• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    2014-05-13 02:38:13LIHuaWAREAntonyandGUOLiSchoolofMathematicsandStatisticsZhengzhouUniversityZhengzhou450001China

    LIHua,WAREAntonyand GUO LiSchool ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    WaveletCollocation M ethods for Viscosity Solu tions to Sw ing Op tions in Natu ral Gas Storage

    LIHua1,?,WAREAntony2and GUO Li11School ofM athematics and Statistics,Zhengzhou University,Zhengzhou 450001, China.

    2DepartmentofM athematicsand Statistics,University ofCalgary,2500University Drive,NW,Calgary,AB,Canada,T2N 1N4.

    Received 18 January 2014;Accep ted 14M ay 2014Abstract.This paper p resents the w avelet collocation m ethods for the num ericalapp roxim ation of sw ing op tions for natu ralgas storage in am ean revertingm arket.The m odel is characterized by the Ham ilton-Jacobi-Bellm an(H JB)equations w hich on ly have the viscosity solution due to the irregu larity of the sw ing op tion.The differential operator is form u lated exactly and efficiently in the second generation interpolating w aveletsetting.The convergence and stability of the num ericalschem e are studied in the fram ew ork of viscosity solu tion theory.Num erical experim ents dem onstrate the accu racy and com pu tationalefficiency of them ethods.

    AM SSub jectClassifications: 65C20,62P05,97M 30

    Chinese Lib rary Classifications:O 175.27

    Sw ing op tion;viscosity solution;w avelet;collocation.

    1 In troduction

    The aim of this paper is to investigate the app lication of adap tive w avelet collocation m ethods for Ham ilton-Jacobi-Bellm an(HJB)equations arising from p ricing sw ing options in am ean revertingm arket.

    M odelsof sw ing op tionsare an extension of the Black-Scholesm odel.Due to the uncertainty of fu ture consum p tion and the lim ited fungibility ofm any comm od ities,som e comm od ity m arkets have introduced sw ing op tionsw hich give the consum er flexibility w ith respect to both the tim ing and theam ountof comm od ity delivered.For descrip tions ofsw ing op tions,w e refer to[1,2]and the references therein.Sw ing op tionsare very comm on in energym arkets,because they p rovide consum ersw ith flexibility to vary their rateof consum p tion w ithou t being exposed to p rice fluctuations,w hich can be extrem e,especially in the case of electricity.For sw ing op tions on electricity,see[3];on gas,see[4]; on coal,see[5],for exam p le.

    Due to their im portance in the energy m arkets,the p ricing of sw ing op tions has gainedm oreand m oreatten tion over the lastdecade,andm uch efforthasbeen expanded in designing algorithm s for p ricing sw ing op tions.The d iscrete valuation of sw ing options has been stud ied by several au thors.In[1],a d iscrete forestm ethodology is developed for sw ing op tions as a dynam ically coup led system of European op tions.A lso in[2],a binom ial/trinom ial forest is built to calcu late the p rice of sw ing op tions.In[6] and[7],M onte Carlo techniques are em p loyed for p ricing sw ing op tions.Continuous tim em odels allow the use of pow erfu lm athem atical tools to analyze the p roperties of solu tions and have recently appeared in the literature.A continuous tim em odel for the p rice of the general comm od ity-based sw ing op tion is p resen ted in[8],w here the p rice function is the solution of a system of quasi-variational inequalities.In[9],a continuous tim em odel is built for p ricing sw ing op tions on naturalgas in am ean revertingm arket, w here the p rice function is the solu tion of a HJB equation.

    Them ore pow erfu l them odel is,them ore im portan t it is to develop the right com putational tools to get reliable in form ation ou t from them odel.In this paper,w e study the num erical solu tion of sw ing op tion m odels p resen ted in[9,10],w here a finite-elem en t app roach is developed to solve this class ofm odels.Fu rtherm ore,the stochasticm eshes are app lied in[11]and the op tim al exercise boundary estim ation is app lied in[12]respectively for solving sw ing op tionm odels.For fu rther su rvey abou t sw ing op tions,w e refer the readers to[13].

    Since op tim ization strategiesare involved in sw ing op tions,in regionsw here the optim al exercise strategy is a rapid ly-changing function of the p rice,the solu tion m ay exhibit less regu larity,w hich w ill be p roblem atic for nonadap tive(uniform grid)m ethods. Therefore,w e develop w avelet-based m ethods for p ricing sw ing op tions.This fram ew ork allow s for using finer resolu tion w here needed and coarser resolution in sm ooth areas,and thereby im p roves the app roxim ation efficiency.

    This paper is organized as follow s.In Section 2,w e in troduce the efficient form u lation of operators in a w avelet collocation setting.In Section 3,w e briefly introduce the sw ing op tionm odels to be stud ied in thispaper.In Section 4,w e p resentaw avelet-based num erical schem e to the p roposed HJB system.In Section 5,the convergence analysis is perform ed in the fram ew ork of viscosity solu tion theory.In Section 6,the num erical resu ltsare p resented.Conclusions are d raw n in Section 7.

