• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Applications of an AMSR-E RFI Detection and Correction Algorithm in 1-DVAR over Land

    2014-12-14 06:58:10WUYing吳瑩andWENGFuzhong翁富忠
    Journal of Meteorological Research 2014年4期

    WU Ying(吳瑩)and WENG Fuzhong(翁富忠)

    1 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science&Technology,Nanjing 210044,China

    2 School of Atmospheric Physics,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3 NOAA/NESDIS/Center for Satellite Application and Research,College Park,MD 20742,USA

    Applications of an AMSR-E RFI Detection and Correction Algorithm in 1-DVAR over Land

    WU Ying1,2?(吳瑩)and WENG Fuzhong3(翁富忠)

    1 Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,Nanjing University of Information Science&Technology,Nanjing 210044,China

    2 School of Atmospheric Physics,Nanjing University of Information Science&Technology,Nanjing 210044,China

    3 NOAA/NESDIS/Center for Satellite Application and Research,College Park,MD 20742,USA

    Land retrievals using passive microwave radiometers are sensitive to small fluctuations in land brightness temperatures.As such,the radio-frequency interference(RFI)signals emanating from man-made microwave radiation transmitters can result in large errors in land retrievals.RFI in C-and X-band channels can contaminate remotely sensed measurements,as experienced with the Advanced Microwave Scanning Radiometer (AMSR-E)and the WindSat sensor.In this work,applications of an RFI detection and correction algorithm in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the onedimensional variational retrieval(1-DVAR)method are described.The results indicate that the values of retrieved parameters,such as land skin temperature(LST),over these areas contaminated by RFI are much higher than those from the global data assimilation system(GDAS)products.The results also indicate that the differences between new retrievals and GDAS products are decreased evidently through taking into account the RFI correction algorithm.In addition,the convergence metric(χ2)of 1-DVAR is found to be a new method for identifying regions where land retrievals are affected by RFI.For example,in those regions with much stronger RFI,such as Europe and Japan,χ2of 1-DVAR is so large that convergence cannot be reached and retrieval results may not be reliable or cannot be obtained.Furthermore,χ2also decreases with the RFI-corrected algorithm for those regions with moderate or weak RFI.The results of RFI detected by χ2are almost consistent with those identified by the spectral difference method.

    microwave remote sensing,radio-frequency interference(RFI),AMSR-E,1-DVAR

    1.Introduction

    Early examinations of passive microwave brightness temperature measurements showed evidence of extensive Radio-Frequency Interference(RFI)signals at low microwave frequencies(Li et al.,2004;Njoku et al.,2005;Kidd,2006).A number of passive microwave sensors,such as the Advanced Microwave Scanning Radiometer(AMSR-E)aboard the Earth Observing System(EOS)Aqua platform and the WindSat Radiometer on the U.S.Department of Defense Coriolis satellite,have demonstrated increasing RFI impacts on satellite measurements in C-and X-band channels and on geophysical parameter retrievals(Li et al., 2004,2006;Njoku et al.,2005;Ellingson and Johnson,2006;Kidd,2006;Wu and Weng,2011).Zou et al. (2012)detected RFI signals over land from the FY-3B Microwave Radiation Imager(MWRI), which is similar to AMSR-E but without channels at 6.9 GHz.The successor to AMSR-E,AMSRE-2 aboard the Japanese Shizuku mission(originally GCOM-W1(Global Change Observation Mission 1st-Water))(Kachi et al.,2008)launched on 18 May 2012 (JAXA,2012),is similar to AMSR-E,but is enhanced

    for RFI detection with the addition of channels at 7.3 GHz.

    Supported by the National Natural Science Foundation of China(41305033,41275043,and 41175035),Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institution,and NOAA/NESDIS/Center for Satellite Applications and Research(STAR)CalVal Program.

    ?Corresponding author:wuying-nuist@163.com.

    ?The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

    Impacts of RFI on L-band satellite data have also been experienced by the Microwave Imaging Radiometer with Aperture Synthesis(MIRAS)aboard the ESA/SMOS(European Space Agency/Soil Moisture and Ocean Salinity)mission(Camps et al.,2010; Hallikainen et al.,2010;Skou et al.,2010;Anterrieu, 2011;Castro et al.,2012;Mecklenburg et al.,2012; Misra and Ruf,2012;Oliva et al.,2012)and NASA’s AQUARIUS(Le et al.,2007;Misra and Ruf,2008) mission,launched in June 2011.

    In order to properly identify and reject RFI contamination,both hardware and software RFI detection and mitigation schemes(Gasiewski et al.,2002;Njoku et al.,2005;Johnson et al.,2006;Li et al.,2006;Ruf et al.,2006;Piepmeier et al.,2008;Wu and Weng, 2011;Lacava et al.,2013)have already been investigated over land.Njoku et al.(2005)examined the spatial and temporal characteristics of the RFI in the 6.9-and 10.7-GHz AMSR-E channels over the global land domain for a 1-yr observation period using spectral indices.Li et al.(2006)developed PCA-based (principal component analysis)land RFI algorithms to detect C-(6.9 GHz)and X-band(10.7 GHz)land RFIs of WindSat measurements through extending the spectral difference technique by using PCA of RFI indices.This method integrated statistics of target emission/scattering characteristics(through RFI indices)and multivariate correlation of radiometer data into a single statistical framework of PCA.Lacava et al.(2013)proposed the multi-temporal robust satellite techniques that can be implemented on C-band AMSR-E data to identify areas systematically affected by different levels of RFI.

    In this paper,the RFI characteristics of C-and X-band data of AMSR-E,including the magnitude, extent,and location,are further investigated by using an RFI detection and correction algorithm proposed by Wu and Weng(2011).Emphasis is given to the applications of the algorithm in geophysical parameter retrievals over land using the one-dimensional variational retrieval(1-DVAR)approach.The retrieval convergence metric(or goodness of fit)between brightness temperature(TB)model simulations and satellite measurements is utilized to identify possible RFI-contaminated regions.Section 2 provides a description of AMSR-E missions and the RFI detection and correction algorithm.Section 3 describes the 1-DVAR approach,as well as the metric for identifying convergence.Numerical results are presented in Section 4. Section 5 provides a summary and some conclusions.

    2.AMSR-E description

    2.1 Mission overview

    AMSR-E,launched on 4 May 2002,is a 12-channel,dual-polarization conically scanning passive microwave radiometer with 6 frequencies ranging from 6.9 to 89.0 GHz,which detects faint microwave emissions from the earth’s surface and atmosphere.

