洗脫肽段嚴重干擾了報告離子的強度,造成肽段和蛋白的定量比例低于真實比例,產生“低估效應”。這一問題已成為同重同位素標記定量技術的瓶頸。

      基于三重四極桿的SRM(或稱MRM)是質譜定量的金標準,在蛋白質絕對定量中也廣泛使用[ 6]。SRM根據(jù)專一性肽段的母離子質量和子離子質量,第一級質量分析器(Q1)篩選母離子,進入碰撞池碎裂后,第二級質量分析器(Q3)再篩選子離子,最大程度地去除干擾離子,監(jiān)測母離子子離子形成的離子對的信號響應。通過外標法,利用已知量的標準肽段繪制標準曲線; 或內標法,直接加入已知量的同位素重標肽段同時監(jiān)測,從而實現(xiàn)定性確證和定量檢測[ 6,16]。SRM靈敏度高、線性范圍廣,是目標蛋白驗證和絕對定量的有效手段。然而,隨著定量蛋白質組學的深入發(fā)展,樣本基質越來越復雜、目標蛋白豐度越來越低,容易受到高豐度蛋白的掩蓋。而SRM由于質量分辨率低,難以有效去除復雜基質背景的干擾,易造成假陽性[ 17,18]。另一方面,隨著分析通量的要求越來越高,一次分析可能需要監(jiān)測成千上萬個離子對,而SRM速度和靈敏度的局限使得能同時監(jiān)測的離子對數(shù)量有限[ 19]; 此外,離子對、碰撞能量等條件的優(yōu)化也費時費力,難以滿足目標蛋白質組學高通量發(fā)展的需要,特別是大樣本量的生物標志物和系統(tǒng)生物學研究[ 20,21]。因此,蛋白質絕對定量同樣面臨著較大的技術挑戰(zhàn)。

      近兩年來,隨著以Orbitrap為代表的高分辨質譜硬件技術不斷進步、采集方法不斷創(chuàng)新,定量蛋白質組學遇到的諸多瓶頸正逐步得到解決。這些技術包括基于同重同位素標記技術的同步母離子選擇和質量虧損標記,相對于傳統(tǒng)SRM掃描的高分辨平行反應監(jiān)測和多重累積平行反應監(jiān)測,以及多種全新數(shù)據(jù)非依賴性采集技術。

      References

      1 Ong S E, Mann M. Nat. Chem. Biol., 2005, 1(5): 252-262

      2 Veenstra T D. J. Chromatogr. B, 2007, 847(1): 3-11

      3 ZHOU Yuan, SHAN YiChu, ZHANG LiHua, ZHANG YuKui. Chinese Journal of Chromatography, 2013, 31(6): 496-502

      周 愿, 單亦初, 張麗華, 張玉奎. 色譜, 2013, 31(6): 496-502

      4 Bantscheff M, Schirle M, Sweetman G, Rick J, Kuster B. Anal. Bioanal. Chem., 2007, 389(4): 1017-1031

      5 ZHU JinLei, ZHANG Kai, HE XiWen, ZHANG YuKui. Chinese J. Anal. Chem., 2010, 38(3): 434-441

      朱金蕾, 張 鍇, 何錫文, 張玉奎. 分析化學, 2010, 38(3): 434-441

      6 Lange V, Picotti P, Domon B, Aebersold R. Mol. Syst. Biol., 2008, 4: 222

      7 Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Mol. Cell. Proteomics, 2002, 1(5): 376-386

      8 Capelo J L, Carreira R J, Fernandes L, Lodeiro C, Santos H M, SimalGandara J. Talanta, 2010, 80(4): 1476-1486

      9 Boersema P J, Raijmakers R, Lemeer S, Mohammed S, Heck A J. Nat. Protoc., 2009, 4(4): 484-494

      10 Koehler C J, Strozynski M, Kozielski F, Treumann A, Thiede B. J. Proteome Res., 2009, 8(9): 4333-4341

      11 Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed A K, Hamon C. Anal. Chem., 2003, 75(8): 1895-1904