    2 Second generation in terpolating w avelets

    2.1 Scaling functions on an in terval

    Consider the interval?=[0,1].For each level j,w e p lace a grid

    on?.A setof interpolating scaling functions{φj,k,k=0,1,···,2j}can be constructed using the interpolating subd ivision schem e and they satisfy the tw o-scale relationship

    and qjk(x)is the Lagrange interpolating polynom ial through the p points closest to xj,kon Gj.The scaling function space

    satisfiesa second-generationm u ltiresolu tion analysis in the sense that

    2.2 Wavelets

    For convenience,w e denote the filter h in Eq.(2.1)in them atrix form:

    In terpolating w aveletsw ith desired high vanishing m om en ts can be constructed by the lifting schem e[14]as follow s,

    This is done by designing the lifting filter Sjsuch that thew aveletsψj,kassociated w ith the above filtershave?p vanishingm om ents,i.e.,

    This fam ily ofw avelets is very suitable to num ericalanalysis.

    For convenience,w e denoteφj=[φj,0,φj,1,···,φj,2j]′.Sim ilarlyψj,?φjand?ψjdenote the vectors ofw avelet functions,dual scaling functions and dualw avelets respectively,and the correspond ing spacesare denoted by Wj,?Vjand?Wjrespectively.

    2.3 Projections and w avelet transform s

    Define the p rojectionsof f∈L2(?)onto Vjand Wjrespectively by

    w here vj,k=h f,?φj,ki,wj,k=h f,?ψj,ki and h·,·i denotes the L2inner p roduct.Sim ilarly w e have the dualp rojections?Pjand?Qjand the p rojections satisfy

    The fastw avelet transform s can be deduced based on the above p rojections.

    ?(Decom position:)Given vj+1,

    where

    ?(Reconstruction:)Given vjand wj,

    2.4 Wavelet collocation rep resen tations of operators

    The exact and efficient form u lation of operators in a Galerkin setting has been p roposed by Bey lkin and Coifm an[15,16]and Dahm en and M icchelli[17].In this section,w e develop an efficien t rep resen tation of operators in the collocation schem e.Let(x):= δ(x),w hereδ(x)is the Dirac d istribu tion functional.Define

    The standard form u lation can be obtained by decom posing?PJand PJ:

    w hich containsm atrix entries reflecting‘interactions’betw een allpairsofd ifferentscales. This p rocedu re resu lts in an order N log N algorithm even for such sim p le operators as m u ltip lication by a function,w here N is the totalnum ber ofw avelets used.Fortunately, this form u lation can be derived ind irectly from its nonstandard form,w hich is obtained by expand ingLPJin a telescop ic series,i.e.,

    The above entries can be com puted exactly(for details see Chap ter 3 in[18]).Theadvantage of the nonstandard rep resentation(2.10)is that it on ly involves‘interaction’on one scale j and the form u lation only resu lts in an order of N com pu tation.

    3 M odels of sw ing op tions

    In thissection,w egivea brief introduction to the sw ing op tionm odels in[9]w ith natu ral gasas the underlying comm od ity.

    Envisage a situation in w hich the net consum p tion to date qtism anaged on a continuous basis by the holder,w ho is allow ed to vary the rate of consum p tionw ithin p rescribed lim itssubject to qtalso lying in som e interval[a,b].Ifallgas is imm ed iately converted in to cash at the spot rate,the cash flow generated by‘consum ing’at the ratefor a period ofΔt,given a spotp rice of St,is

    The totald iscounted cash flow over the life of the op tion,given an exercise strategy specified by q′tis,exclud ing any penalty paym ents,

    Here and in the follow ing w e assum e a constant risk-free interest rate r.

    Supposew e are given a strategy q′t=k(t),and an underlying asset satisfying the d iffusion p rocess

    w here Wtisa standard Brow nianm otion,andμandσare su fficiently w ell-behaved functions.

    We let qtdenote the am oun t of gas stored at tim e t,constrained to be in[a,b].A positive value ofind icates that gas is being injected at a rate of,w hile a negative value connotes the w ithdrawal ofgas ata rate of.

    Itw illbenatu ral to im posea charge perunit tim e,χst(qt,St),dependenton the cu rrent levelofgas in the inventory and possibly also itsm arketvalue.Therew illalso bea charge for in jection orw ithd raw al.This chargew ill typ ically be p roportional to the ratebu tw ith d ifferentp roportionalities for each case:i.e.,itw illbeof the form

    We assum e that a borrow ing account Atism aintained in order to finance these cash flow s.Over a tim e increm ent dt,then,thenom inalvalue of thegas in storagew illchange by

    and therew illbe an associated cash flow of

    w hereμ?is the d riftof the forw ard p rocess,χstis cash flow,andχiw(k)-kS is gain.

    We seek to m axim ize the value of our hedged portfolio.The op tim al strategy that achieves this resu lts in

    4 Wavelet collocation schem e

    We em p loy a hybrid w avelet/finite d ifference sem i-Lagrangian num erical schem e to solve Eq.(3.2).Throughout this section,w e consider the casew here-μ?(S,t)=(ln S+)S,andare constants,andσ(S)=σ0S.

    We firstapp ly tim e reverseand logarithm transform to(3.2)by(M axim ization w illbe dealtw ith later)

    We then introduce a change of variables to rem ove the d rift term in x:uxterm by

    Eq.(4.1)is reduced to

    Since there is no d iffusion term and on ly d rift term in q,w e em p loy a sem i-Lagrangian m ethod to dealw ith the d rift term in q:i.e.wτ-kwqis exp ressed as a single d irectional derivative in the d irection of the curve(Q(τ;q,τ0),τ)τpassing through the point(y,τ), w here,given q andτ0,Q(τ)satisfies

    Solving the above ord inary d ifferentialequation,

    Thus,w e obtain

    Them axim ization p roblem isas follow s.