    Various geophysical parameters can be retrieved from AMSR-E measurements,including water vapor, cloud liquid water,precipitation,sea surface temperature,sea surface wind speed,sea ice concentration, snow water equivalent,and soil moisture.Its global and continuous long-term geophysical record with fine spatial resolution plays an important role in climate change monitoring and provides valuable information for understanding the earth’s climate system,including water and energy circulation.Near real-time products will be used to investigate satellite data assimilation into weather forecasting models and to contribute to improvement of forecasting accuracy.

    2.2 AMSR-E RFI detection and correction algorithm

    It is well known that AMSR-E measurements at 6.9 and 10.7 GHz over land are seriously contaminated by variable surface radio frequency transmitters.In order to properly identify and reject increasing RFI contamination,Wu and Weng(2011)proposed an RFI identification and correction algorithm for AMSR-E channels.The algorithm is based on mean emissivity spectral characteristics over various land types that are simulated by using a microwave land emissivity model(Weng et al.,2001).An RFI index can be used to detect RFI over land.The larger the RFI index is,

    the stronger the RFI contamination is.In this algorithm,the AMSR-E measurements over land with an RFI index greater than 5 K are defined as RFI-contaminated.

    In the RFI correction,two empirically-based equations are derived based on AMSR-E training data under non-RFI contaminations,exploiting the fact that measurements at 18.7 GHz are rarely contaminated,i.e.,a relationship is established between AMSR-E measurements at 10.7 GHz and those at 18.7 or 6.9 GHz.If an RFI is detected at 10.7 GHz instead of 6.9 GHz,the RFI-contaminated AMSR-E measurements at 10.7 GHz are predicted from measurements at 18.7 or 6.9 GHz by using this relationship between two neighborhood frequencies.Also,if an RFI is detected at 6.9 GHz instead of 10.7 GHz, the RFI-contaminated measurements at 6.9 GHz can be predicted from measurements at 10.7 GHz.Again, when RFI contaminations are detected at both 6.9 and 10.7 GHz,RFI-contaminated measurements at these two frequencies can still be predicted from measurements at 18.7 GHz.

    Moreover,it is found that AMSR-E measurements have better agreement with simulations in a variety of surface conditions after the RFI-correction algorithm(Wu and Weng,2011).As a result,one could expect to use more RFI-contaminated AMSRE measurements for satellite data retrieval with RFI mitigation.

    3.1-DVAR approach

    The 1-DVAR algorithm used in this paper is a component of the MIRS(Microwave Integrated Retrieval System)(Boukabara et al.,2011),which uses the Community Radiative Transfer Model(CRTM) (Han et al.,2006;Ding et al.,2011)as the forward and adjoint operators.The 1-DVAR inversion scheme solves the surface and atmospheric parameters simultaneously,e.g.,surface emissivities,temperature,profiles of atmospheric temperature,moisture and rainfall.Besides these primary parameters,other products are derived either by performing simple vertical integration,such as the total precipitable water(TPW),or by performing a more elaborate post-processing,such as the surface rainfall rate(RR)based on the hydrometeor parameters(Boukabara et al.,2011).

    The variational approach employed in the inversion scheme seeks to minimize the following cost function,J(X)(Eyre et al.,1993;Boukabara et al.,2011), which measures the fit of the model to the radiances. Assuming Gaussian errors,this cost function can be written as

    where Xbis the background state vector;B,which is associated with the back ground state variable Xb,is the error covariance matrix of X;E is the error covariance matrix of observations and/or forward models;Ymis the measurement.Specifically,assuming that we have a forward operator Y that can simulate radiances similar to the measurements without bias,the errors in the satellite observations and priori information are unbiased,uncorrelated,and have Gaussian distributions,and the best estimate of the atmospheric state X minimizes the cost function.The minimization of this cost function is also the basis for variational analysis retrieval(Boukabara et al.,2011). Minimization of the cost function is obtained by using an iterative process that computes the descent direction at state X by solving

    The Jacobian matrix K corresponds to the partial derivatives of the radiative transfer with respect to X.

    The forward operator is based on the CRTM developed by the Joint Center for Satellite Data Assimilation(JCSDA)in this study.The CRTM produces the simulated radiances as well as the Jacobian matrix K.The parameter χ2is calculated as

    where χ2is used as a metric for deciding if convergence has been reached;χ2is also a measure of the goodness of fit of the forward model.Only those channels selected and effectively utilized in the 1-DVAR are used to compute this metric.

    4.Results and discussion

    4.1 RFI identification and correction

    By identifying contaminated AMSR-E TB,affected channels can be ignored to produce retrievals unaffected by RFI.However,the utilization of fewer channels in the retrieval process may increase noise and decrease accuracy since various retrieved parameters are related to the effect of the frequency dependence.As a result,the spectral difference method(Wu and Weng,2011)is used to detect RFI signals over land in this study.In the RFI correction,a relationship between AMSR-E measurements at 10.65 GHz and those at 18.7 or 6.925 GHz is used to predict RFI-contaminated TBs over land(Wu and Weng,2011).

    The convergence metric(χ2)used in the 1-DVAR approach could also be an excellent filter for detecting microwave data contaminated by RFI over land. Adams et al. (2010)described the geophysical retrieval chi-square probability method to identify regions of the ocean where ocean retrievals are affected by geostationary communication satellites.The magnitude of the χ2statistic depends on the number of measurements used in the retrieval and the number of retrieved parameters;χ2will be low when the forward model provides an excellent match with the AMSR-E TBs.Significant RFI in the AMSR-E TB will result in high χ2because the spectral characteristics of RFI differ from the spectral characteristics of natural sources (Li et al.,2006).

    Comparisons of the convergence metric distributions using the 1-DVAR approach between two versions(before and after RFI correction)are shown in Fig.1.We use χ2as a relative measure to show how closely the forward model matches the measured TB. Various reasons,such as inaccurate modeling of the effects of geophysical variations,ice cover,and precipitation,could result in a poor goodness of fit between modeled and measured TB,which is presented by high χ2values.In these cases,the high χ2values are spatially correlated with the geophysical parameters to which AMSR-E is sensitive and will likely cause TB differences at multiple frequencies.Meanwhile,random measurement noise will be random both spatially and temporally,although it is usually frequency independent.However,man-made radiation from active microwave transmitters(or RFI to a radiometer)is distinctly different from natural radiation in terms of intensity,spatial variability,spectral characteristics,and channel correlations.RFI signals typically arise from a wide variety of coherent point target sources,i.e., radiating devices and antennas,which are often directional,isolated,narrowbanded,and coherent.These characteristics of RFI may help to provide the criteria of biases determined by RFI when χ2values are high.