      12 Ross PL, Huang Y N, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, BartletJones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics, 2004, 3(12): 1154-1169

      13 Karp N A, Huber W, Sadowski P G, Charles P D, Hester S V, Lilley K S. Mol. Cell. Proteomics, 2010, 9(9): 1885-1897

      14 Ow S Y, Salim M, Noirel J, Evans C, Rehman I, Wright P C. J. Proteome Res., 2009, 8(11): 5347-5355

      15 Ting L, Rad R, Gygi S P, Haas W. Nat. Methods, 2011, 8(11): 937-940

      16 ZHAO Yan, YING WanTao, QIAN XiaoHong. Chem. Life, 2008, 28(2): 210-213

      趙 焱, 應萬濤, 錢小紅. 生命的化學, 2008, 28(2): 210-213

      17 Sherman J, McKay MJ, Ashman K, Molloy MP. Proteomics, 2009, 9(5): 1120-1123

      18 Abbatiello SE, Mani DR, Keshishian H, Carr SA. Clin. Chem., 2010, 56(2): 291-305

      19 Kiyonami R, Schoen A, Prakash A, Peterman S, Zabrouskov V, Picotti P, Aebersold R, Huhmer A, Domon B. Mol. Cell. Proteomics, 2011, 10(2): M110.002931

      20 Cima I, Schiess R, Wild P, Kaelin M, Schüffler P, Lange V, Picotti P, Ossola R, Templeton A, Schubert O, Fuchs T, Leippold T, Wyler S, Zehetner J, Jochum W, Buhmann J, Cerny T, Moch H, Gillessen S, Aebersold R, Krek W. Proc. Natl. Acad. Sci. USA, 2011, 108(8): 3342-3347

      21 Picotti P, Bodenmiller B, Mueller L N, Domon B, Aebersold R. Cell, 2009, 138(4): 795-806

      22 Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K. Anal. Chem., 2010, 82(15): 6549-6558

      23 Thingholm T E, Palmisano G, Kjeldsen F, Larsen M R. J. Proteome Res., 2010, 9(8): 4045-4052

      24 McAlister G C, Nusinow D P, Jedrychowski M P, Wühr M, Huttlin E L, Erickson B K, Rad R, Haas W, Gygi S P. Anal. Chem., 2014, 86(14): 7150-7158

      25 Wuhr M, Haas W, McAlister G C, Peshkin L, Rad R, Kirschner M W, Gygi S P. Anal. Chem., 2012, 84(21): 9214-9221

      26 Wenger C D, Lee M V, Hebert A S, McAlister G C, Phanstiel D H, Westphall M S, Coon J J. Nat. Methods, 2011, 8(11): 933-935

      27 Goeringer D E, Asano K G, McLuckey S A. Anal. Chem., 1994, 66(3): 313-318

      28 Viner R, Bomgarden R, Blank M, Rogers J. 61st ASMS, 2013, Poster W617

      29 Blank M, Bomgarden R, Rogers J, Jacobs R, Fong J, Puri N, Zabrouskov V, Viner R. 61st ASMS, 2013, Poster Th449

      30 Weekes M P, Tomasec P, Huttlin E L, Fielding C A, Nusinow D, Stanton R J, Wang E C, Aicheler R, Murrell I, Wilkinson G W, Lehner P J, Gygi S P. Cell, 2014, 157(6): 1460-1472

      31 Dephoure N, Gygi S P. Sci. Signal, 2012, 5(217): rs2

      32 Werner T, Becher I, Sweetman G, Doce C, Savitski M M, Bantscheff M. Anal. Chem., 2012, 84(16): 7188-7194

      33 McAlister G C, Huttlin E L, Haas W, Ting L, Jedrychowski M P, Rogers J C, Kuhn K, Pike I, Grothe R A, Blethrow J D, Gygi S P. Anal. Chem., 2012, 84(17): 7469-7478