    Prob lem 4.1.Find w such that

    For the num erical app roxim ation,w e take an im p licit finite d ifferencem ethod inτ, and a w avelet collocation m ethod in y.Then the app roxim ation p roblem to Problem 4.1 isw ritten as follow s.

    Prob lem 4.2.Givenτn=nΔτ,n=0,···,N,find am ap U:{τ0,τ1,···,τN}→Vjsuch that,for any y∈Gj,the follow ing equation holds for each m.

    Please note that the‘m ax’function is realized as follow s.For each m,find a set

    And also w e use a free boundary cond ition in the space dom ain y.

    5 Convergence rate of the schem e

    The app roxim ation of viscosity solu tions to HJB equations has been intensively stud ied by Barles and Jakobsen[19]in 2005.The theory of viscosity solutions p rovides am eans ofanalysis in thissetting.We can dem onstrate them onotonicity and p rove the regu larity and consistency of this num ericalschem e.Thus,convergence follow s from the resu ltsof Barles and Jakobsen[19].

    For convenience,w e rew rite the num ericalschem e as

    1.M onotonicity.

    For anyν≥0,h0>0 such that if|h|≤h0,u≤v are functions in Vj(Gj),andφ(τ)= eντ(a+bτ)+c for a,b,c≥0,then

    w herew eassum e that M-1φ(τn)=φ(τn).Actually this is true,since

    2.Regularity.

    We now show that,for every h andφ∈Vj(Gj),the function

    is bounded and continuous in Gjand the function r7-→Q(h,τ,x,r,φ(τn))is uniform ly continuous for bounded r,uniform ly in(τ,x)∈Gj.

    Bounded:for every h,M-1isbounded and for everyφn+1∈Vj(Gj),φn+1isbounded.

    We know f is bounded and

    The function(τ,y)7-→Q(h,τ,y,φ(τn+1),φ(τn))is bounded in Gj.

    Con tinuous:sinceφ∈Vj(Gj),for any(τ?,y?)∈[τ0,···,τN]×Gj,if

    Uniform ly con tinuous:for any bounded r1,r2,for anyδ>0,if

    then for any(τ,y)∈[τ0,···,τN]×Gj,

    w here?=δ.

    3.Consistency.

    For any h=(Δτ,Δy)>0,(τ,y)∈[τ0,···,τN]×Gj,and sm ooth functionφ:

    Fu rtherm ore,it is easy to show the stability cond ition

    It follow s imm ed iately that Problem 4.2 has a unique solution.Therefore,w e have the follow ing convergence resu lt.

    Theorem 5.1.Let U and w be the solutions to Problem 4.2 and Problem 4.1 respectively.There existsa constant C dependent only onμ,K in(K1),(A 1)such that

    in Gj,where=|u|1.

    Proof.Firstw e notice that|U0,h-w0|=0 and by Theorem 3.1 in[19]w e have

    6 Num erical tests

    We test the ability of the num ericalm ethod to solve the HJB equation w ith them odel param eters:tim e to exp iry 5 years,r=0.05,σ0=0.5,=-1.48 and=0.4.We take Δτ=T2-M.For each M,J=12,w e com pute the num erical solu tion and take it as the‘true’solu tion.Then,w e com pu te the solu tions at level J=6,···,10 w ith the sam e tim e step-size,com pare them w ith the‘true’solution and find the relative errors.Errors in the L∞norm at tim e0 are p resen ted in Table1,the convergence ratesare p resented in Table 2, from w hich w e can see that the convergence rate is about7,i.e.the order is abou t3.The op tion p ricesare show n in Fig.1(left).The sw ing ratesare show n in Fig.1(righ t),w here a negative valuem eans a strategy of selling the natu ralgasw ith this rate,and a positive valuem eans buying the natu ralgasw ith this rate.

    Table 1:Errors in the L∞norm for the swing option at time 0 and q=1.

    Table 2:Convergence rates in the L∞for the swing option computed from the data in Table 1.

    Figure 1:Left:sw ing option valuation.Right:recommended sw ing rates.

    7 Conclusion

    This paper p resented w avelet collocation m ethods for the numerical app roxim ation of viscosity solu tions of an HJB equation w hich arises in p ricing sw ing op tions in am ean

    reverting w orld.The d ifferential operator w as form u lated exactly and efficiently in the second generation interpolating w aveletspaces.Them ethodsw ere num erically dem onstrated uncond itionally stable.The convergencew as analysed in the fram ew ork of viscosity solu tion theory.The accu racy and com pu tational efficiency of them ethod w ere verified w ith the num erical resu lts.

    Append ix

    w here h=2-jand rk:=φ(2)0,m(m-k)is the nonzero second order derivative for interior scaling functions(see Table 3).

    Table 3:Nonzero second order derivatives for interior scaling functions.

    A A is inverse negative in the sense that A-1≤0

    Recall that them atrix A is identical to?A excep t that the first p row s and colum ns(and the last p row s and colum ns)are d ifferent.It is obvious that A is not an M m atrix from the entriesof A,and it is notd iagonally dom inant.