    Figures 1b,1e,and 1h show that convergence reaches almost everywhere,except for those regions where strong RFI exists(red dots in the ovals in Figs. 1a,1d,and 1g).This corresponds to those dots(in red)with high values of χ2from 1-DVAR in the ovals in Figs.1b,1e,and 1h.Moreover,it is evident that there is a high consistency between the values of RFI index and χ2.The stronger the RFI contamination, the larger the χ2.When RFI is larger than 10 K, the correlation coefficient between RFI at 6.9 GHz for horizontal/vertical polarization and χ2in the US is 0.912/0.479;the correlation coefficient between RFI at 10.7 GHz for horizontal/vertical polarization and χ2in Europe is 0.917/0.475;and the correlation coefficient between RFI at 10.7 GHz for horizontal/vertical polarization and χ2in Japan is 0.921/0.396.However, convergence reaches over larger regions after the RFI-correction algorithm(Wu and Weng,2011)is applied (oval areas in Figs.1c,1f,and 1i).

    4.2 Validations of RFI identification and correction

    Land and atmospheric parameters from MIRS products and for various sensors(NOAA-18,NOAA-19,Metop-A,and DMSPF16 SSMI/S)are validated by using NWP(numerical weather prediction)analyses,such as those from the ECMWF and NCEP GDAS (Global Data Assimilation System)(Boukabara et al., 2011).The inconsistency in the results suggests that there is intra-variability between the different references used.

    Fig.1.Comparison of the convergence metric distributions between the two versions of 1-DVAR with and without RFI correction based on the AMSR-E data on 3 October 2008 for ascending orbits.Left panels(a,d,g)represent the RFI distribution in the US at 6.9 GHz,Europe at 10.7 GHz,and Japan at 10.7 GHz,respectively;middle panels(b,e, h)represent the convergence metric distributions without RFI detection and correction in the US,Europe,and Japan, respectively;and right panels(c,f,i)represent the convergence metric distributions with RFI detection and correction in the US,Europe,and Japan,respectively.

    The NCEP GDAS outputs are taken as a reference in this study.Compared to collocated GDAS analysis,examples of MIRS outputs are presented in Figs.2,3,and 4.Note that in these figures,GDAS grid data are interpolated in time and space to the exact location and time of the AMSR-E measurement (Yang and Weng,2011)before the comparison is performed.

    GDAS is the system used by the Global Forecast System(GFS)model to place observations into a gridded model space for the purpose of starting or initializing weather forecasts with observed data(Zheng et al.,2009;Yan and Weng,2011;Yang and Weng,2011). GDAS adds the following types of observations to a gridded 3-D model space:surface observations,balloon data,wind profiler data,aircraft reports,buoy observations,radar observations,and satellite observations.Currently,GDAS produces global analyses of temperature,water vapor profiles,and land parameters,such as land skin temperature(LST),soil moisture,snow depth,etc.,four times a day(0000,0600, 1200,and 1800 UTC)with a spatial resolution of approximately 0.3°after assimilating the conventional and satellite data.

    An example of the LST difference between products from GDAS and MIRS over snow-free and snowcovered land surfaces on 3 October 2008 is presented in Fig.2.The middle panels in Fig.2 show the LST difference(LSTMIRS-LSTGDAS)between outputs from MIRS before RFI correction and GDAS,while the right panels in Fig.2 represent the LST difference between outputs from MIRS after RFI correction and GDAS.The GDAS LST products are given in the left panels.In addition,note that the accuracy of the skin temperature estimate from GDAS over the highlatitude regions is poor due to surface snow and ice cover.

    Overall,major features of the surface temperature from MIRS are consistent with GDAS products. The differences are found to be more pronounced in the RFI-contaminated regions.For example,based on Fig. 2,the retrieved LST over these areas contaminated by RFI is much higher than GDAS LST products,which are represented by ovals in the middle panels.Meanwhile,the differences of LST between the retrieval and GDAS are evidently decreased through taking the RFI correction algorithm into account(shown in the ovals in the right panels).For the LST comparisons,similar to water vapor or TPW presented later,new retrievals are obtained by using RFI-corrected AMSR-E brightness temperatures as renewed inputs to the retrieval system.Furthermore,in regions with much stronger RFI,such as England,Italy,and Japan,the convergence metric(χ2)of 1-DVAR is too large and the convergence cannot be reached.Therefore,retrieval results cannot be obtained since the retrievals are unre-

    liable.The LST statistics of studied areas before RFI correction show a mean bias of 2.42 K and a standard deviation of 6.29 K,while the statistics after RFI correction show a mean bias of 1.73 K and a standard deviation of 5.59 K.Additionally,note that the penetration of microwaves is as much as a few centimeters inside the soil,and this penetration depth is dependent on the frequency and on the type of soil,which creates both systematic biases and scattered differences.

    Fig.3.Comparison of water vapor at 850 hPa derived from GDAS products and MIRS using AMSR-E data on 3 October 2008 for ascending orbits.Left panels(a,d,g)represent the water vapor at 850 hPa derived from GDAS products in the US,Europe,and Japan,respectively;middle panels(b,e,h)represent the water vapor difference at 850 hPa between products derived from MIRS without RFI correction and GDAS in the US,Europe,and Japan,respectively; and right panels(c,f,i)represent the water vapor difference at 850 hPa between products derived from MIRS with RFI correction and GDAS in the US,Europe,and Japan,respectively.

    Another way to validate the AMSR-E RFI detection and correction algorithm is to compare the atmospheric moisture at 850 hPa derived from the MIRS algorithm and that provided by the GDAS analysis. Figure 3 shows the differences in the humidity field at 850 hPa as retrieved by MIRS using AMSR-E data on 3 October 2008,and as provided by the GDAS analysis.From these figures,we can see that the majority of moisture plumes and other large-scale features of GDAS are well captured by the MIRS retrievals. However,for those regions with weak or moderate RFI intensity,such as the US(Fig.1a),the values of MIRS retrievals(Fig.3b)are much higher than those from GDAS(Fig.3a).Meanwhile,in those regions

    with the existence of extremely strong RFI,such as England,Italy,and Japan,the convergence metric (χ2)from 1-DVAR is so large that the retrievals are rejected in MIRS(Figs.3e and 3h),which are similar to the case of retrieved LST(Figs.2e and 2h).However, those retrievals with abnormally high values due to RFI in Figs.3b,3e,and 3h are mitigated in Figs.3c, 3f,and 3i by applying the RFI correction algorithm. The rejected retrievals due to strong RFI are also reobtained.The statistics of atmospheric moisture at 850 hPa for the studied areas before RFI correction show a mean bias of 0.36 g kg-1and a standard deviation of 2.56 g kg-1,while the statistics after RFI correction show a mean bias of 0.12 g kg-1and a standard deviation of 2.15 g kg-1.