      34 Werner T, Sweetman G, Savitski MF, Mathieson T, Bantscheff M, Savitski M M. Anal. Chem., 2014, 86(7): 3594-3601

      35 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 9(81): 148-158

      36 Karlsson C, Malmstrom L, Aebersold R, Malmstrom J. Nat. Commun., 2012, 3: 1301

      37 GallartAyala H, Moyano E, Galceran M T. J. Chromatogr. A, 2008, 1208(12): 182-188

      38 MartínezVillalba A, Moyano E, Martins C P, Galceran M T. Anal. Bioanal. Chem., 2010, 397(7): 2893-2901

      39 Fortin T, Salvador A, Charrier J P, Lenz C, Bettsworth F, Lacoux X, ChoquetKastylevsky G, Lemoine J. Anal. Chem., 2009, 81(22): 9343-9352

      40 Peterson A C, Russell J D, Bailey D J, Westphall M S, Coon J J. Mol. Cell. Proteomics, 2012, 11(11): 1475-1488

      41 Schiffmann C, Hansen R, Baumann S, Kublik A, Nielsen P H, Adrian L, von Bergen M, Jehmlich N, Seifert J. Anal. Bioanal. Chem., 2014, 406(1): 283-291

      42 Gallien S, Duriez E, Demeure K, Domon B. J. Proteomics, 2013, 81: 148-158

      43 Tsuchiya H, Tanaka K, Saeki Y. Biochem. Biophys. Res. Commun., 2013, 436(2): 223-229

      44 Tang H, Fang H, Yin E, Brasier A R, Sowers L C, Zhang K. Anal. Chem., 2014, 86(11): 5526-5534

      45 Gallien S, Bourmaud A, Kim S Y, Domon B. J. Proteomics, 2014, 100: 147-159

      46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

      47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

      48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

      49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

      50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

      51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

      52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

      53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

      54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

      55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

      56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

      57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

      張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

      58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

      Progress in Mass Spectrometry Acquisition Approach for

      Quantitative Proteomics

      ZHANG Wei*

      (Thermo Fisher Scientific, Shanghai 201206, China)

      Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

      Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

      (Received 10 September 2014; accepted 18 October 2014)

      46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

      47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

      48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

      49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

      50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

      51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

      52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

      53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

      54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

      55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

      56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

      57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

      張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

      58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

      Progress in Mass Spectrometry Acquisition Approach for

      Quantitative Proteomics

      ZHANG Wei*

      (Thermo Fisher Scientific, Shanghai 201206, China)

      Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

      Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

      (Received 10 September 2014; accepted 18 October 2014)

      46 Gallien S, Duriez E, Crone C, Kellmann M, Moehring T, Domon B. Mol. Cell. Proteomics, 2012, 11(12): 1709-1723

      47 Law K P, Lim Y P. Expert. Rev. Proteomics, 2013, 10(6): 551-566

      48 Venable J D, Dong M Q, Wohlschlegel J, Dillin A, Yates J R. Nat. Methods, 2004, 1(1): 39-45

      49 Gillet L C, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, Bonner R, Aebersold R. Mol. Cell. Proteomics, 2012, 11(6): O111.016717

      50 Liu Y, Huttenhain R, Surinova S, Gillet L C, Mouritsen J, Brunner R, Navarro P, Aebersold R. Proteomics, 2013, 13(8): 1247-1256

      51 Collins B C, Gillet L C, Rosenberger G, Rost H L, Vichalkovski A, Gstaiger M, Aebersold R. Nat. Methods, 2013, 10(12): 1246-1253

      52 Lambert J P, Ivosev G, Couzens A L, Larsen B, Taipale M, Lin Z Y, Zhong Q, Lindquist S, Vidal M, Aebersold R, Pawson T, Bonner R, Tate S, Gingras A C. Nat. Methods, 2013, 10(12): 1239-1245