    Varga(1962)and Sch roeder(1961)show ed thatam atrix M is inverse positive,if

    Ortega and Rheinbold t(1967)show ed that M is inverse positive,if

    How everw e can not find a sp litting of A satisfying either of these tw o cond itions.W hat w e can do for A is a sp litting B-C,w here B and C are both M m atrix.

    J.E.Peris(1991)defined that,a positive sp litting M=B-C of a squarem atrix M is said to be a B-sp litting if them atrix B is nonsingu lar and

    Then he p roved the follow ing theorem.

    Theorem A.1.LetM bea squarematrix such that M=B-C isa B-splitting.Then M is inverse positive ifand only ifthere exists some x>0 such that M x?0,where?means that there isat least oneentry greater than zero.

    How ever,w e cou ld not find a B-sp litting for A.We also referred to other references: Fu jim oto and Ranade[20]etc.

    A lthough w e are unable to p rove them onotonicity of A,bu tw e found that num erically it is true.We now num erically show A-1≤0(see Fig.2).Again,given the polynom ial exactness p,neither the interval[a,b]or the scale j changes inversem onotonicity of them atrix A.Therefore,w e on ly give the num erical dem onstration for j=7 and the interval[0,1]in Fig.2.

    Figure 2:Left:inverse of thewavelet collocation matrix A of d2/dx2for j=7,on the interval[0,1].Right:the maximum values of each column in A-1.

    B I-cA is inverse positive in the sense that(I-cA)-1≥0

    For an evolution p roblem,am atrix of the form I-cA is usually involved,w here c is a positive num ber less than 1.In this section,ou r aim is to num erically show that I-cA is inverse positive in the sense that(I-cA)-1≥0.As c-→0,I-cA-→I and As c-→∞, I-cA-→-cA,therefore,in these tw o cases,I-cA is inverse positive.For 0<c<∞, w e still found that I-cA is inverse positive.Fig.3 is typicalofm any experim entsw hich have been done.

    Figure 3:Left:inverse of the wavelet collocation matrix B=I-cA for the cases c=100(top),and c=0.01 (bottom)for j=7 and the interval[0,1].Right:themaximum values of each column in B-1.

    Acknow ledgm en ts

    This research w ork issupported by Foundation Projectof Henan Science and Technology Departm entunder GrantNo.112300410064 and No.122300413202.

    [1]Lari-LavassaniA.,Sim chiM.and Ware A.,A discrete valuation of sw ing op tions.Canadian Applied M athematicsQuarterly,9(1)(2001),35-74.

    [2]Jaillet P.,Ronn E.R.and Tom paid is S.,Valuation of comm od ity-based sw ing op tions.M anagement Science,50(7)(2004),909-921.

    [3]Keppo J.,Pricing of electricity sw ing contracts.JournalofDerivatives,11(2004),26-43.

    [4]Clew low L.,StricklC.,Energy Derivatives:Pricing and Risk M anagem ent,Lacim a Publications,2000.

    [5]Joskow,Contract du ration and relationship-specific investm ents:Em p irical evidence from coalm arkets.American Econom ic Review,77(1987),168-185.

    [6]D¨orr U.,Valuation of Sw ing Op tions and Exam ination of Exercise Strategiesby M onte Carlo Techniques.M asters thesis,University ofOxford,2003.

    [7]M einshausen N.,Ham bly B.M.,M onte-Carlom ethods for thevaluation ofm u ltip le-exercise op tions.M athematical Finance,14(4)(2004),557-583.

    [8]Dah lgren M.,A continuous tim em odel to p rice comm od ity-based sw ing op tions.Review of DerivativesResearch,8(2005),27-47.

    [9]Ware A.F.,Sw ing op tions in am ean-reverting w orld,Paper p resented at the conference in honor of Robert Elliott,Calgary,Ju ly 2005.

    [10]W ilhelm M.,W inter C.,Finite elem ent valuation of sw ing op tions.Journal ofComputational Finance,11(3)(2008),107-132.

    [11]M arshall T.J.,M ark Reesor R.,Forestof stochasticm eshes:A new m ethod for valuing highd im ensional sw ing op tions.Operation Research Letters,39(2011),17-21.

    [12]Turbou lt F.,You lal Y.,Sw ing op tion p ricing by op tim al exercise boundary estim ation.In Num ericalM ethods in Finance,ed.Carm ona,R.etal.,Sp ringer Proceed ings in M athem atics 12,2012.

    [13]Lem pa J.,M athem aticsof Sw ing Op tions:A Su rvey.Quantitative Energy Finance,Publisher: Sp ringer New York,115-133,2014.

    [14]Sw eldensW.,The lifting schem e:a custom-design construction of biorthogonalw avelets. Applied Computationaland Harmonic Analysis,3(1996),186-200.

    [15]Beylkin G.,Coifm an R.and Rokhlin V.,Fastw avelet transform sand num ericalalgorithm s. Comm.in Pureand Applied M ath.,44(1991),141-183.

    [16]Bey lkin G.,On the rep resentation of operators in bases of com pactly supported w avelets. SIAM Journalon Numerical Analysis,6(6)(1992),1716-1740.

    [17]Dahm enW.,M icchelliC.A.,Using refinem entequation forevaluating integralsofw avelets. SIAM Journalon Numerical Analysis,30(2)(1993),507-537.