    According to the studies of Boukabara et al. (2011),it is noticed that the standard deviation over land using NOAA-18 data is consistent between the comparisons made with ECMWF data and those made with GDAS data,ranging between 54%at 300 hPa and 30%at the surface for the land case.However,the bias is not consistent between the ECMWF and GDAS as references.It is also different from the assessment results obtained when comparing to radiosondes.The uncertainty computed by using the radiosondes as a reference is similar at the surface with that obtained using ECMWF or GDAS(Boukabara et al.,2011).

    Fig.4.Comparison of TPW derived from GDAS products and MIRS using AMSR-E data on 3 October 2008 for ascending orbits.Left panels(a,d,g)represent the TPW provided by the GDAS analysis in the US,Europe,and Japan, respectively;middle panels(b,e,h)represent the TPW difference between products derived from MIRS without RFI correction and GDAS in the US,Europe,and Japan,respectively;and right panels(c,f,i)represent the TPW difference between products derived from MIRS with RFI correction and GDAS in the US,Europe,and Japan,respectively.

    The global TPW has proved to be a useful prod-

    uct for many applications,including short-term precipitation forecasting and studies of the hydrological cycle.The retrieved moisture profile is vertically integrated to generate the TPW from MIRS,which by definition ensures that there is consistency between the profile and the TPW.The TPW from MIRS was found to be valid over all surface types,except when there is precipitation since it is radiometrically difficult to distinguish the water vapor signature from the liquid water signature.

    Figure 4 presents a set of TPW maps corresponding to the MIRS retrieval and the GDAS-based products.It is shown that MIRS compares favorably to GDAS in terms of the distribution of the features as well as the statistical performance.The TPW statistics of the studied areas before RFI correction show a mean bias of-2.75 mm and a standard deviation of 9.88 mm,while the statistics after RFI correction show a mean bias of-3.37 mm and a standard deviation of 8.56 mm.

    The two estimates(GDAS and MIRS)of TPW differ in snow and ice covered areas,which could be attributed to the poor accuracy of the skin temperature estimate from GDAS over these types of surfaces (Boukabara et al.,2011).Boukabara and Weng(2008) assessed the TPW global coverage from MIRS using a number of different reference datasets,and the assessments were stratified by surface background types as well as by sensors.

    5.Summary and conclusions

    An RFI detection and correction algorithm is applied in retrieving a comprehensive suite of geophysical parameters from AMSR-E measurements using the MIRS 1-DVAR method.The suite of parameters includes a set of derived and post-processed products also derived from MIRS.In the retrieval process,the RFI correction algorithm based on the natural channel correlations between AMSR-E measurements at neighborhood frequencies is used to predict and correct RFI-contaminated brightness temperatures.The results show that the difference caused by RFI between new retrievals and GDAS products,which are taken as reference,is evidently decreased.In particular,for those regions with much stronger RFI,the convergence metric(χ2)of 1-DVAR is significantly decreased after RFI correction such that the convergence can be reached and the retrieval results can be obtained.Furthermore,χ2from 1-DVAR could be utilized not only as a metric of goodness of fit between modeled and measured brightness temperature,but also as a detector to identify geographical regions of possible RFI.The χ2will be high when the forward model provides a poor match with the AMSR-E TB. The AMSR-E TB measurements are significantly contaminated by RFI since the spectral characteristics of RFI differ from the spectral characteristics of natural sources.The results of RFI detected by χ2are almost consistent with those identified by the spectral difference method.

    Adams,I.S,M.H.Bettenhausen,P.W.Gaiser,et al.,2010: Identiflcation of ocean-reflected radiofrequency interference using WindSat retrieval chisquare probability.IEEE Geosci. Remote Sens. Lett.,7,406-410.

    Anterrieu,E.,2011:On the detection and quantification of RFI in L1a signals provided by SMOS.IEEE Trans.Geosci.Remote Sens.,49,3986-3992.

    Boukabara,S.A.,and F.Weng,2008:Microwave emissivity over ocean in all-weather conditions:Validation using WindSat and airborne GPS-dropsondes. IEEE Trans.Geosci.Remote Sens.,46,376-384.

    —-,K.Garrett,W.Chen,et al.,2011:MiRS:An allweather 1DVAR satellite data assimilation and retrieval system.IEEE Trans.Geosci.Remote Sens., 49,3249-3272.

    Camps,A.A.,J.Gourrion,J.M.Tarongi,et al.,2010: RIF Ranalysis in SMOS imagery.2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu,HI,IEEE,2007-2010, doi:10.1109/IGARSS.2010.5654268.

    Castro,R.,A.Guti′errez,and J.Barbosa,2012:A first set of techniques to detect radio frequency interferences and mitigate their impact on SMOS data. IEEE Trans.Geosci.Remote Sens.,50,1440-1447.

    Ding,S.,P.Yang,F.Weng,et al.,2011:Validation of the community radiative transfer model.J.Quant. Spectrosc.&Radiative Transfer.,112,1050-1064.

    Ellingson,S.W.,and J.T.Johnson,2006:A polarimetric survey of radio-frequency interference in C-and X-bands in the continental United States using WindSat radiometry.IEEE Trans.Geosci.Remote Sens.,44,540-548.

    Eyre,J.R.,G.A.Kelly,A.P.NcNally,et al.,1993: Assimilation of TOVS radiance information through one-dimensional variational analysis.Quart.J.Roy. Meteor.Soc.,119,1427-1463.

    Gasiewski,A.J.,M.Klein,A.Yevgrafov,et al.,2002: Interference mitigation in passive microwave radiometry.IEEE International Geoscience and Remote Sensing Symposium.Toronto,Canada,IEEE, 1682-1684.