      53 Chapman J D, Goodlett D R, Masselon C D. Mass Spectrom. Rev., 2013: 10.1002/mas.21400

      54 Egertson J D, Kuehn A, Merrihew G E, Bateman N W, MacLean B X, Ting Y S, Canterbury J D, Marsh D M, Kellmann M, Zabrouskov V, Wu C C, MacCoss M J. Nat. Methods, 2013, 10(8): 744-746

      55 Senko M W, Remes P M, Canterbury J D, Mathur R, Song Q, Eliuk S M, Mullen C, Earley L, Hardman M, Blethrow JD, Bui H, Specht A, Lange O, Denisov E, Makarov A, Horning S, Zabrouskov V. Anal. Chem., 2013, 85(24): 11710-11714

      56 Kiyonami R, Patel B, Senko M, Zabrouskov V, Egertson J, Ting S, MacCoss M, Rogers J, Huhmer A. Large Scale Targeted Protein Quantification Using WiSIMDIA Workflow on a Orbitrap Fusion Tribrid Mass Spectrometer. ASMS, 2014, W737

      57 ZHANG Wei, Reiko Kiyonami, JIANG Zheng, CHEN Wei. Chinese J. Anal. Chem., 2014, 42(12): 1750-1758

      張 偉, Reiko Kiyonami, 江 崢, 陳 偉. 分析化學, 2014, 42(12): 1750-1758

      58 Prakash A, Peterman S, Ahmad S, Sarracino D, Frewen B, Vogelsang M, Byram G, Krastins B, Vadali G, Lopez M. J. Proteome Res., 2014, doi: 10.1021/pr5003017

      Progress in Mass Spectrometry Acquisition Approach for

      Quantitative Proteomics

      ZHANG Wei*

      (Thermo Fisher Scientific, Shanghai 201206, China)

      Abstract Mass spectrometry is an important and powerful tool for protein quantification. With the indepth development of quantitative proteomics, limitations of classic MS based quantification methods, such as complicated matrix interference and throughput/capacity limitation, start to appear. Recent progress of series novel MS based techniques provide effective solutions for the limitations of relative and absolute proteomic quantification, including synchronous precursor selection (SPS), mass defect isobaric labeling, parallel reaction monitoring (PRM), multiplexing acquisition (MSX), and various novel data independent acquisition (DIA) modes. Here we summarized the current limitations of quantitative proteomics, reviewed the latest MS based quantification approaches, and discussed the features and advantages of these novel techniques for quantitative proteomic application.

      Keywords Quantitative proteomics; Synchronous precursor selection; Parallel reaction monitoring; Data independent acquisition; Review

      (Received 10 September 2014; accepted 18 October 2014)

      猜你喜歡
      綜述
      2021年國內批評話語分析研究綜述
      認知需要研究綜述
      氫能有軌電車應用綜述
      高速磁浮車載運行控制系統(tǒng)綜述
      5G應用及發(fā)展綜述
      電子制作(2019年10期)2019-06-17 11:45:16
      SEBS改性瀝青綜述
      石油瀝青(2018年6期)2018-12-29 12:07:04
      NBA新賽季綜述
      NBA特刊(2018年21期)2018-11-24 02:47:52
      深度學習認知計算綜述
      JOURNAL OF FUNCTIONAL POLYMERS
      Progress of DNA-based Methods for Species Identification
      广宁县| 崇义县| 开远市| 静乐县| 长宁区| 河曲县| 宁阳县| 西盟| 焦作市| 东港市| 肥城市| 响水县| 东乌| 汕尾市| 平远县| 大厂| 涟水县| 曲阜市| 靖宇县| 屏东市| 阿拉善左旗| 宁海县| 襄垣县| 泾阳县| 泽州县| 海盐县| 三穗县| 北碚区| 曲松县| 宜川县| 双柏县| 丹东市| 山西省| 工布江达县| 河东区| 靖远县| 邵东县| 昭苏县| 承德县| 兴安盟| 略阳县|