    [18]LiH.,Adap tivew aveletcollocationm ethods forop tion p ricing PDEs,PhD thesis,University of Calgary,2006.

    [19]BarlesG.,Jakobsen E.R.,Error bounds form onotone app roxim ation schem es for Ham ilton-Jacobi-Bellm an equations.SIAM J.Numer.Anal.,43(2)(2005),540-558.

    [20]Fu jim oto T,Ranade R.R.,Tw o characterizationsof inverse-positivem atrices:the Haw kins-Sim on cond ition and the Le Chatelier-Braun p rincip le.Electronic JournalofLinearAlgebra,11 (2004),59-65.

    10.4208/jpde.v27.n3.4 Sep tem ber 2014

    ?Correspond ing au thor.Email addresses:hual i08@zzu.edu.cn(H.Li),aware@ucalgary.ca(A.Ware), 1053500513@qq.com(L.Guo)

    精品人妻一区二区三区麻豆| 亚洲国产av影院在线观看| 国产精品欧美亚洲77777| 色播在线永久视频| 超碰97精品在线观看| 国产精品香港三级国产av潘金莲 | 日韩免费高清中文字幕av| 欧美日韩亚洲高清精品| 久久精品国产亚洲av涩爱| 婷婷色麻豆天堂久久| 在线av久久热| 夜夜骑夜夜射夜夜干| 成年av动漫网址| www.999成人在线观看| 一级,二级,三级黄色视频| 99热网站在线观看| 精品久久久精品久久久| 99久久人妻综合| 黄色一级大片看看| 亚洲av成人精品一二三区| 两个人看的免费小视频| 日韩一区二区三区影片| 亚洲av美国av| 亚洲一卡2卡3卡4卡5卡精品中文| 久久青草综合色| 丰满饥渴人妻一区二区三| 欧美变态另类bdsm刘玥| 日韩大码丰满熟妇| 午夜免费鲁丝| 午夜视频精品福利| 久久精品人人爽人人爽视色| 国产成人免费观看mmmm| 2021少妇久久久久久久久久久| 人人妻,人人澡人人爽秒播 | 国精品久久久久久国模美| 久久精品久久久久久久性| 国产一卡二卡三卡精品| 亚洲人成电影观看| 国产成人av激情在线播放| 亚洲熟女毛片儿| 免费看不卡的av| 电影成人av| 中文精品一卡2卡3卡4更新| 国产精品熟女久久久久浪| 丁香六月天网| 大话2 男鬼变身卡| 日韩av免费高清视频| 2021少妇久久久久久久久久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久中文字幕一级| 久久女婷五月综合色啪小说| 亚洲伊人久久精品综合| 久久 成人 亚洲| 18禁观看日本| 99国产精品免费福利视频| 亚洲激情五月婷婷啪啪| 青青草视频在线视频观看| 久久久久久免费高清国产稀缺| 亚洲人成网站在线观看播放| 男人操女人黄网站| 在线观看免费高清a一片| 久久久久久久大尺度免费视频| 在线精品无人区一区二区三| 久久这里只有精品19| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 欧美精品一区二区大全| 美女扒开内裤让男人捅视频| 一级黄片播放器| 精品人妻在线不人妻| 老鸭窝网址在线观看| 国产激情久久老熟女| 五月天丁香电影| 日本欧美视频一区| 亚洲av国产av综合av卡| av国产精品久久久久影院| 老汉色∧v一级毛片| 久久久久精品人妻al黑| 99久久精品国产亚洲精品| 好男人视频免费观看在线| 亚洲 国产 在线| 美女高潮到喷水免费观看| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 欧美在线黄色| 国产成人精品久久二区二区91| 又粗又硬又长又爽又黄的视频| 久久精品亚洲熟妇少妇任你| 国产欧美日韩一区二区三 | 亚洲国产av新网站| 王馨瑶露胸无遮挡在线观看| 精品国产一区二区三区四区第35| 欧美亚洲 丝袜 人妻 在线| 亚洲av电影在线观看一区二区三区| 亚洲熟女毛片儿| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 色网站视频免费| 两人在一起打扑克的视频| 国产在视频线精品| 午夜免费男女啪啪视频观看| 美女主播在线视频| 一区二区三区乱码不卡18| 亚洲国产毛片av蜜桃av| 这个男人来自地球电影免费观看| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 免费观看人在逋| 熟女少妇亚洲综合色aaa.