    Hallikainen,M.,J.Kainulainen,J.Seppanen,et al.,2010: Studies of radio frequency interference at L-band using an airborne 2-D interferometric radiometer.2010 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).Honolulu,HI,IEEE,2490-2491,doi:10.1109/IGARSS.2010.5651866.

    Han,Y.,van P.Delst,Q.Liu,et al.,2006:Community Radiative Transfer Model(CRTM):Version 1,NOAA Technical Report NESDIS 122.NOAA, Washington,DC,33 pp.

    Japan Aerospace Exploration Agency(JAXA)Press, 2012: Launch Resultofthe GlobalChanging Observation Mission 1st-Water“SHIZUKU”(GCOM-W1)and the Korean Multi-Purpose Satellite 3(KOMPSAT-3)by H-IIA Launch Vehicle No. 21. Available online at:http://www.jaxa. jp/press/2012/05/20120518-h2af21-e.html,2012.

    Johnson,J.T.,A.J.Gasiewski,B.Guner,et al.,2006: Airborne radio-frequency interference studies at C-band using a digital receiver.IEEE Trans.Geosci. Remote.Sens.,44,1974-1985.

    Kachi,M.,K.Imaoka,H.Fujii,et al.,2008:Status of GCOM-W1/AMSR2 development and science activities Sensors,Systems,and Next-Generation Satellites XII.Proceedings of the SPIE,7106,71060P-71060P-8,Meynart,R.,S.P.Neeck,H.Shimoda,et al.,doi:10.1117/12.801228.

    Kidd,C.,2006:Radio frequency interference at passive microwaves observation frequencies.Int.J.Remote Sens.,27,3853-3865.

    Lacava,T.,I.Coviello,M.Faruolo,et al.,2013: A multitemporalinvestigation ofAMSR-E C-band radio-frequency interference. IEEE Trans. Geosci. Remote Sens., 51, 2007-2015, doi: 10.1109/TGRS.2012.2228487.

    Le Vine,D.M.,G.S.E.Lagerloef,F.R.Colomb,et al.,2007:Aquarius:An instrument to monitor sea surface salinity from space.IEEE Trans.Geosci. Remote Sens.,45,2040-2050.

    Li,L.,E.G.Njoku,E.Im,et al.,2004:A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data.IEEE Trans.Geosci.Remote Sens.,42,380-390.

    —-,P.W.Gaiser,M.H.Bettenhausen,et al.,2006: WindSat radio-frequency interference signature and its identification over land and ocean.IEEE Trans. Geosci.Remote Sens.,44,530-539.

    Mecklenburg,S.,M.Drusch,Y.H.Kerr,et al.,2012: ESA’s soil moisture and ocean salinity mission: Mission performance and operations.IEEE Trans. Geosci.Remote Sens.,50,1354-1366.

    Misra,S.,and C.S.Ruf,2008:Detection of radiofrequency interference with the aquarius radiometer. IEEE Trans.Geosci.Remote Sens.,46,3123-3128.—-,and—-,2012:Analysis of radio frequency interference detection algorithms in the angular domain for SMOS.IEEE Trans.Geosci.Remote Sens.,50, 1448-1457.

    Njoku,E.G.,P.Ashcroft,T.K.Chan,et al.,2005: Global survey and statistics of radio-frequency interference in AMSR-E land observations. IEEE Trans.Geosci.Remote Sens.,43,938-947.

    Oliva,R.,E.Daganzo-Eusebio,Y.H.Kerr,et al.,2012: SMOS radio frequency interference scenario:Status and actions taken to improve the RFI environment in the 1400-1427-MHz passive band.IEEE Trans. Geosci.Remote Sens.,50,1427-1439.

    Piepmeier,J.R.,P.N.Mohammed,and J.J.Knuble, 2008:A double detector for RFI mitigation in microwave radiometers.IEEE Trans.Geosci.Remote Sens.,46,458-465.

    Ruf,C.,S.M.Gross,and S.Misra,2006:RFI detection and mitigation for microwave radiometry with an agile digital detector.IEEE Trans.Geosci.Remote Sens.,44,694-706.

    Skou,N.,S.Misra,J.E.Balling,et al.,2010:L-band RFI as experienced during airborne campaigns in preparation for SMOS.IEEE Trans.Geosci.Remote Sens.,48,1398-1407.

    Weng,F.,B.Yan,and N.C.Grody,2001:A microwave land emissivity model. J.Geophys. Res.,106, 20115-20123.

    Wu Ying and Weng Fuzhong,2011:Detection and correction of AMSR-E radio-frequency interference.Acta Meteor.Sinica,25,669-681.

    Yan,B.,and F.Weng,2011:Effects of microwave desert surface emissivity on AMSU-A data assimilation. IEEE Trans Geosci.Remote Sens.,49,1263-1276.

    Yang,H.,and F.Weng,2011:Error sources in remote sensing of microwave land surface emissivity.IEEE Trans.Geosci.Remote Sens.,49,3437-3442.

    Zheng,W.,J.Meng,H.Wei,et al.,2009:Improvement of satellite data utilization in NCEP operational NWP modeling and data assimilation systems.Proc.2nd Workshop Remote Sens.Model.Surf.Properties, Toulouse,France,June 9-11,14 pp.

    Zou,X.,J.Zhao,F.Weng,et al.,2012:Detection of radio-frequency interference signal over land from FY-3B Microwave Radiation Imager(MWRI).IEEE Trans.Geosci.Remote Sens.,40,4994-5003.

    :Wu Ying and Weng Fuzhong,2014:Applications of an AMSR-E RFI detection and correction algorithm in 1-DVAR over land.J.Meteor.Res.,28(4),645-655,

    10.1007/s13351-014-3075-x.

    (Received November 12,2013;in final form May 5,2014)

    99久久久亚洲精品蜜臀av| 亚洲精品美女久久久久99蜜臀| 嫩草影院精品99| 好男人在线观看高清免费视频| 精品久久蜜臀av无| 一级毛片高清免费大全| 精品国产亚洲在线| 99久久精品热视频| 久久久久久久精品吃奶| 欧美3d第一页| 亚洲欧美日韩高清在线视频| 99视频精品全部免费 在线 | 中出人妻视频一区二区| 亚洲国产日韩欧美精品在线观看 | 麻豆国产97在线/欧美| 最近最新中文字幕大全免费视频| 久久精品国产清高在天天线| 亚洲av日韩精品久久久久久密| 亚洲狠狠婷婷综合久久图片| 亚洲人与动物交配视频| 99热精品在线国产| 国内精品美女久久久久久| 欧美午夜高清在线| 最近最新免费中文字幕在线| 婷婷丁香在线五月| 两性午夜刺激爽爽歪歪视频在线观看| 欧美又色又爽又黄视频| 午夜福利免费观看在线| 一进一出抽搐动态| 亚洲 欧美一区二区三区| 久久精品91蜜桃| 久久久成人免费电影| 变态另类丝袜制服| 1024香蕉在线观看| 在线播放国产精品三级| 免费看日本二区| 美女扒开内裤让男人捅视频| 色综合欧美亚洲国产小说| 成人18禁在线播放| 一级毛片精品| 国产精品亚洲美女久久久| av黄色大香蕉| 后天国语完整版免费观看| 伊人久久大香线蕉亚洲五| 午夜精品一区二区三区免费看| 后天国语完整版免费观看| 久久亚洲精品不卡| 一本久久中文字幕| 国产激情偷乱视频一区二区| 久久久久九九精品影院| 97超视频在线观看视频| 亚洲真实伦在线观看| 国产亚洲精品久久久久久毛片| 国产人伦9x9x在线观看| 最近在线观看免费完整版| 免费看美女性在线毛片视频| 哪里可以看免费的av片| 淫秽高清视频在线观看| 五月玫瑰六月丁香| 亚洲九九香蕉| 一进一出抽搐动态| 99热精品在线国产| 久久精品91蜜桃| 久久99热这里只有精品18| 国产精品自产拍在线观看55亚洲| 久99久视频精品免费| 天堂影院成人在线观看| h日本视频在线播放| 精华霜和精华液先用哪个| 黄色视频,在线免费观看| 18禁黄网站禁片午夜丰满| 国产探花在线观看一区二区| 午夜福利在线观看免费完整高清在 | 久久精品91蜜桃| 宅男免费午夜| 18禁裸乳无遮挡免费网站照片| 精品久久蜜臀av无| 亚洲最大成人中文| 男人舔女人下体高潮全视频| а√天堂www在线а√下载| 亚洲人与动物交配视频| 免费一级毛片在线播放高清视频| 欧美日韩黄片免| 久久精品国产清高在天天线| 99riav亚洲国产免费| 久久伊人香网站| 又黄又爽又免费观看的视频| 国产精品av视频在线免费观看| 亚洲精品中文字幕一二三四区| 国产成人欧美在线观看| 欧美绝顶高潮抽搐喷水| 亚洲国产看品久久| 夜夜爽天天搞| 99久久成人亚洲精品观看| 国产精品一区二区三区四区免费观看 | 桃色一区二区三区在线观看| 日韩欧美三级三区| 一区福利在线观看| 亚洲欧美日韩无卡精品| 成年女人看的毛片在线观看| 亚洲一区二区三区色噜噜| 免费在线观看视频国产中文字幕亚洲| 国产精品亚洲av一区麻豆| tocl精华| 亚洲,欧美精品.| 白带黄色成豆腐渣| 午夜日韩欧美国产| 高潮久久久久久久久久久不卡| 欧美黄色淫秽网站| 香蕉国产在线看| 午夜福利在线观看吧| 中文字幕熟女人妻在线| 国产精品精品国产色婷婷| 中文字幕人妻丝袜一区二区| 日韩欧美一区二区三区在线观看| 男女午夜视频在线观看| 国产高清激情床上av| www日本黄色视频网| 99久久精品热视频| 18禁裸乳无遮挡免费网站照片| 九色国产91popny在线| 亚洲精品在线美女| 天堂√8在线中文| 1024手机看黄色片| 国产伦精品一区二区三区四那| 精品电影一区二区在线| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 91九色精品人成在线观看| 亚洲美女黄片视频| 色播亚洲综合网| 校园春色视频在线观看| 在线观看66精品国产| 1024香蕉在线观看| 国产欧美日韩一区二区精品| 人人妻人人看人人澡| 午夜免费成人在线视频| 日本a在线网址| 亚洲av电影不卡..在线观看| 小说图片视频综合网站| 波多野结衣高清作品| 国产真实乱freesex| 看免费av毛片| 亚洲美女黄片视频| 亚洲精华国产精华精| 男女那种视频在线观看| 神马国产精品三级电影在线观看| 美女cb高潮喷水在线观看 | 日韩欧美三级三区| 亚洲成人久久爱视频| 真人做人爱边吃奶动态| av中文乱码字幕在线| 亚洲av第一区精品v没综合| 国内精品久久久久久久电影| www日本在线高清视频| 亚洲美女视频黄频| 香蕉国产在线看| 看黄色毛片网站| 亚洲美女黄片视频| 免费看十八禁软件| 制服人妻中文乱码| 日韩免费av在线播放| 国产一区二区三区在线臀色熟女| 成人三级做爰电影| 全区人妻精品视频| 国产亚洲欧美在线一区二区| 国产单亲对白刺激| 中文字幕av在线有码专区| 成人性生交大片免费视频hd| 动漫黄色视频在线观看| 久久精品亚洲精品国产色婷小说| 欧美3d第一页| 日本 欧美在线| 亚洲黑人精品在线| 午夜福利免费观看在线| 在线观看美女被高潮喷水网站 | 黄频高清免费视频| 老鸭窝网址在线观看| 俺也久久电影网| 亚洲成人久久爱视频| 国产单亲对白刺激| 精品99又大又爽又粗少妇毛片 | 亚洲在线自拍视频| www.