| 水蜜桃什么品种好| 亚洲精品美女久久av网站| 亚洲av成人精品一二三区| 亚洲精品国产av成人精品| 国产一区有黄有色的免费视频| 男女免费视频国产| 伦理电影免费视频| 亚洲专区中文字幕在线| 满18在线观看网站| 天堂8中文在线网| 亚洲精品国产av蜜桃| 久久中文字幕一级| 亚洲国产精品一区三区| 飞空精品影院首页| 久久人妻福利社区极品人妻图片 | 久久精品国产亚洲av涩爱| 亚洲欧洲国产日韩| 老司机影院成人| 午夜免费观看性视频| 成人手机av| 丝袜美足系列| 午夜免费男女啪啪视频观看| 久久久精品国产亚洲av高清涩受| 一边摸一边抽搐一进一出视频| 80岁老熟妇乱子伦牲交| 又大又黄又爽视频免费| 老司机影院成人| 国产91精品成人一区二区三区 | 视频在线观看一区二区三区| 美女福利国产在线| 国产又爽黄色视频| 国产精品成人在线| 国产在视频线精品| 国产精品二区激情视频| 一本色道久久久久久精品综合| 欧美日韩av久久| 午夜福利,免费看| 亚洲av成人精品一二三区| 老司机影院成人| 欧美老熟妇乱子伦牲交| 女人精品久久久久毛片| 超碰97精品在线观看| 国产高清不卡午夜福利| 日韩av免费高清视频| 另类精品久久| 视频区欧美日本亚洲| 777米奇影视久久| 建设人人有责人人尽责人人享有的| 捣出白浆h1v1| 国产男人的电影天堂91| 亚洲精品在线美女| 99国产综合亚洲精品| 大片电影免费在线观看免费| 丝袜在线中文字幕| 亚洲国产精品一区二区三区在线| 国产成人免费无遮挡视频| 丁香六月天网| 日本午夜av视频| 91九色精品人成在线观看| 精品一区二区三卡| 亚洲人成电影免费在线| 水蜜桃什么品种好| 亚洲九九香蕉| 精品一区二区三区av网在线观看 | 777久久人妻少妇嫩草av网站| 欧美老熟妇乱子伦牲交| 亚洲精品乱久久久久久| 啦啦啦啦在线视频资源| 男女下面插进去视频免费观看| 丰满迷人的少妇在线观看| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 91精品伊人久久大香线蕉| 精品一区二区三卡| 国产麻豆69| 国产片特级美女逼逼视频| 一个人免费看片子| 在线观看免费日韩欧美大片| 欧美性长视频在线观看| 啦啦啦 在线观看视频| 可以免费在线观看a视频的电影网站| 日韩一区二区三区影片| 成在线人永久免费视频| 国产精品一区二区免费欧美 | 大陆偷拍与自拍| 18禁裸乳无遮挡动漫免费视频| 高清欧美精品videossex| 日本五十路高清| 午夜免费观看性视频| 天堂中文最新版在线下载| 亚洲熟女精品中文字幕| 精品一区二区三区av网在线观看 | 久久久国产精品麻豆| 欧美中文综合在线视频| av天堂在线播放| 久久免费观看电影| 午夜福利影视在线免费观看| 国产一区二区激情短视频 | 9热在线视频观看99| 十八禁网站网址无遮挡| 亚洲精品国产色婷婷电影| 国产在线一区二区三区精| 国产黄色免费在线视频| 五月天丁香电影| 黄色视频不卡| 国产精品一区二区在线不卡| 国产xxxxx性猛交| 后天国语完整版免费观看| 一本大道久久a久久精品| 深夜精品福利| 国产男女内射视频| videos熟女内射| 在线观看免费日韩欧美大片| 超碰成人久久| 午夜福利免费观看在线| 精品少妇久久久久久888优播| 欧美av亚洲av综合av国产av| 亚洲av成人精品一二三区| 一级黄色大片毛片| 精品免费久久久久久久清纯 | 日本a在线网址| 人人妻人人添人人爽欧美一区卜| 久久精品aⅴ一区二区三区四区| 18禁黄网站禁片午夜丰满| 丝袜脚勾引网站| 国产免费现黄频在线看| 天堂8中文在线网| 欧美97在线视频| 久久精品久久久久久噜噜老黄| 亚洲欧美精品综合一区二区三区| 欧美激情高清一区二区三区| 91老司机精品| 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 精品少妇一区二区三区视频日本电影| 永久免费av网站大全| 国产免费视频播放在线视频| 人妻一区二区av| 少妇的丰满在线观看| 少妇粗大呻吟视频| 又大又爽又粗| 亚洲国产精品成人久久小说| 国产亚洲精品久久久久5区| 丰满迷人的少妇在线观看| 久久国产精品男人的天堂亚洲| 操出白浆在线播放| 在线观看www视频免费| 大话2 男鬼变身卡| 一本大道久久a久久精品| 亚洲国产日韩一区二区| 精品第一国产精品| 国产不卡av网站在线观看| 大码成人一级视频| 久久久久久久国产电影| 亚洲美女黄色视频免费看| 在线 av 中文字幕| 狠狠婷婷综合久久久久久88av| 啦啦啦在线免费观看视频4| 午夜福利乱码中文字幕| 成人三级做爰电影| 无遮挡黄片免费观看| 一区在线观看完整版| 黄色视频在线播放观看不卡| 51午夜福利影视在线观看| 久久国产亚洲av麻豆专区| 国产精品久久久人人做人人爽| 99热网站在线观看| 在线亚洲精品国产二区图片欧美| 91国产中文字幕| 欧美日韩精品网址| 永久免费av网站大全| 午夜91福利影院| 捣出白浆h1v1| 亚洲av电影在线观看一区二区三区| 国产真人三级小视频在线观看| 视频区图区小说| 亚洲中文字幕日韩| 母亲3免费完整高清在线观看| 咕卡用的链子| 久久久国产精品麻豆| 亚洲欧美日韩高清在线视频 | 国产成人系列免费观看| 日韩大片免费观看网站| 亚洲少妇的诱惑av| 国产麻豆69| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| a 毛片基地| 国产av精品麻豆| 免费一级毛片在线播放高清视频 | 91精品国产国语对白视频| 男人舔女人的私密视频| 熟女av电影| 欧美精品人与动牲交sv欧美| 亚洲国产最新在线播放| 精品久久久久久久毛片微露脸 | 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 精品少妇久久久久久888优播| 国产又色又爽无遮挡免| 欧美国产精品一级二级三级| avwww免费| 日韩中文字幕视频在线看片| 亚洲成人免费av在线播放| 免费在线观看黄色视频的| 啦啦啦啦在线视频资源| 免费高清在线观看视频在线观看| 亚洲三区欧美一区| av网站免费在线观看视频| 国语对白做爰xxxⅹ性视频网站| 欧美激情极品国产一区二区三区| 国精品久久久久久国模美| 亚洲,欧美,日韩| 久久久精品94久久精品| 久久久欧美国产精品| 亚洲精品国产一区二区精华液| 少妇精品久久久久久久| 爱豆传媒免费全集在线观看| 午夜影院在线不卡| 大片电影免费在线观看免费| avwww免费| 亚洲国产欧美在线一区| 美女中出高潮动态图| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 亚洲综合色网址| 在线观看人妻少妇| 日韩大片免费观看网站| 在线观看一区二区三区激情| 成人国产av品久久久| 99国产精品99久久久久| 国产真人三级小视频在线观看| 国产亚洲精品第一综合不卡| 色94色欧美一区二区| 精品欧美一区二区三区在线| 狂野欧美激情性bbbbbb| 欧美黄色片欧美黄色片| 亚洲欧洲国产日韩| 老司机亚洲免费影院| 亚洲成人国产一区在线观看 | 国产欧美日韩精品亚洲av| 青青草视频在线视频观看| 亚洲,欧美精品.| 久久久久精品国产欧美久久久 | www.av在线官网国产| 精品一区二区三区av网在线观看 | 亚洲精品成人av观看孕妇| 99国产精品一区二区蜜桃av | 如日韩欧美国产精品一区二区三区| 日韩一区二区三区影片| 国产一区二区三区av在线| 欧美成人午夜精品| 一区二区三区精品91| 亚洲欧美日韩另类电影网站| 18在线观看网站| 99热全是精品| 超色免费av| 国产精品一二三区在线看| 大香蕉久久成人网| 韩国高清视频一区二区三区| 国产一区二区三区av在线| 超碰97精品在线观看| 香蕉国产在线看| 国产精品久久久久久精品古装| 成年人黄色毛片网站| 国产精品久久久久久精品古装| 日本av免费视频播放| 韩国高清视频一区二区三区| 一区在线观看完整版| 亚洲国产欧美日韩在线播放| 国产成人一区二区三区免费视频网站 | 亚洲精品中文字幕在线视频| 日韩伦理黄色片| 19禁男女啪啪无遮挡网站| 高清av免费在线| 男女无遮挡免费网站观看| 大片电影免费在线观看免费| 另类亚洲欧美激情| 制服人妻中文乱码| 欧美日本中文国产一区发布| 国精品久久久久久国模美| 美女高潮到喷水免费观看| 亚洲中文日韩欧美视频| 少妇裸体淫交视频免费看高清 | 在线观看www视频免费| 久久九九热精品免费| 亚洲精品在线美女| 日本一区二区免费在线视频| 女人高潮潮喷娇喘18禁视频| 亚洲成国产人片在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 欧美中文综合在线视频| 免费在线观看完整版高清| 黄色怎么调成土黄色| 九草在线视频观看| 99九九在线精品视频| 黑丝袜美女国产一区| 91九色精品人成在线观看| 肉色欧美久久久久久久蜜桃| 黄色视频在线播放观看不卡| 国产精品偷伦视频观看了| 超碰97精品在线观看| 亚洲人成电影免费在线| 精品亚洲成a人片在线观看| 国产精品亚洲av一区麻豆| 天天躁狠狠躁夜夜躁狠狠躁| 高清av免费在线| 亚洲人成网站在线观看播放| 久久久久久久精品精品| 成人免费观看视频高清| 欧美人与性动交α欧美软件| 老鸭窝网址在线观看| 一边摸一边做爽爽视频免费| 后天国语完整版免费观看| 亚洲专区中文字幕在线| 亚洲成国产人片在线观看| 久久精品熟女亚洲av麻豆精品| 黑人猛操日本美女一级片| 亚洲第一青青草原| 真人做人爱边吃奶动态| 国产伦人伦偷精品视频| 黄色视频在线播放观看不卡| 欧美成狂野欧美在线观看| 久久久久久久国产电影| 国产成人91sexporn| 国产成人系列免费观看| 亚洲精品国产色婷婷电影| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 成人亚洲欧美一区二区av| 在现免费观看毛片| 免费高清在线观看视频在线观看| 999久久久国产精品视频| 七月丁香在线播放| 国产精品香港三级国产av潘金莲 | 亚洲av电影在线进入| av电影中文网址| 纵有疾风起免费观看全集完整版| 韩国高清视频一区二区三区| 久久久精品国产亚洲av高清涩受| 美女午夜性视频免费| 国产精品 欧美亚洲| 欧美激情 高清一区二区三区| 老鸭窝网址在线观看| 欧美成人午夜精品| 精品国产乱码久久久久久小说| 91成人精品电影| 国产亚洲午夜精品一区二区久久| 亚洲成av片中文字幕在线观看| 午夜福利视频精品| 国产成人精品久久二区二区91| 欧美成人午夜精品| 国产成人一区二区三区免费视频网站 | 波野结衣二区三区在线| 亚洲精品日本国产第一区| 又大又爽又粗| www.