自偷自拍.com| 欧美zozozo另类| 日韩欧美国产在线观看| 国产精品久久久久久亚洲av鲁大| 日韩av在线大香蕉| 窝窝影院91人妻| 亚洲最大成人中文| 国产激情欧美一区二区| 久久久国产精品麻豆| 91在线观看av| 免费在线观看视频国产中文字幕亚洲| 亚洲av成人一区二区三| 欧美乱色亚洲激情| 久久久久久久久中文| 白带黄色成豆腐渣| 在线观看舔阴道视频| 国产爱豆传媒在线观看| 岛国视频午夜一区免费看| 日韩av在线大香蕉| 国产成人啪精品午夜网站| 超碰成人久久| 亚洲熟妇中文字幕五十中出| 国产v大片淫在线免费观看| 亚洲中文字幕日韩| 免费大片18禁| 99热这里只有是精品50| 嫩草影视91久久| 天天躁日日操中文字幕| 黑人操中国人逼视频| 男女做爰动态图高潮gif福利片| 亚洲国产色片| 少妇熟女aⅴ在线视频| www.999成人在线观看| 亚洲精品456在线播放app | 国产高清有码在线观看视频| 麻豆一二三区av精品| 国内揄拍国产精品人妻在线| aaaaa片日本免费| 中文亚洲av片在线观看爽| or卡值多少钱| 亚洲人成网站高清观看| 一级a爱片免费观看的视频| 黄片大片在线免费观看| 久久精品亚洲精品国产色婷小说| 哪里可以看免费的av片| 丰满人妻熟妇乱又伦精品不卡| 日韩人妻高清精品专区| 18美女黄网站色大片免费观看| 看黄色毛片网站| 国产欧美日韩一区二区三| 亚洲成a人片在线一区二区| 精品国产亚洲在线| 欧美成人性av电影在线观看| 精品国产乱子伦一区二区三区| 18禁黄网站禁片免费观看直播| 国产真实乱freesex| 国产精品99久久99久久久不卡| 国产精品爽爽va在线观看网站| www.熟女人妻精品国产| 亚洲专区中文字幕在线| a在线观看视频网站| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 91麻豆av在线| 国产三级中文精品| 99riav亚洲国产免费| 欧美绝顶高潮抽搐喷水| 国产高清视频在线观看网站| 最近在线观看免费完整版| 国产激情久久老熟女| 欧美绝顶高潮抽搐喷水| 18禁黄网站禁片免费观看直播| 国产精品九九99| 一个人看的www免费观看视频| 99视频精品全部免费 在线 | 欧美激情在线99| www.精华液| 在线观看舔阴道视频| 婷婷六月久久综合丁香| 久久九九热精品免费| 亚洲中文日韩欧美视频| 丁香欧美五月| 嫁个100分男人电影在线观看| 一卡2卡三卡四卡精品乱码亚洲| 99视频精品全部免费 在线 | 特级一级黄色大片| 久久久久亚洲av毛片大全| 国产午夜精品久久久久久| 熟女人妻精品中文字幕| 看免费av毛片| 身体一侧抽搐| 变态另类丝袜制服| av女优亚洲男人天堂 | 男女做爰动态图高潮gif福利片| 18禁裸乳无遮挡免费网站照片| svipshipincom国产片| 又紧又爽又黄一区二区| 亚洲av美国av| 午夜精品久久久久久毛片777| 亚洲在线自拍视频| 欧美三级亚洲精品| 国产一区二区在线av高清观看| 日本撒尿小便嘘嘘汇集6| 欧美激情久久久久久爽电影| 91麻豆精品激情在线观看国产| 国产美女午夜福利| 亚洲中文字幕日韩| 免费看十八禁软件| 国产黄片美女视频| 男女之事视频高清在线观看| 少妇的逼水好多| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 午夜福利18| 在线观看日韩欧美| 黄色 视频免费看| 中亚洲国语对白在线视频| 香蕉久久夜色| 极品教师在线免费播放| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 日韩欧美国产在线观看| 日韩欧美一区二区三区在线观看| 精品久久久久久成人av| 村上凉子中文字幕在线| 久久这里只有精品19| 欧美日韩黄片免| 在线观看午夜福利视频| 久久国产精品影院| 欧美激情在线99| 成人永久免费在线观看视频| 国产精品爽爽va在线观看网站| 精品国内亚洲2022精品成人| 美女高潮喷水抽搐中文字幕| 国产av一区在线观看免费| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 18禁观看日本| 最近在线观看免费完整版| 全区人妻精品视频| 桃红色精品国产亚洲av| 日本成人三级电影网站| a级毛片在线看网站| 亚洲一区二区三区不卡视频| 最近视频中文字幕2019在线8| 精品国内亚洲2022精品成人| 天堂√8在线中文| 亚洲av成人精品一区久久| 久久婷婷人人爽人人干人人爱| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 免费在线观看亚洲国产| 男人舔女人的私密视频| 午夜激情福利司机影院| 人人妻,人人澡人人爽秒播| 女警被强在线播放| 999久久久国产精品视频| 禁无遮挡网站| 欧美三级亚洲精品| 男人和女人高潮做爰伦理| 日本成人三级电影网站| 俺也久久电影网| 精品不卡国产一区二区三区| 特级一级黄色大片| 日韩欧美免费精品| 亚洲专区字幕在线| 少妇裸体淫交视频免费看高清| 人人妻人人看人人澡| 久久久久久国产a免费观看| 亚洲 欧美一区二区三区| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 日日夜夜操网爽| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 18禁国产床啪视频网站| 亚洲在线自拍视频| 麻豆国产97在线/欧美| 怎么达到女性高潮| 亚洲国产欧美人成| 99久久99久久久精品蜜桃| 久久久久久大精品| 亚洲一区二区三区不卡视频| 最近最新中文字幕大全免费视频| 亚洲国产精品合色在线| 日本 欧美在线| 黄色成人免费大全| 又大又爽又粗| 全区人妻精品视频| 精品一区二区三区视频在线 | 亚洲18禁久久av| 天堂网av新在线| 亚洲精品美女久久久久99蜜臀| 亚洲人成网站高清观看| 麻豆国产97在线/欧美| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 日日摸夜夜添夜夜添小说| 哪里可以看免费的av片| 午夜日韩欧美国产| 性色av乱码一区二区三区2| 不卡av一区二区三区| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 久久中文看片网| 一夜夜www| 观看美女的网站| 亚洲天堂国产精品一区在线| 欧美一区二区精品小视频在线| 国产精品精品国产色婷婷| 男女那种视频在线观看| 此物有八面人人有两片| 免费人成视频x8x8入口观看| 国内精品久久久久精免费| 搡老岳熟女国产| 男人和女人高潮做爰伦理| 又黄又粗又硬又大视频| 岛国视频午夜一区免费看| 亚洲成a人片在线一区二区| 午夜福利在线观看免费完整高清在 | 国产三级黄色录像| 亚洲精品乱码久久久v下载方式 | 日本五十路高清| 国产亚洲av嫩草精品影院| 国产成人精品久久二区二区免费| 五月伊人婷婷丁香| 中国美女看黄片| 婷婷精品国产亚洲av| 亚洲aⅴ乱码一区二区在线播放| 老司机深夜福利视频在线观看| 午夜亚洲福利在线播放| 亚洲欧美精品综合一区二区三区| 男人的好看免费观看在线视频| 999精品在线视频| 成人av在线播放网站| 久久久久亚洲av毛片大全| 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 精品久久久久久久久久久久久| 亚洲精品色激情综合| 看免费av毛片| 偷拍熟女少妇极品色| 亚洲国产精品合色在线| 十八禁人妻一区二区| 1000部很黄的大片| 国产亚洲欧美98| 在线观看一区二区三区| 99热这里只有是精品50| 噜噜噜噜噜久久久久久91| 一本综合久久免费| cao死你这个sao货| 午夜福利在线观看免费完整高清在 | 久久精品国产综合久久久| 听说在线观看完整版免费高清| 不卡av一区二区三区| 中亚洲国语对白在线视频| 午夜两性在线视频| 亚洲国产色片| 在线视频色国产色| 日韩欧美国产在线观看| 亚洲国产欧美人成| 天天一区二区日本电影三级| 免费看十八禁软件| 亚洲专区中文字幕在线| 久久久久性生活片| 搡老岳熟女国产| 国产av一区在线观看免费| 天堂动漫精品| 亚洲av片天天在线观看| 亚洲av第一区精品v没综合| av天堂中文字幕网| 亚洲人成电影免费在线| 国产av在哪里看| 精品午夜福利视频在线观看一区| 亚洲,欧美精品.| 精品久久久久久久人妻蜜臀av| 亚洲九九香蕉| 小说图片视频综合网站| 女警被强在线播放| 午夜福利欧美成人| 男女那种视频在线观看| 天天添夜夜摸| 免费av不卡在线播放| 欧美色视频一区免费| 日韩精品青青久久久久久| 少妇的丰满在线观看| 一进一出好大好爽视频| 波多野结衣巨乳人妻| 99国产综合亚洲精品| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 国产极品精品免费视频能看的| 又大又爽又粗| 成人国产综合亚洲| 精品一区二区三区视频在线观看免费| 国产黄a三级三级三级人| 啦啦啦韩国在线观看视频| 久久精品影院6| 99热这里只有是精品50| 亚洲精品色激情综合| 黑人欧美特级aaaaaa片| 欧美午夜高清在线| 狂野欧美激情性xxxx| av国产免费在线观看| 久久久久性生活片| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 999久久久国产精品视频| 国产成人一区二区三区免费视频网站| 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 日韩人妻高清精品专区| 很黄的视频免费| 亚洲乱码一区二区免费版| 别揉我奶头~嗯~啊~动态视频| 嫩草影视91久久| 久久久久性生活片| 亚洲欧美日韩无卡精品| 熟女少妇亚洲综合色aaa.| 男人舔女人下体高潮全视频| 国产精品久久电影中文字幕| 精华霜和精华液先用哪个| 久久精品国产99精品国产亚洲性色| 精品久久久久久,| 特大巨黑吊av在线直播| 国产不卡一卡二| 日本三级黄在线观看| 国产伦精品一区二区三区视频9 | 国产高清视频在线观看网站| 黑人操中国人逼视频| 中国美女看黄片| 亚洲av成人不卡在线观看播放网| 亚洲男人的天堂狠狠| 波多野结衣高清作品| 免费在线观看视频国产中文字幕亚洲| 国产亚洲精品久久久com| 久久人人精品亚洲av| 欧美大码av| 淫秽高清视频在线观看| 香蕉久久夜色| 亚洲精品中文字幕一二三四区| h日本视频在线播放| 丝袜人妻中文字幕| 国产极品精品免费视频能看的| 最近在线观看免费完整版| 日韩欧美 国产精品| 黄色片一级片一级黄色片| 好男人电影高清在线观看| 无人区码免费观看不卡| 亚洲精品在线观看二区| 欧美色欧美亚洲另类二区| 亚洲美女黄片视频| 色综合欧美亚洲国产小说| 久久这里只有精品中国| 亚洲国产精品久久男人天堂| 亚洲激情在线av| 久久人妻av系列| 亚洲18禁久久av| 真人做人爱边吃奶动态| 舔av片在线| 成人永久免费在线观看视频| 国产高清有码在线观看视频| 婷婷精品国产亚洲av| 午夜福利视频1000在线观看| 日本黄大片高清| 国产成人aa在线观看| 午夜免费成人在线视频| 国产单亲对白刺激| 日本 av在线| 午夜久久久久精精品| 亚洲精品美女久久久久99蜜臀| 麻豆一二三区av精品| 99国产综合亚洲精品| 岛国在线观看网站| 成人无遮挡网站| 一区二区三区激情视频| 欧美日韩福利视频一区二区| 久久精品国产亚洲av香蕉五月| netflix在线观看网站| 美女cb高潮喷水在线观看 | 国产综合懂色| 性色av乱码一区二区三区2| 亚洲成人久久性| 亚洲精品乱码久久久v下载方式 | 国产单亲对白刺激| 久久久水蜜桃国产精品网| 日韩精品中文字幕看吧| 午夜激情欧美在线| 在线永久观看黄色视频| 怎么达到女性高潮| 欧美性猛交╳xxx乱大交人| 亚洲午夜精品一区,二区,三区| 一本久久中文字幕| 成人av一区二区三区在线看| 国产成人一区二区三区免费视频网站| 亚洲成人精品中文字幕电影| 国产精品 欧美亚洲| 亚洲熟妇中文字幕五十中出| 看黄色毛片网站| 最近最新中文字幕大全免费视频| 在线观看免费视频日本深夜| 欧美成狂野欧美在线观看| 波多野结衣高清无吗| 色av中文字幕| 久久久久久久久久黄片| 成人一区二区视频在线观看| 亚洲狠狠婷婷综合久久图片| 天天一区二区日本电影三级| 丝袜人妻中文字幕| 国产乱人视频| 欧美一级毛片孕妇| 免费电影在线观看免费观看| 一级毛片高清免费大全| 免费观看人在逋| av福利片在线观看| 别揉我奶头~嗯~啊~动态视频| 人人妻人人澡欧美一区二区| 蜜桃久久精品国产亚洲av| 日本精品一区二区三区蜜桃| 9191精品国产免费久久| 欧美zozozo另类| 日本黄大片高清| 国产97色在线日韩免费| 91麻豆精品激情在线观看国产| 国产激情偷乱视频一区二区| 亚洲欧美一区二区三区黑人| 麻豆成人av在线观看| 国产亚洲av嫩草精品影院| 人人妻人人澡欧美一区二区|