自偷自拍.com| 欧美日韩亚洲国产一区二区在线观看 | 天天躁夜夜躁狠狠久久av| 久久久久久免费高清国产稀缺| 国产成人一区二区三区免费视频网站 | 中文字幕人妻丝袜制服| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲国产av影院在线观看| 国产xxxxx性猛交| 在线观看国产h片| 亚洲,欧美,日韩| 王馨瑶露胸无遮挡在线观看| 电影成人av| 亚洲国产欧美日韩在线播放| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 亚洲五月婷婷丁香| 97人妻天天添夜夜摸| 亚洲国产欧美一区二区综合| 国产高清videossex| 欧美日韩国产mv在线观看视频| 成人午夜精彩视频在线观看| 久久久国产一区二区| 亚洲国产精品国产精品| 午夜老司机福利片| 午夜精品国产一区二区电影| 国产精品久久久久久人妻精品电影 | 久久久久久久久免费视频了| 赤兔流量卡办理| 一级毛片 在线播放| 亚洲专区中文字幕在线| 亚洲国产欧美在线一区| 91精品三级在线观看| 亚洲av片天天在线观看| 男女边摸边吃奶| 亚洲专区中文字幕在线| 美女扒开内裤让男人捅视频| 看免费成人av毛片| 曰老女人黄片| 日本色播在线视频| 欧美精品人与动牲交sv欧美| 午夜视频精品福利| 国产亚洲欧美精品永久| 人妻一区二区av| 午夜福利影视在线免费观看| 嫁个100分男人电影在线观看 | 国产男女内射视频| 国产在线免费精品| 亚洲国产精品成人久久小说| av福利片在线| 在线观看免费视频网站a站| 国精品久久久久久国模美| 满18在线观看网站| 欧美日韩亚洲高清精品| 国产男女内射视频| 人妻一区二区av| 9191精品国产免费久久| 日韩大码丰满熟妇| 极品少妇高潮喷水抽搐| 国产高清videossex| 午夜福利在线免费观看网站| 日韩 亚洲 欧美在线| 人人妻人人澡人人看| 男女无遮挡免费网站观看| 日日夜夜操网爽| 国产女主播在线喷水免费视频网站| 丰满饥渴人妻一区二区三| 久久久久久亚洲精品国产蜜桃av| 亚洲av美国av| 99国产精品一区二区三区| 亚洲熟女精品中文字幕| 国产野战对白在线观看| 国产日韩一区二区三区精品不卡| 成人亚洲欧美一区二区av| 欧美日韩av久久| 国产极品粉嫩免费观看在线| 成人午夜精彩视频在线观看| 9191精品国产免费久久| 欧美日韩成人在线一区二区| tube8黄色片| 高潮久久久久久久久久久不卡| 久久人妻熟女aⅴ| 国产成人欧美| 国产男人的电影天堂91| 国产在线免费精品| 国产精品免费视频内射| av片东京热男人的天堂| 欧美黑人欧美精品刺激| 国产老妇伦熟女老妇高清| 在线观看免费午夜福利视频| 午夜影院在线不卡| 亚洲,一卡二卡三卡| 满18在线观看网站| 妹子高潮喷水视频| 中文字幕色久视频| 亚洲国产日韩一区二区| 精品福利观看| 免费不卡黄色视频| 中文字幕人妻丝袜一区二区| 色婷婷久久久亚洲欧美| 99香蕉大伊视频| 国产精品香港三级国产av潘金莲 | 亚洲av欧美aⅴ国产| 丝瓜视频免费看黄片| av一本久久久久| 欧美日韩亚洲综合一区二区三区_| 久久久精品区二区三区| 又粗又硬又长又爽又黄的视频| 国产一区二区激情短视频 | 久久亚洲国产成人精品v| 老司机深夜福利视频在线观看 | 亚洲国产欧美网| 日韩大码丰满熟妇| 在线观看一区二区三区激情| 高清不卡的av网站| 日韩人妻精品一区2区三区| 日本五十路高清| 国产人伦9x9x在线观看| 黄频高清免费视频| 18禁观看日本| 久久影院123| 在线看a的网站| 好男人电影高清在线观看| 久久久久精品国产欧美久久久 | 久久性视频一级片| 日韩视频在线欧美| 国产1区2区3区精品| 国产精品国产三级专区第一集| 天天影视国产精品| 亚洲中文日韩欧美视频| 国产黄频视频在线观看| 国产精品香港三级国产av潘金莲 | 1024视频免费在线观看| av在线老鸭窝| 91精品国产国语对白视频| 嫁个100分男人电影在线观看 | 久久久久久久精品精品| a级毛片在线看网站| 国产野战对白在线观看| 国产99久久九九免费精品| 日韩人妻精品一区2区三区| 亚洲成人免费av在线播放| 日日爽夜夜爽网站| 免费看十八禁软件| 在线观看一区二区三区激情| 精品高清国产在线一区| 欧美精品一区二区免费开放| 久久精品aⅴ一区二区三区四区| 国语对白做爰xxxⅹ性视频网站| 别揉我奶头~嗯~啊~动态视频 |